
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 359, Number 11, November 2007, Pages 5653–5668
S 0002-9947(07)04336-X
Article electronically published on May 8, 2007

SINGULAR SOLUTIONS OF PARABOLIC p-LAPLACIAN
WITH ABSORPTION

XINFU CHEN, YUANWEI QI, AND MINGXIN WANG

Abstract. We consider, for p ∈ (1, 2) and q > 1, the p-Laplacian evolution
equation with absorption

ut = div (|∇u|p−2∇u) − uq in R
n × (0,∞).

We are interested in those solutions, which we call singular solutions, that
are non-negative, non-trivial, continuous in R

n × [0,∞) \ {(0, 0)}, and satisfy
u(x, 0) = 0 for all x �= 0. We prove the following:

(i) When q ≥ p − 1 + p/n, there does not exist any such singular solution.
(ii) When q < p − 1 + p/n, there exists, for every c > 0, a unique singular

solution u = uc that satisfies
∫

Rn u(·, t) → c as t ↘ 0.

Also, uc ↗ u∞ as c ↗ ∞, where u∞ is a singular solution that satisfies∫
Rn u∞(·, t) → ∞ as t ↘ 0.

Furthermore, any singular solution is either u∞ or uc for some finite positive
c.

1. Introduction

We are interested in singular solutions for the parabolic p-Laplacian equation
with absorption:

(1.1) ut = div (|∇u|p−2∇u) − uq in R
n × (0,∞).

Here by a singular solution we always mean a non-negative and non-trivial solution
which is continuous in R

n × [0,∞) \ {(0, 0)} and satisfies

(1.2) lim
t↘0

sup
|x|>ε

u(x, t) = 0 ∀ε > 0.

A singular solution is called a fundamental solution (FS for short) with mass c ∈
(0, ∞) if

(1.3) lim
t↘0

∫
|x|<1

u(x, t) dx = c.

A singular solution is called a very singular solution (VSS for short) if

(1.4) lim
t↘0

∫
|x|<1

v(x, t) dx = ∞.

Received by the editors May 7, 2002 and, in revised form, May 15, 2006.
2000 Mathematics Subject Classification. Primary 35K65, 35K15.
Key words and phrases. p-Laplacian, fast diffusion, absorption, fundamental solution, very

singular solution.
All the authors are grateful to the Hong Kong RGC Grant HKUST 630/95P given to the

second author. The first author would like to thank the National Science Foundation for Grant
DMS-9971043, USA. The third author thanks the PRC for NSF Grant NSFC-19831060.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

5653

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5654 XINFU CHEN, YUANWEI QI, AND MINGXIN WANG

As one can see from the next section, a singular solution is either an FS or a VSS.
Denote by δ(·) the Dirac delta function. Then (1.2) and (1.3) can be written in

short as u(·, 0) = c δ(·). Typical diffusion equations without absorption, such as the
heat equation ut = ∆u, the porous media equation ut = ∆um, and the parabolic
p-Laplacian equation ut = div (|∇u|p−2∇u), admit only FSs; cf. [12].

One observes that (1.1) is invariant under any rotation of x and the scaling
u → T λ(u) for any λ > 0, where

T λ(u)(x, t) := λαu(λαβx, λt), α = 1
q−1 , β = q+1−p

p .

We call a singular solution of (1.1) self-similar if it is invariant under any rotation
of x and under the scaling u → T λ(u) for any λ > 0, so that it necessarily takes the
form u = t−αw(|x|t−αβ), where w is defined on [0,∞) and satisfies the following
ODE:

(1.5)

⎧⎪⎨
⎪⎩

(|w′|p−2w′)′ + (n − 1)|w′|p−2w′/r + α(βrw′ + w) − wq = 0 ∀r > 0,

w(r) ≥ 0 in [0,∞), w(0) < ∞,

limr→∞ r1/βw(r) = 0,

where the last condition is equivalent to (1.2) since, for r = |x|t−αβ , u(x, t) =
|x|−1/βr1/βw(r).

Singular solutions, as can be seen from the standard heat equation ut −∆u = 0,
play a vital role in understanding the large time asymptotic behavior of solutions of
the Cauchy problem of (1.1) with “fast” decaying initial data; see [7, 8, 10, 13, 24]
and the references therein for some of their applications.

When p > 2, (1.1) is degenerate parabolic. Using an ODE shooting method,
Peletier and Wang [22] proved that when q ∈ (p − 1, p − 1 + p/n), (1.1) admits a
self-similar VSS. Uniqueness of such a self-similar VSS was later verified by Diaz
and Saa [5].

