
ABSTRACT 

The ancient Archirnedean Principle states that the 
shortest distance between two point is a straight 
line. In this research we extend this principle by 
showing that straight lines are the only minimiz
ers for energy functionals with strictly convex La
grangians. Conversely, we show that if straight 
lines are always the shortest path between points, 
then the Lagrangian must be convex. We also in
vestigate the shortest distance problem with road 
obstructions. 

BACKGROUND 
Given points p, q E !Rn, let 

P = { 'Y: I ➔ !Rn 1, (0) = P,,(l) = q,1 E W 1
'
2

} 

be the set of continuous paths between them. Re
sults by Dr. Katiuscia Teixeira[! ] show the arc
length functional 

£(,) = [ J1 + "f(t)2 dt 

for planar I E Pis minimized by straight lines. We 
generalize £ to energy functionals E of the form 

E(,) = [ F("t(t)) dt 

where the Lagrangian of E is F : !Rn ➔ IR. We 
extend these ideas to paths constrained by an ob
struction B. Below are examples of these notions. 

p ~ q fil')3\ q , __ 

p 

Figure 1: Paths in P Figure 2: Paths in P p 

For the road obstruction problem, we focus our 
results on graph functions in IR.2 with constraint 
1 2 /3, where /3 is a C 1 graph of the boundary 8B. 
We seek to minimize E in the following family 

P (3 = { , E P I, 2 /3 }. 

Due to the generality of our results, the minimiza
tion problem is modeled in the Sobolev spaces 
W 1

•
2 and wt·2 of weakly differentiable functions. 

We will also refer to Tr ( x) as the linearization of F 
at r. 

SHORTEST DISTANCE PROBLEM 

Theorem 1. If E has a (strictly) convex Lagrangian F, 
then straight lines are (unique) minimizers to E in P. 

Figure 3: F (x ) = x 2 + 5 Figure 4: Sample energies 

Sketch of proof E(,) is uniquely determined by 
f1 e("t), where e(x) = F(x)-Tr(x), r = q-p. Since e 
is convex and the minimum of e(x) occurs at x = r, 
"t = r so I is a straight line. □ 

Theorem 2 (Converse). If Eis minimized uniquely by 
straight lines, then F is convex. 

Sketch of proof Let v = q - p. Let 1 ( t) = vt be the 
minimizer, fix <p E wt•2; then i(s) = E(, + s<p) has 
a minimum at s = 0. Fix w # 0 E IR.n, define <p as 
follows: 

L J---,---, 
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Figure 5: c.p Figure 6: 'f) 

Sincei(0) isaminimum,i(s) + i(-s) 2 2i(0). Thus 
F(v + sw) + F(v - sw) 2 2F(v). □ 

SHORTEST DISTANCE PROBLEM WITH AN OBSTACLE 

Theorem 3. There exists a minimizer I to E in Pf3 · 

Lemma 4. If I minimizes E, then i :<::: 0, and i = 0 
when 1 > /3. Furthermore, 1 must touch /3. 

Sketch of proof If cp > 0 while <p 2 /3, then by Theo
rem 1 there exists a straight I line joining the end
points of <p which is energy minimizing. If 1 = /3, 
then i < 0 by the definition of /3. 

Figure 7: 1' = 0 Figure 8: ')' < 0 

By Theorem 3, the infimum must exist and be at
tained in Pf3 - If I does not touch /3, then we can 
create a path 'y with E(i ) < E(,), so the minimum 
must intersect {3. □ 

Figure 9: ; gap Figure 10: Shorter ')' 

Lemma 5. If I touches /3, it does so at a tangent. That 
is, /3 = "tat their intersection. 

Figure 11: 'Y 8 Figure 12: Minimizing E (-y8 ) 

Sketch of proof Leti(s) = E (,s) -Bylettingi'(s) = 0, 

we find that J1 + "f2 = J1 + /32 , so /3 = ±"f. We 

can confirm /3 = "t is a minimum. □ 

Lemma 6. If p, q lie on a convex portion of the graph of 
/3, then the shortest path 1 2 /3 connecting p , q is on /3. 

Figure 13, -y = (3 

Sketch of proof Let <p E wt·2 be nonnegative, and 
lets 2 0. We can vary i (s) = E (, + s<p) to find that 
i' ( s) > 0 for all s. Thus, 1 = /3 must be a global 
minimum. □ 

Theorem 7 (Regularity). If I minimizes the distance 
between two points separated by an obstacle B with 
/3 E C 1

, then I E C 1 

Sketch of proof By Theorem 3 and Lemmas 4, 5, and 
6, 1 must approach /3 along a tangent line pass
ing through p and continue on 8B until leaving 
along another tangent line to approach q. Hence, 
1 E C 1

. □ 

Corollary 8. These results generalize to non-graph 
functions in IR.2 . That is, if /3 E C 1, then the minimizer 
toEinPf3 isC1

. 

RESULTS 

As stated by Corollary 8, our results generalize to 
various obstacles in IR.2 . Given the nature of the 
minimizer found through Theorem 7, we may also 
conclude that minimizers do not exist when our 
codomain IR.2 - B is open. (See Lemma 4) 

Our results allow the characterization of minimiz
ers to E in Pf3 by studying B. Understanding the 
existence and regularity of solutions in this manner 
allows broad applications to physical systems. 

FUTURE RESEARCH 

- Investigate maximizers to such energy function
als and their applications. 

- Extend results of the shortest distance problem 
with an obstacle to higher dimensions (IR.n). 

- Characterize energy extremizers for surfaces 
and volumes between paths; Generalize the 
shortest distance problem with obstacles ton di
mensions. 

Figure 3: Joining paths Figure 4: Homotopy trace 
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