
ABSTRACT 

The ancient Archirnedean Principle states that the 
shortest distance between two point is a straight 
line. In this research we extend this principle by 
showing that straight lines are the only minimiz­
ers for energy functionals with strictly convex La­
grangians. Conversely, we show that if straight 
lines are always the shortest path between points, 
then the Lagrangian must be convex. We also in­
vestigate the shortest distance problem with road 
obstructions. 

BACKGROUND 
Given points p, q E !Rn, let 

P = { 'Y: I ➔ !Rn 1, (0) = P,,(l) = q,1 E W 1
'
2

} 

be the set of continuous paths between them. Re­
sults by Dr. Katiuscia Teixeira[! ] show the arc­
length functional 

£(,) = [ J1 + "f(t)2 dt 

for planar I E Pis minimized by straight lines. We 
generalize £ to energy functionals E of the form 

E(,) = [ F("t(t)) dt 

where the Lagrangian of E is F : !Rn ➔ IR. We 
extend these ideas to paths constrained by an ob­
struction B. Below are examples of these notions. 

p ~ q fil')3\ q , __ 

p 

Figure 1: Paths in P Figure 2: Paths in P p 

For the road obstruction problem, we focus our 
results on graph functions in IR.2 with constraint 
1 2 /3, where /3 is a C 1 graph of the boundary 8B. 
We seek to minimize E in the following family 

P (3 = { , E P I, 2 /3 }. 

Due to the generality of our results, the minimiza­
tion problem is modeled in the Sobolev spaces 
W 1

•
2 and wt·2 of weakly differentiable functions. 

We will also refer to Tr ( x) as the linearization of F 
at r. 

SHORTEST DISTANCE PROBLEM 

Theorem 1. If E has a (strictly) convex Lagrangian F, 
then straight lines are (unique) minimizers to E in P. 

Figure 3: F (x ) = x 2 + 5 Figure 4: Sample energies 

Sketch of proof E(,) is uniquely determined by 
f1 e("t), where e(x) = F(x)-Tr(x), r = q-p. Since e 
is convex and the minimum of e(x) occurs at x = r, 
"t = r so I is a straight line. □ 

Theorem 2 (Converse). If Eis minimized uniquely by 
straight lines, then F is convex. 

Sketch of proof Let v = q - p. Let 1 ( t) = vt be the 
minimizer, fix <p E wt•2; then i(s) = E(, + s<p) has 
a minimum at s = 0. Fix w # 0 E IR.n, define <p as 
follows: 

L J---,---, 
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Figure 5: c.p Figure 6: 'f) 

Sincei(0) isaminimum,i(s) + i(-s) 2 2i(0). Thus 
F(v + sw) + F(v - sw) 2 2F(v). □ 

SHORTEST DISTANCE PROBLEM WITH AN OBSTACLE 

Theorem 3. There exists a minimizer I to E in Pf3 · 

Lemma 4. If I minimizes E, then i :<::: 0, and i = 0 
when 1 > /3. Furthermore, 1 must touch /3. 

Sketch of proof If cp > 0 while <p 2 /3, then by Theo­
rem 1 there exists a straight I line joining the end­
points of <p which is energy minimizing. If 1 = /3, 
then i < 0 by the definition of /3. 

Figure 7: 1' = 0 Figure 8: ')' < 0 

By Theorem 3, the infimum must exist and be at­
tained in Pf3 - If I does not touch /3, then we can 
create a path 'y with E(i ) < E(,), so the minimum 
must intersect {3. □ 

Figure 9: ; gap Figure 10: Shorter ')' 

Lemma 5. If I touches /3, it does so at a tangent. That 
is, /3 = "tat their intersection. 

Figure 11: 'Y 8 Figure 12: Minimizing E (-y8 ) 

Sketch of proof Leti(s) = E (,s) -Bylettingi'(s) = 0, 

we find that J1 + "f2 = J1 + /32 , so /3 = ±"f. We 

can confirm /3 = "t is a minimum. □ 

Lemma 6. If p, q lie on a convex portion of the graph of 
/3, then the shortest path 1 2 /3 connecting p , q is on /3. 

Figure 13, -y = (3 

Sketch of proof Let <p E wt·2 be nonnegative, and 
lets 2 0. We can vary i (s) = E (, + s<p) to find that 
i' ( s) > 0 for all s. Thus, 1 = /3 must be a global 
minimum. □ 

Theorem 7 (Regularity). If I minimizes the distance 
between two points separated by an obstacle B with 
/3 E C 1

, then I E C 1 

Sketch of proof By Theorem 3 and Lemmas 4, 5, and 
6, 1 must approach /3 along a tangent line pass­
ing through p and continue on 8B until leaving 
along another tangent line to approach q. Hence, 
1 E C 1

. □ 

Corollary 8. These results generalize to non-graph 
functions in IR.2 . That is, if /3 E C 1, then the minimizer 
toEinPf3 isC1

. 

RESULTS 

As stated by Corollary 8, our results generalize to 
various obstacles in IR.2 . Given the nature of the 
minimizer found through Theorem 7, we may also 
conclude that minimizers do not exist when our 
codomain IR.2 - B is open. (See Lemma 4) 

Our results allow the characterization of minimiz­
ers to E in Pf3 by studying B. Understanding the 
existence and regularity of solutions in this manner 
allows broad applications to physical systems. 

FUTURE RESEARCH 

- Investigate maximizers to such energy function­
als and their applications. 

- Extend results of the shortest distance problem 
with an obstacle to higher dimensions (IR.n). 

- Characterize energy extremizers for surfaces 
and volumes between paths; Generalize the 
shortest distance problem with obstacles ton di­
mensions. 

Figure 3: Joining paths Figure 4: Homotopy trace 
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