A complete investigation for all singular solutions of (1.1) for p > 2 was per-
formed by Kamin and Vazquez [13]. They proved the following:

(1) when q ≥ p − 1 + p/n, (1.1) does not have any singular solution;
(2) when p− 1 < q < p− 1 + p/n, there exist a unique VSS and, for every given

c > 0, a unique FS with initial mass c;
(3) when 0 < q ≤ p − 1, there does not exist any VSS but there exists, for any

c > 0, a unique FS with initial mass c.
Actually, they provided the above classification for the following more general

equation:

(1.6) ut = div (|∇u|p−2∇u) − φ(u) in R
n × (0,∞),

where φ(·) is in a certain class of non-negative functions that mimic uq.
When p = 2, equation (1.1) becomes a semilinear heat equation

(1.7) ut = ∆u − uq, q > 1.

Brezis and Friedman [1] showed that there are singular solutions if and only if
q ∈ (1, 1 + 2/n). Existence of VSS for the same range q ∈ (1, 1 + n/2) was later es-
tablished by Brezis, Peletier, and Terman [2]. Relations between VSS and FS were
discovered by Kamin and Peletier [9]. All singular solutions of (1.7) were classified
by Oswald [20]. Stability of singular solutions was studied by Galaktionov, Kur-
dyumov, & Samarskii [8, and references therein]. Recently, Leoni [19] considered a
similar problem for the elliptic equation div(|∇u|p−2∇u) + x · ∇uq + αuq = 0.
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In this paper, we study the case

(1.8) 1 < p < 2, q > 1.

One notices that (1.1) becomes singular at points where |∇u| = 0.
In [3], we studied self-similar singular solutions of (1.1), i.e., the ODE problem

(1.5) under the constraint (1.8). We established the following result.

Proposition 1 ([3]). Assume that (1.8) holds. Then (1.5) has a non-trivial solution
if and only if q < p− 1 + p/n. In addition, in the case of existence, the non-trivial
solution to (1.5) is unique. In terms of (1.1), this result translates into the following:

(i) If q < p − 1 + p/n, then (1.1) has a unique self-similar VSS.
(ii) If q ≥ p−1+p/n, then (1.1) does not have any self-similar singular solution.

Based on this result, here we classify all singular solutions of (1.1) under the
assumption (1.8). In particular, we prove the following:

Theorem 1.1. Assume (1.8). Then the followings hold:
(i) every singular solution of (1.1) is either an FS or a VSS;
(ii) when q ≥ p − 1 + p/n, (1.1) does not have any singular solution;
(iii) when q < p− 1 + p/n, (1.1) admits a unique VSS u∞ and, for every c > 0,

a unique FS uc with initial mass c. In addition, uc1 < uc2 for any c1 < c2

and uc → u∞ as c → ∞.

The main structure of our proof of the theorem is adapted from that of Kamin
and Vazquez [13].

After the pioneering work of [1, 2, 8] on (1.7), there was work on singular solutions
for the porous media equation with absorption

(1.9) ut = ∆um − uq in R
N × (0,∞).

When m > 1, i.e., the slow diffusion case, Kamin, Peletier, and Vazquez [11]
provide a complete classification of singular solutions of (1.9).

(1) When q ≥ m + 2/n, (1.9) has no singular solution at all.
(2) When q ∈ (m, m + 2/n), there exists a unique VSS and, in addition, for

every c > 0, a unique FS with initial mass c. (Existence of self-similar VSS was
established by Peletier and Terman [21] whereas uniqueness of VSS was established
by Kamin and Veron in [14].)

(3) When q ∈ (1, m], there does not exist any VSS but there exists, for every
c > 0, a unique FS with initial mass c.

The corresponding results for FS were established by Kamin and Peletier in [10].
When m ∈ (max{0, 1 − 2/n}, 1), i.e., the fast diffusion case, Peletier and Zhao

[23] proved that (1.9) has FS and VSS if and only if q ∈ (1, m + 2/n). Recently,
Leoni [17] proved that when m ∈ (0, 1) and q > 1, (1.9) has a self-similar VSS if
and only if m > max{0, 1 − 2/n} and q ∈ (1, m + 2/n). See also Leoni [18], and a
recent improvement of Kwak [15, 16]. More recently in [4], we obtained uniqueness
of FSs and VSSs for the PDE (1.9) for (m, q) in the same range as in [17].

