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Modular forms

Modular forms play a crucial role in Number theory.
A modular form f is a holomorphic function f : H→ C such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀τ ∈ H,

[
a b
c d

]
∈ Γ ⊆ SL2(Z).

Moreover, we require that (cτ + d)−kf(aτ+bcτ+d ) has a Fourier expansion.
The coefficients appearing in the q-expansions have algebraic/geometric
meanings.
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A curious phenomenon (setup)

Let f, g, h be three cuspidal eigenforms in M2(N,Q). Fix a prime
p ≥ 5, p 6 |N . Let αf , βf be the roots of the Hecke polynomial

x2 − ap(f)x+ p. (1)

Assume as well that: valp(αf ) = 0, αf 6= βf .
 f is ordinary and regular at p.
Define the p-stabilizations of f :

fα(q) := f(q)− βff(qp); fβ(q) := f(q)− αff(qp).

They have level pN , and are eigenforms for the Up operator with
respective eigenvalues αf and βf .
Define the following Euler factors:

E(f, g, h) := (1− βfαgαhp
−2)(1− βfαgβhp

−2)(1− βfβgαhp
−2)(1− βfβgβhp−2);

Ẽ(f, g, h) := (1− αfαgαhp
−2)(1− αfαgβhp

−2)(1− αfβgαhp
−2)(1− αfβgβhp

−2);

E0(f) := 1− β2
f (p)p−1; Ẽ0(f) := 1− α2

f (p)p−1;

E1(f) := 1− β2
f (p)p−2; Ẽ1(f) := 1− α2

f (p)p−2.

(2)

Wissam Ghantous UCF Colloquium A symmetric symbol for triples of modular forms 4/19



A curious phenomenon (setup)

Let

· φ be the Frobenius map,

· d := q d
dq be the Serre differential operator,

· 〈·, ·〉 be the Poincaré pairing,

· Projfγ : Soc
2 (N,Qp) −→ Soc

2 (N,Qp)fγ be the projection over fγ .
It is the unique linear functional that factors through the Hecke
eigenspace associated to fγ and is normalized to send fγ to 1.

Consider the quantity:

〈ωf , φ(ωf )〉
p

(
E1(f)

E(f, g, h)
βfProjfα

(
d−1(g[p])× h

)
+
Ẽ1(f)

Ẽ(f, g, h)
αfProjfβ

(
d−1(g[p])× h

))
.

(3)
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A curious phenomenon

Consider the quantity:

〈ωf , φ(ωf )〉
p

(
E1(f)
E(f, g, h)

βfProjfα

(
d−1

(g
[p]

)× h
)
+
Ẽ1(f)
Ẽ(f, g, h)

αfProjfβ

(
d−1

(g
[p]

)× h
))

.

(4)

It turns out that this quantity is independent – up to a sign – of the
order of f, g and h.
This result is particularly surprising since it does not appear to be
symbolically symmetric in f, g and h.

The above phenomenon can be generalized to modular forms of higher
(balanced1) weights and any characters satisfying χfχgχh = 1, modulo
slight modifications.

1balanced weights: the largest one is strictly smaller than the sum of the other
two, i.e. lengths of sides of a 4
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Setup (most general form)

Fix three eigenforms

f ∈ Sk(N,Q, χf ), g ∈ S`(N,Q, χg), h ∈ Sm(N,Q, χh),

such that χfχgχh = 1.
Fix a prime p ≥ 5, p 6 |N .

Hecke polynomial: x2 − ap(f)x+ χf (p)pk−1 = (x− αf )(x− βf ).
Assume that: valp(αf ) = 0, αf 6= βf .
The p-stabilizations of f :

fα(q) := f(q)− βff(qp); fβ(q) := f(q)− αff(qp).

 level pN , and are eigenforms for Up with eigenvalues αf and βf .

Let t := `+m−k−2
2 ≥ 0, c := k+`+m−2

2 . Define the Euler factors:

E(f, g, h) := (1− βfαgαhp
−c)(1− βfαgβhp

−c)(1− βfβgαhp
−c)(1− βfβgβhp−c);

Ẽ(f, g, h) := (1− αfαgαhp
−c)(1− αfαgβhp

−c)(1− αfβgαhp
−c)(1− αfβgβhp

−c);

E0(f) := 1− β2
fχ

−1
f (p)p1−k; Ẽ0(f) := 1− α2

fχ
−1
f (p)p1−k;

E1(f) := 1− β2
fχ

−1
f (p)p−k; Ẽ1(f) := 1− α2

fχ
−1
f (p)p−k.

