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The ancient Archimedean Principle states that the
shortest distance between two point is a straight
line. In this research we extend this principle by
showing that straight lines are the only minimiz-
ers for energy functionals with strictly convex La-
grangians. Conversely, we show that if straight
lines are always the shortest path between points,
then the Lagrangian must be convex. We also in-
vestigate the shortest distance problem with road
obstructions.

BACKGROUND

Given points p,q € R", let
P={~:I=R"|4(0)=p,y(1)=qyeW?}
be the set of continuous paths between them. Re-

sults by Dr. Katiuscia Teixeira[1] show the arc-
length functional

() = / VITA0Rdt

for planar v € P is minimized by straight lines. We
generalize £ to energy functionals E of the form

1
B(y) = / F(3(t)) dt

where the Lagrangian of E is FF : R* — R. We
extend these ideas to paths constrained by an ob-
struction B. Below are examples of these notions.

Figure 1: Paths in P

Figure 2: Paths in Pg

For the road obstruction problem, we focus our
results on graph functions in R? with constraint
~v > B, where S is a C! graph of the boundary 9B.
We seek to minimize E in the following family

Ps={veP|v=8}

Due to the generality of our results, the minimiza-
tion problem is modeled in the Sobolev spaces
W2 and Wy*® of weakly differentiable functions.
We will also refer to T;.(z) as the linearization of F
atr.

Theorem 1. If E has a (strictly) convex Lagrangian F,
then straight lines are (unique) minimizers to E in P.
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Figure 3: F(z) = 22 + 5 Figure 4: Sample energies

Sketch of proof. E(7y) is uniquely determined by
[, e(), where e(z) = F(z)—T,(z), = g—p. Since e
is convex and the minimum of e(z) occurs at z = r,
4 = r so v is a straight line. i

Theorem 2 (Converse). If E is minimized uniquely by
straight lines, then F' is convex.

Sketch of proof. Let v = q — p. Let y(t) = vt be the
minimizer, fix ¢ € W;%; then i(s) = E(y + sp) has
a minimum at s = 0. Fix w # 0 € R", define ¢ as
follows:

Figure 5: ¢ Figure 6: ¢
Since 4(0) is a minimum, i(s) 4 i(—s) > 2i(0). Thus

F(v+ sw) + F(v— sw) > 2F(v). O

SHORTEST DISTANCE PROBLEM WITH AN OBSTACLE

Theorem 3. There exists a minimizer «y to E in Pg.

Lemma 4. If v minimizes E, then 4 < 0, and ¥ = 0
when vy > (. Furthermore, -y must touch (.

Sketch of proof. If > 0 while ¢ > f, then by Theo-
rem 1 there exists a straight + line joining the end-
points of ¢ which is energy minimizing. If v = g,
then 4 < 0 by the definition of (.

Figure7: 4 = 0 Figure 8: 4 < 0

By Theorem 3, the infimum must exist and be at-
tained in Pg. If v does not touch f3, then we can
create a path 4 with E(y) < E(y), so the minimum
must intersect (3. O

Figure 9: -y gap

Figure 10: Shorter ¥

Lemma 5. If vy touches f3, it does so at a tangent. That
is, B = ~ at their intersection.

Figure 11: v, Figure 12: Minimizing E(~s)

Sketch of proof. Leti(s) = E(v,). By letting i/(s) =0,
we find that v/1+42 = 1/1+ 2,50 8 = +5. We

can confirm § = 4 is a minimum. |

Lemma 6. If p, q lie on a convex portion of the graph of
(3, then the shortest path v > (3 connecting p, q is on 3.

B

Figure13: v = 8

Sketch of proof. Let ¢ € Wi be nonnegative, and
let s > 0. We can vary i(s) = E(y + sp) to find that
i'(s) > 0 for all s. Thus, v =  must be a global
minimum. O

Theorem 7 (Regularity). If v minimizes the distance
between two points separated by an obstacle B with
B € CY, then y e C*

Sketch of proof. By Theorem 3 and Lemmas 4, 5, and
6, ¥ must approach § along a tangent line pass-
ing through p and continue on dB until leaving
along another tangent line to approach gq. Hence,
v e L O

Corollary 8. These results generalize to non-graph
functions in R2. That is, if 8 € C*, then the minimizer
to E in Py is C*.

RESULTS

As stated by Corollary 8, our results generalize to
various obstacles in R2. Given the nature of the
minimizer found through Theorem 7, we may also
conclude that minimizers do not exist when our
codomain R% — B is open. (See Lemma 4)

Our results allow the characterization of minimiz-
ers to F in P by studying B. Understanding the
existence and regularity of solutions in this manner
allows broad applications to physical systems.

FUTURE RESEARCH

- Investigate maximizers to such energy function-
als and their applications.

- Extend results of the shortest distance problem
with an obstacle to higher dimensions (R™).

- Characterize energy extremizers for surfaces
and volumes between paths; Generalize the
shortest distance problem with obstacles to n di-
mensions.

e

Figure 3: Joining paths
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