Our paper is organized as follows. In §2, we first show that a singular solution of
(1.1) is either an FS or a VSS. Then we provide two upper bounds for any singular
solution of (1.1), one of which has the form At−1/(q−1) and the other has the form
Bt1/(2−p)|x|−p/(2−p). Also we show that if (1.1) has a singular solution, then (1.1)
admits a maximal self-similar singular solution u∗; here maximal means that u∗

is no less than any singular solution of (1.1). As a byproduct, we conclude from
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Proposition 1 that (1.1) has no singular solution when q ≥ p−1+p/n. For possible
other applications, we also provide an alternative proof of this non-existence result
which does not employ the ODE result of Proposition 1. The proof uses the fact
that the integral

∫
|x|≤1

min{At−1/(q−1), Bt1/(2−p)|x|−p/(2−p)} dx converges to zero
as t → 0 when q > p−1−p/n and is uniformly bounded in t when q = p−1+p/n.

In §3, we establish the existence of FS and VSS when q ∈ (1, p−1+p/n). In fact,
we show that an FS with initial mass c can be obtained as a limit of any sequence
of solutions of (1.1), or of the more general (1.6), whose initial data approximate
the measure cδ(·). A VSS can be obtained as the limit, as c → ∞, of FS with initial
mass c.

At last, in §4, we prove the uniqueness of singular solutions. First we show the
uniqueness of FS for the pure p-Laplacian evolution equation

(1.10) ut = div (|∇u|p−2∇u).

The proof relies on a blow-up technique and a scaling invariance u → uh(x, t) of
the equation (1.1), where

uh := h1/ku(h1/(nk)x, ht), k := p − 2 + p/n.

Then we establish the uniqueness of FS for (1.1). From the existence proof in
§3, one derives that an FS of (1.1) is bounded by the unique FS of (1.10) with the
same initial mass, which implies that the L1(Rn) difference of any two FSs of (1.1)
with the same initial mass approaches zero as t → 0. The uniqueness then follows
from a contraction principle, which asserts that the L1(R1) difference of any two
solutions of (1.1) is non-increasing in t.

Finally we prove the uniqueness of VSS of (1.1). We show that any VSS is an
upper bound of any FS, so u∞, the limit of uc as c → ∞, is the minimal VSS; i.e.,
it is no bigger than any other VSS. With this minimality and scaling invariance of
(1.1), we show that u∞ is self-similar. As both u∗ and u∞ are self-similar VSS, by
Proposition 1, they are identical, which yields the uniqueness of VSS.

2. Properties of singular solutions and a non-existence result

In this section, we shall first establish certain properties of singular solutions
of (1.1), and then prove that (1.1) does not have any singular solution when q ≥
p − 1 + p/n.

Lemma 2.1. Let p > 1 and φ(·) be a non-negative function on [0,∞). Assume
that u is a singular solution of (1.6), i.e., a non-negative, non-trivial solution of
(1.6) that is continuous in R

n × [0,∞) \ {(0, 0)} and satisfies (1.2). Then either
(1.3) or (1.4) holds. In particular, taking φ(u) = uq (q > 0) we conclude that a
singular solution of (1.1) is either an FS or a VSS.

Proof. The proof given below follows the same idea as that in [11].
By (1.2), for every ε > 0, there exists tε > 0 such that sup|x|>1, t∈(0,tε] u(x, t) ≤ ε.

Multiplying (1.6) by (u − ε)δ
+ (δ > 0), integrating the resulting equation over

R
n × (τ, t), 0 < τ < t ≤ tε, and sending δ → 0 we then obtain∫

Rn

(u − ε)+(x, t) dx ≤
∫

Rn

(u − ε)+(x, τ) dx, 0 < τ < t ≤ tε.
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Thus,
∫

Rn(u(·, t)− ε)+ is non-increasing in t, so that there exists cε ∈ [0,∞)∪{∞}
such that

cε = lim
t↘0

∫
Rn

(u − ε)+(x, t)dx = lim
t↘0

∫
|x|<1

(u − ε)+(x, t) dx.

Also noting that cε is non-increasing in ε, sending ε ↘ 0 we then obtain that there
exists c ∈ [0,∞) ∪ {∞} such that

c = lim
ε→0

cε = lim
ε↘0

lim
t↘0

∫
|x|<1

(u − ε)+(x, t) dx = lim
t↘0

∫
|x|<1

u(x, t) dx.

Notice that c = 0 would imply, for all ε > 0, that cε = 0, i.e., supx∈Rn u(x, t) ≤ ε
for all t ∈ (0, tε), which, by the maximum principle, implies that u ≤ ε for all
(x, t) ∈ R

n × (0,∞), so that, as ε > 0 is arbitrary, u ≡ 0. Since u is non-trivial, we
must have c ∈ (0,∞) ∪ {∞}. This completes the proof. �

Next we provide two upper bounds for singular solutions of (1.1).