(5)
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A new p-adic symbol: (f, g, h)p

Starting point: The Garrett-Rankin triple product p-adic L-function [DR14].
Let f ,g,h be Hida families, interpolating f , g and h at the weights k, ` and m.
The Garrett-Rankin triple product p-adic L-function is defined as:

Lp(f ,g,h)(x, y, z) := Projf∗x,α(d−1−tg[p]y × hz). (6)

Definition

Let f, g and h be three cuspidal modular forms of level N and respective
weights k, ` and m which are ordinary at p. We define the p-adic triple symbol
(f, g, h)p by

(−1)tt!
〈ωf , φ(ωf )〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ Projf∗α

(
d−1−t(g[p])× h

)
+
Ẽ1(f)

Ẽ(f, g, h)
αf∗Projf∗

β

(
d−1−t(g[p])× h

))
.
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Symmetry and antisymmetry relations for (f, ·, ·)p

Theorem (Ghantous)

Let f, g, h be three cuspidal new forms of weights k, `,m. Let
t := `+m−k−2

2 . We have the following symmetry relation:

(f, g, h)p = (−1)t+1(f, h, g)p.

In other words, the parity of t determines the symmetry or anti-symmetry
of (f, ·, ·)p.
*This result also holds for the Lp(f ,g,h)(x, y, z).

Sketch of Proof

I essentially prove the theorem by showing that for γ ∈ {α, β}, we have
Projfγ

(
d−1−t(g[p])× h

)
= (−1)t+1Projfγ

(
d−1−t(h[p])× g

)
, through an

explicit calculation.

Wissam Ghantous UCF Colloquium A symmetric symbol for triples of modular forms 9/19



Symmetry and antisymmetry relations for L S
p (f, ·, ·)

Proof.

Let Y := (d−1−tg[p])h[p] − (−1)t+1(d−1−th[p])g[p].
Goal: Projfα(Y ) = Projfβ (Y ) = 0.

Let X :=
∑t
i=0(−1)id−1−t+ig[p]d−1−ih[p]. Then, Y = dX is exact.

• So Y is in the kernel of eord (which is a multiple of Projfα):

eord
(
d−1−t

(
g[p]
)
× h[p]

)
= (−1)t+1eord

(
h[p] × d−1−t

(
g[p]
))

.

Finally, we can drop the [p] from first h[p] and second g[p] (they differ by
an element in Ker(Up).
Thus, eord

(
d−1−t

(
g[p]
)
× h
)

= (−1)t+1eord
(
h× d−1−t

(
g[p]
))

.

• Y is also trivial is cohomology.
So 〈ωf , Y 〉 = 0, and

〈
ωf ,Projf∗(Y )

〉
= 0. So,〈

ωf ,Projf∗(d−1−t
(
g[p]
)
×h[p])

〉
=(−1)t+1

〈
ωf ,Projf∗(h

[p]×d−1−t
(
g[p]
)
)
〉
.

Again, we can drop the [p] from first h[p] and second g[p].
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Main result

Theorem (Ghantous)

Let f, g, h be three cuspidal newforms of weights k, `,m. Then,

(f, g, h)p = (−1)k(g, h, f)p = (−1)m(h, f, g)p.

*Key step for the proof: expressing (f, g, h)p using the Abel-Jacobi map.

In [DR14], the authors construct a generalized Gross-Kudla-Schoen
diagonal cycle ∆ := ∆k,`,m and show that

Lp(f ,g,h)(x, y, z) =
(−1)t+1

t!

E(fx, gy, hz)

E0(fx)E1(fx)
AJp(∆)(ηu-rfx ⊗ ωgy ⊗ ωhz ).

We consider the change (ηu-rf ⊗ωg ⊗ωh) (ωf ⊗ωg ⊗ωh), and prove that

(f, g, h)p = AJp(∆k,`,m)(ωf ⊗ ωg ⊗ ωh).
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Main result

Proof.

Let s : (W := Ek−2 × E`−2 × Em−2) −→ (W ′ := E`−2 × Ek−2 × Em−2)
be the map that permutes the first and second terms. The functoriality
properties of the p-adic Abel Jacobi map give us (r := (k+ `+m− 6)/2)

CHr+2(W )0 Filr+2H2r+3
dR (W )∨

CHr+2(W ′)0 Filr+2H2r+3
dR (W ′)∨.

AJp

s∗ s∗,∨

AJp

i.e., AJps∗ = s∗,∨AJp. So given Z ∈ CHr+2(W )0, ω ∈ Filr+2H2r+3
dR (W ′):

AJp(s∗Z)(ω) = (s∗,∨AJp(Z))(ω) = AJp(Z)(s∗ω).