Lemma 2.2. Assume that 1 < p < 2.
(i) If q > 1 and u is a singular solution u of (1.1), then for A := ( 1

q−1 )1/(q−1),

(2.1) u(x, t) ≤ A t−1/(q−1) in R
n × (0,∞).

(ii) If u is a singular solution to (1.6) with φ(·) ≥ 0, then for

B :=
(

2(p − 1)pp−1

(2 − p)p−1

)1/(2−p)

,

(2.2) u(x, t) ≤ Bt1/(2−p)|x|−p/(2−p) in R
n × (0,∞).

Proof. (i) For every ε > 0, the function A(t − ε)−1/(q−1) is a solution of (1.1) in
R

n × (ε,∞). Since u(·, ε) is in L∞(Rn), comparing u with A(t − ε)−1/(q−1) in
R

n × (ε,∞) yields u ≤ A(t − ε)−1/(q−1) in R
n × (ε,∞). Sending ε ↘ 0 then gives

(2.1).
(ii) Direct calculation shows that for any ε > 0, the function B(t + ε)1/(2−p)

(x1−ε)−p/(2−p) +ε is a solution to wt−div (|∇w|p−2∇w)=0 in {(x, t) | x1 > ε, t ≥
0}. Comparing this function with u in the domain {(x, t) | x1 > ε, t ≥ 0} then gives
u(x, t) ≤ B(t + ε)1/(2−p)(x1 − ε)−p/(2−p) + ε for all x1 > ε, t ≥ 0. Sending ε ↘ 0
yields u(x, t) ≤ Bt1/(2−p)x

−p/(2−p)
1 for all x1 > 0 and t ≥ 0. The assertion (2.2)

then follows from the invariance of the equation for u under the rotation of x. �

Remark 2.1. If p ∈ ( 2n
n+1 , 2), then p

2−p > n, so that, for any R > 0 and any
singular solution u of (1.6),

∫
|x|>R

u(x, t) dx ≤ Bt1/(2−p)
∫
|x|>R

|x|−p/(2−p)dx → 0
as t ↘ 0. Thus, (1.3) and (1.4) are equivalent to limt↘0

∫
Rn u(x, t) dx = c and

limt↘0

∫
Rn u(x, t) dx = ∞, respectively.

With the upper bounds for singular solutions, we can now show that if (1.1) has
a singular solution, then there exists a maximal singular solution, which has to be
self-similar.
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Lemma 2.3. Let q > 1 and p ∈ (1, 2). Also assume that (1.1) has a singular
solution. Then (1.1) admits a singular solution u∗ having the following properties:

(1) Every singular solution of (1.1) is no bigger than u∗; namely, u∗ is the
maximal singular solution of (1.1).

(2) u∗ is self-similar; namely, there exists a smooth function w(·) : [0,∞) →
[0,∞) such that u∗ = t1/(q−1)w(|x|t−(q+1−p)/[(q−1)p]) and w solves (1.5).

Proof. For each τ > 0, let uτ (x, t) be the solution of (1.1) in R
n×(τ,∞) with initial

value

uτ (x, τ) = min{Aτ−1/(q−1), Bτ1/(2−p)|x|−p/(2−p)} on R
n × {t = τ}.

Then as in the proof of the previous lemma,

(2.3) uτ (x, t) ≤ min{At−1/(q−1), Bt1/(2−p)|x|−p/(2−p)} ∀ (x, t) ∈ R
n × [τ,∞).

Consequently, for any τ1 > τ2 > 0, uτ1(·, τ1) ≥ uτ2(·, τ1) so that by comparison,
uτ1 ≥ uτ2 in R

n × [τ1,∞). Hence, limτ↘0 uτ exists for all (x, t) ∈ R
n × (0,∞).

We denote this limit by u∗, which is necessarily a solution of (1.1). Since each uτ

satisfies (2.3), u∗(x, t) ≤ {At−1/(q−1), Bt1/(2−p)|x|−p/(2−p)}. It then follows that
u∗ satisfies (1.2).

To show that u∗ is non-trivial, we need only show that u∗ is no less than any
singular solution of (1.1). In fact, if u is a singular solution of (1.1), then from
Lemma 2.2 and a comparison principle, u ≤ uτ in R

n × [s,∞) for any 0 < τ ≤ s.
Thus, u ≤ u∗ in R

n × (s,∞) for any s > 0; i.e., u ≤ u∗ in R
n × (0,∞). Thus, u∗

is non-trivial and is the maximal singular solution of (1.1) if (1.1) has a singular
solution.

It remains to show that u∗ is self-similar. From the construction of u∗, we see
that u∗ is radially symmetric. Note that for any λ > 0, the function T λ(u∗) :=
λ1/(q−1)u∗(λ

q+1−p
p(q−1) x, λt) is a non-trivial and non-negative solution of (1.1) satisfying

(1.2), so it is a singular solution of (1.1). Since u∗ is maximal, u∗ ≥ T λ(u∗) for
all λ > 0. Observe that the operator T λ preserves the order; namely, if u1 ≤ u2,
then T λ(u1) ≤ T λ(u2) for all λ > 0. We then obtain from u∗ ≥ T λ(u∗) that
T �(u∗) ≥ T �(T λ(u∗)) for all � > 0 and λ > 0. In particular taking λ = 1/� and
using T �(T 1/�(u∗)) = u∗ we get T �(u∗) ≥ u∗. Hence, u∗ = T �(u∗) for all � > 0.
Thus, u is self-similar and can be written in the form t1/(q−1)w(|x|t−

q+1−p
(q−1)p ) for some

w. This completes the proof. �

Now we are ready to prove the non-existence of singular solutions of (1.1) when
q ≥ p − 1 + p/n.

Theorem 2.4. Assume p and q satisfy (1.8) and q ≥ p− 1 + p/n. Then (1.1) does
not have any singular solution.

Proof. According to our ODE result in Proposition 1, problem (1.1) does not have
any self-similar singular solution when (1.8) and q ≥ p−1+p/n hold. The assertion
of the theorem then follows from Lemma 2.3. �

The above proof relies on the analysis of the ODE problem (1.5), i.e., Proposition
1. Below we provide another proof, which does not use any of the ODE result. The
method may be applied to some other similar problems.
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Another proof of Theorem 2.4. Suppose for the contrary that (1.1) has a singular
solution u. Then for any t > 0 and R ∈ [0, 1), applying Lemma 2.2 (i) for |x| < R
and (ii) for |x| > R yields

(2.4)
∫
|x|≤1

u(x, t) dx ≤
∫
|x|≤R

At−1/(q−1) dx +
∫

R<|x|<1

Bt1/(2−p)|x|−p/(2−p) dx.

We consider several different cases.
Case (1): p < 2n

n+1 . In this case, p
2−p < n so that taking R = 0 in (2.4) and

denoting by ωn the area of unit sphere in R
n, we obtain∫

|x|≤1

u(x, t) dx ≤ Bt1/(2−p)
(
n − p

2−p

)−1

ωn → 0 as t ↘ 0.

But this contradicts Lemma 2.1, which asserts that u satisfies either (1.3) or (1.4).
Hence, there are no singular solutions when p < 2n

n+1 .
Case (2): p = 2n

n+1 and q > 1. In this case p
2−p = n, so taking

R = t[1/(q−1)+1/(2−p)]/n

in (2.4) we obtain∫
|x|≤1

u(x, t) dt ≤ t1/(2−p)ωn{A/n+B[1/(q−1)+1/(2−p)]/n | ln t|} → 0 as t ↘ 0.

Hence, as in case (i) we get a contradiction.
Case (3): p > 2n

n+1 and q > p − 1 + p/n. In this case p
2−p > n, so taking

R = t(q+1−p)/[p(q−1)] in (2.4) gives∫
|x|≤1

u(x, t) dx ≤ Aωnn−1t−1/(q−1)Rn + Bωn( p
2−p − n)−1t1/(2−p)Rn−p/(2−p)

= {An−1 + B( p
2−p − n)−1}ωntn[q−(p−1+p/n)]/[p(q−1)] → 0 as t ↘ 0.

Again, this is impossible.
Case (4): p > 2n

n+1 and q = p − 1 + p/n. In this case, we still have p
2−p > n,

so from (2.2), u(·, t) ∈ L1(Rn) for all t > 0. In addition, as q > 1 and u(·, t) is
uniformly bounded for every fixed t > 0, uq(·, t) ∈ L1(Rn). Hence, integrating (1.1)
over R

n yields that

(2.5)
d

dt

∫
Rn

u(x, t) dx = −
∫

Rn

uq(x, t) dx ∀t > 0.

Define e(t) =
∫

Rn u(x, t) dt and denote by R = R(t) the positive constant such that

2Bωn( p
2−p − n)−1t1/(2−p)Rn−p/(2−p) = e(t).