But s∗∆k,`,m = (−1)]]]∆`,k,m and s∗(ωg,f,h) = (−1)]]]ωf,g,h. Hence,

(f, g, h)p = (−1)(k+`−m)/2(g, f, h)p.
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Computational aspects

Algorithms used:

1. Ordinary projections of overconvergent modular forms;

2. Ordinary projections of nearly overconvergent modular forms;

3. Projections of overconvergent modular forms over the slope σ space.

Methods they rely on:

1. Approximate OCMFs using a finite Katz basis, write Up as matrix A
in that basis, then eord ≈ A?.

2. eord = eord ◦ πoc,
πoc((dsφ1)× φ2) =

(
κ1+κ2+2s−2

s

)−1
[φ1, φ2]s, ∀s ≥ 0, (see [LSZ20]).

3. Put A in SNF, and use an algebra trick suggested by D. Loeffler.

Wissam Ghantous UCF Colloquium A symmetric symbol for triples of modular forms 13/19



Poincaré pairings (weight 2)

Goal: compute Ωf := 〈ωf , φ(ωf )〉.

Let E := Ef = elliptic curve associated to f .

The differential ωf =
∑
n an(f)qn dq

q corresponds to ωE := dx
y .

Let M represent the action of Frobenius, up to precision pm, on ωE = dx
y

and ηE := x dx
y .

Then, 〈ωE ,MωE〉 = 〈ωE ,m11 ωE +M21 ηE〉 = M21.
Hence,

Ωf = M21 mod pm.

*The matrix M can be efficiently computed via Kedlaya’s algorithm.
*Slight simplification: actually, one needs to include the modular degree
mE of E as a correction factor. So,

Ωf = mE M21 mod pm. (7)
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Poincaré pairings (general weight)

Goal: compute Ωf := 〈ωf , φ(ωf )〉 mod pm, for a modular form f of
weight k > 2, level N , and a precision level m ∈ N.
Trick: exploit the symmetry of (f, g, h)p.

Algorithm 1
Pick ϕ of weight 2, and g of weight k, so (2, k, k) is balanced.
Compute (ϕ, f, g)p and (f, g, ϕ)p/Ωf .
*Computing (ϕ, f, g)p involves computing Ωϕ, which is doable as ϕ has
weight 2.
*Computing (f, g, ϕ)p/Ωf doesn’t involve any Poincaré pairings.
We obtain:

Ωf =
(ϕ, f, g)p

(f, g, ϕ)p/Ωf
. (8)

Remark

This won’t necessarily work on the first try, but we can vary the choice of
ϕ and g.
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Poincaré pairings (general weight)

Goal: compute Ωf := 〈ωf , φ(ωf )〉 mod pm, for a modular form f of
weight k > 2, level N , and a precision level m ∈ N.
Trick: exploit the symmetry of (f, g, h)p.

Algorithm 2
Pick a new modular form f0 of weight k0 > 2 and level N . Apply
Algorithm 1 to obtain Ωf0 .
Pick a modular form g of any weight ` such that the triple (f, f0, g) is
balanced.
Compute (f0, f, g)p and (f, g, f0)p/Ωf . We obtain:

Ωf =
(f0, f, g)p

(f, g, f0)p/Ωf
. (9)

Remark

We can vary the choice of f0 and g.
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A concrete example

Take N := 45 and let f, g, h, h2, h3 ∈ S4(Q, 45) be the cuspidal
newforms:

f = q − q2 − 7q4 − 5q5 − 24q7 + 15q8 + 5q10 − 52q11...,

g = q − 3q2 + q4 + 5q5 + 20q7 + 21q8 − 15q10 + 24q11...,

h = q + 4q2 + 8q4 + 5q5 + 6q7 + 20q10 − 32q11 + ...,

h2 = q − 5q2 + 17q4 + 5q5 − 30q7 − 45q8 − 25q10 − 50q11 + ...,

h3 = q + 5q2 + 17q4 − 5q5 − 30q7 + 45q8 − 25q10 + 50q11 + ....

Let f0 ∈ S2(Q, 45) be the newform given by

f0 = q + q2 − q4 − q5 − 3q8 − q10 + 4q11 + ....
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A concrete example

We compute

(f0, f, h2)p/Ωf0 = 16513223984800935050336063815246 · 173 mod 1730,

(f, h2, h0)p/Ωf = 13539421372161396100812664727177 · 17 mod 1730,

(f0, h3, g)p/Ωf0 = −3366884595101012754561302551722 · 172 mod 1730

(h3, g, f0)p/Ωh3
= 93393936291523115360189136554 mod 1730.

Using Kedlaya’s algorithm, we compute

Ωf0 = 〈ωf0 , φ(ωf0)〉 = 73740522216959426358743952636082111·17 mod 1730.

Thus, we deduce that we must have

Ωf =Ωf0
(f0, f, h2)p/Ωf0
(f, h2, f0)p/Ωf

= -8862546113964214628352195959100·173mod 1727,

Ωh3
=Ωf0

(f0, h3, g)p/Ωf0
(h3, g, f0)p/Ωh2

= -1728830956772474294735820116226·173mod 1726.
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