Then, by the estimate (2.2),∫
|x|≤R

u(x, t) dx =
∫

Rn

u(x, t) dx −
∫
|x|>R

u(x, t) dx

≥ e(t) −
∫
|x|≥R

Bt1/(2−p)|x|−p/(2−p) dx

= e(t) − Bt1/(2−p)ωn( p
2−p − n)−1Rn−p/(2−p) = 1

2e(t)
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by the definition of R(t). Consequently, by Cauchy’s inequality,

1
2e(t) ≤

∫
|x|<R

u(x, t) dx ≤
(

ωn

n Rn
)1−1/q( ∫

|x|<R

uq dx
)1/q

,

so that ∫
Rn

uq ≥
∫
|x|<R

uq ≥
(

1
2e(t)

)q(
ωn

n Rn
)1−q

= B1

(
e(t)

)1+p/n

t−1

by the definition of R(t) and the equality q = p − 1 + p/n, where B1 is a positive
constant depending only on p, q, and n. It then follows from (2.5) that d

dte(t) ≤
−B1e

1+p/n(t)t−1 for all t > 0. Integrating this inequality over (τ, 1] then yields
that

p

n

{
e−p/n(1) − e−p/n(τ )

}
≥ −B1 ln τ ∀τ ∈ (0, 1).

Sending τ ↘ 0 we get a contradiction.
Summarizing Cases (1)–(4), we conclude that (1.1) has no singular solution when

q ≥ p − 1 + p/n and p ∈ (1, 2).

Remark 2.2. In case (1) of the proof, we only used Lemma 2.2 (ii) and Lemma 2.1,
so when p ∈ (1, 2n

n+1 ), problem (1.6) has no singular solution, provided that φ is
non-negative. In particular, (1.10) has no singular solution when 1 < p < 2n

n+1 .

Remark 2.3. In proving the same non-existence theorem for the porous media equa-
tion ut = ∆um − uq, where q > m + 2/n, in [10] (for m > 1) and in [23] (for
m ∈ (max{1− 2/n, 0}, 1)) the integral identity

∫
Rn ζ∆um =

∫
um∆ζ for a smooth

test function ζ plays an essential role. Due to the quasi-linear nature of the p-
Laplacian operator, this technique cannot be used here. The proof provided here is
elementary and straightforward and can be applied to the porous media equation
with absorption to show the non-existence of singular solutions. It can also be ap-
plied to the non-existence of a singular solution to (1.6), where φ(·) is continuous,
non-negative and satisfies lim infu→∞ φ(u)u−q > 0 for q = p − 1 + p/n.

3. Existence of singular solutions

In the rest of this paper, we always assume that

(3.1) 1 < q < p − 1 + p/n, p < 2.

We remark that the first condition implies that 1 < p − 1 + p/n, i.e., p > 2n
n+1 .

In this section, we shall establish the existence of FS and VSS for (1.1) under the
assumption (3.1). For this purpose, we cite a few known results from [6] concerning
the parabolic p-Laplacian equation for p ∈ ( 2n

n+1 , 2).
Existence [6]: Assume that φ(·) is non-negative and continuous. Then for any

bounded and non-negative initial data, (1.6) has a unique (weak) solution.
Regularity [6]: Assume that u is a non-negative locally bounded solution of

(1.6). Then both u and ∇u are locally Hölder continuous with the Hölder exponent
and the Hölder norm depending only on p, n, and the local L∞ bound of the
solution.
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L∞ bound [6, p. 127, Corollary 5.1]: Assume that u is a non-negative solution
of (1.10). Then there exists a positive constant M = M(p, n) such that for every
(x, t) ∈ R

n × (0,∞),
(3.2)

u(x, t) ≤ Mt−1/(p−2+p/n)

(
1
t

∫ t

0

∫
|y−x|<1

u(y, τ ) dydτ
)p/[np−2n+p]

+ Mt1/(2−p).

Contraction Principle: Assume that φ(·) is non-decreasing and u1 and u2

are solutions of (1.6) on Ω × (0,∞), Ω ⊆ R
n, such that u1 ≤ u2 near the lateral

boundary ∂Ω × (0,∞). Then the function t →
∫
Ω
( u1(x, t) − u2(x, t) )+dx is non-

increasing. In particular, if Ω = R
n, then the function t →

∫
Rn |u1(x, t)−u2(x, t)|dx,

if bounded, is non-increasing in t.
The contraction principle follows by multiplying (1.6) by (u1 − u2)δ

+ (δ > 0),
integrating over R

n, and then sending δ → 0.
We can now establish the existence of FS for (1.1). In fact, we do it for (1.6).

Theorem 3.1. Assume that φ(·) : [0,∞) → [0,∞) is a continuous and non-
decreasing function satisfying, for some positive constant C,

0 ≤ φ(u) ≤ Cu(1 + uq−1) ∀u ≥ 0.

Let c > 0 be given and let {ϕj(·)}∞j=1 be a c δ-sequence; namely, ϕj is continuous,
non-negative,∫

Rn

ϕj dx = c and lim
j→∞

∫
|x|≥r

ϕj(x) dx = 0 ∀r > 0.

Let uj be the solution to (1.6) with initial data uj(·, 0) = ϕj.
Then limj→∞ uj exists and is a fundamental solution of (1.6) with initial mass

c.

Proof. Let uo
j be the corresponding solution with φ ≡ 0. Since ‖uo

j(·, t)‖L1(Rn) = c
for all t ≥ 0, it follows from (3.2) that

(3.3) 0 ≤ uo
j(x, t) ≤ M(p, n, c){t−1/[p−2+p/n] + t1/(2−p)} ∀ t > 0.

As uj ≤ uo
j , {uj} is locally uniformly bounded. Consequently, by the regularity

result [6] for locally bounded solutions of (1.6), the family {uj}∞j=1 is equicontinuous
in any compact subset of R

n × (0,∞). Hence, we can find a function u and a
subsequence, which we still denote by {uj}, such that, as j → ∞, uj → u uniformly
in any compact subset of R

n × (0,∞). The limit function u is necessarily a (weak)
solution of (1.6) in R

n × (0,∞).
Now we show that u is a fundamental solution of (1.6) with initial mass c. First

of all, by Fatou’s lemma,∫
Rn

u(x, t) dx ≤ lim inf
j→∞

∫
Rn

uj(x, t) dx ≤ c ∀ t > 0.

Next, we show that for any δ > 0,

(3.4) lim
t↘0

∫
|x|<δ

u(x, t) dx = c.

For this purpose, let {ϕ̃j(x)} be a sequence such that ϕ̃j is continuous and com-
pactly supported in {x| |x| ≤ δj} with limj→∞ δj → 0, that ϕ̃j ≤ ϕj , and that∫
|x|<δj

ϕ̃j → c as j → ∞. Since {ϕj} is a c δ-sequence, such {ϕ̃j} exists.
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Now let ũj be the solution of (1.6) with initial data ϕ̃j . Notice that the function
Bt1/(2−p)(x1 − δj)−p/(2−p) is a solution to ut = div (|∇u|p−2∇u) in {(x, t) | t ≥
0, x1 > δj}. Comparing this function with ũj in {(x, t)|t ≥ 0, x1 ≥ δj} then yields
that ũj ≤ Bt1/(2−p)(x1 − δj)−p/(2−p). By rotational invariance, we then obtain

ũj(x, t) ≤ Bt1/(2−p)(|x| − δj)−p/(2−p) ∀ t ≥ 0 and |x| ≥ δj .

Now we estimate the total mass of ũj(·, t). From the differential equation, we
have ∫

Rn

ũj(x, t) dx =
∫

Rn

ϕ̃j(x) dx −
∫ t

0

∫
Rn

φ(ũj) dxdτ.

As uo
j ≥ uj ≥ ũj , we can use the L∞ bound of uo

j in (3.3) and the assumption that
0 ≤ φ(s) ≤ Cs[1 + sq−1] to obtain∫ t

0

∫
Rn

φ(ũj) ≤
(

sup
τ∈(0,t)

∫
Rn

ũj(x, τ) dx
)( ∫ t

0

sup
x∈Rn

C[1 + (uo
j)

q−1] dt
)

≤ c

∫ t

0

C[1 + Mt−(q−1)/[p−2+p/n] + Mt(q−1)/(2−p)]

≤ M̂(p, n, c, q)t
(p−1+n/p)−q

p−2+p/n ∀ t ∈ (0, 1].

Thus, for any fixed t > 0 and large j such that δ > δj ,∫
|x|≤δ

uj(x, t) dx ≥
∫
|x|≤δ

ũj dx

≥
∫

Rn

ũj(x, t) dx −
∫
|x|>δ

Btp/(2−p)|x − δj |−p/(2−p)dx

≥
∫

Rn

ϕ̃j(x) dx − M̂t
(p−1+p/n)−q

p−2+p/n

−Btp/(2−p)

∫
|x|≥δ

(|x| − δj)−
p

2−p dx.

As p/(2 − p) > n and q < p − 1 + p/n, sending j → ∞ we then obtain∫
|x|<δ

u(x, t) dx ≥ c − M(p, q, n, c){t
(p−1−p/n)−q

p−2+p/n + t
p

2−p }.

Sending t ↘ 0 we then obtain (3.4).
Finally, we show that u satisfies (1.2). Using the contraction principle (since φ

is non-increasing), we have, for any t > 0,∫
x1>ε

(
uo

j(x, t) − B(t + ε)1/(2−p)(x1 − ε)−p/(2−p)
)

+
dx

≤
∫

x1>ε

(
uo

j(x, 0) − Bε1/(2−p)(x1 − ε)−p/(2−p)
)

+
dx.

As uo
j(·, 0) = ϕj and

∫
|x|≥ε

ϕj(x) dx → 0 as j → ∞, sending j → ∞ and using
u ≤ lim sup uo

j , we obtain (u(x, t)−B(t+ε)2−p(x1−ε)−p/(2−p))+ = 0 in {x |x1 > ε},
so that u(x, t) ≤ B(t + ε)1/(2−p)(x1 − ε) if x1 > ε. Sending ε → 0 and using the
rotational invariance, we then obtain the estimate

u(x, t) ≤ Bt1/(2−p)|x|−p/(2−p).

This shows that u satisfies (1.2). Hence, u is an FS with initial mass c.
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As we shall show later, FSs are unique, so the whole sequence {uj} converges to
u. �

The following two corollaries follow by taking φ ≡ 0 and φ = uq in Theorem 3.1.

Corollary 3.2. Assume p ∈ ( 2n
n+1 , 2). Then for every c > 0, (1.10) has an FS with

initial mass c.

Corollary 3.3. Assume (3.1). Then for any c > 0, (1.1) has an FS with initial
mass c.

Next we establish the existence of VSS of (1.1).

Theorem 3.4. Assume (3.1). Then (1.1) has a VSS u∞ which is the limit, as
c → ∞, of the FS of (1.1) with initial mass c.

Proof. Let ζ(·) be any non-negative continuous function on R
n satisfying

∫
Rn ζ(x) dx

= 1. Define ϕc
j = cj−nζ(x

j ) for all real c > 0 and all integers j ≥ 1. Then
{ϕc

j}∞j=1 is a c δ-sequence, and we can apply Theorem 3.1 to obtain an FS uc of
(1.1). Since for each j, ϕc

j is monotonic in c, uc is monotonic in c. Consequently,
u∞(x, t) = limc→∞ uc(x, t) exists. By the uniform estimates (2.1) and (2.2) for FSs,
we know that u∞(·, t) is bounded for each t > 0 and satisfies also the estimates
(2.1) and (2.2). By the local equicontinuity of {uc} (since they are locally uniformly
bounded), u∞ is a (weak) solution of (1.1). Also, the estimate (2.2) for u = u∞
shows that u∞ satisfies (1.2). Finally, since u ≥ uc for every c,

lim inf
t↘0

∫
|x|<1

u∞(x, t) dx ≥ lim
t↘0

∫
|x|<1

uc(x, t) dx = c ∀c > 0.

Thus, u∞ satisfies (1.3). That is, u∞ is a VSS of (1.1). �

Remark 3.1. The same proof can be applied to show that (1.6) admits a VSS when
φ is continuous, non-negative and non-decreasing, and satisfies

∫ ∞ 1
φ(s) ds < ∞ and

φ(s) ≤ Cs(1 + sq−1) for some q < p − 1 + p/n.

4. Uniqueness of singular solutions

In this section, we prove the uniqueness of singular solutions of (1.1) under (3.1).
To do this, we first show the uniqueness of FS for (1.10), then the uniqueness of
FS for (1.1), and finally the uniqueness of VSS for (1.1).

4.1. Uniqueness of FS for ut = div (|∇u|p−2∇u).

Theorem 4.1. Assume that p ∈ ( 2n
n+1 , 2). Then for every c > 0, (1.10) has a

unique FS Ec with initial mass c. It is given by

Ec(x, t) = Gt−1/k
{
D(c) +

(
|x|t−1/(nk)

)p/(p−1)}−(p−1)/(2−p)

,

where

k = k(p, n) := p − 2 + p/n, G = G(p, n) :=
(

p
2−p

)(p−1)/(2−p)(
nk

)1/(2−p)

,

and D(c) is the unique constant such that
∫

Rn G[D(c)+ |x|p/(p−1)]−(p−1)/(2−p) dx =
c.
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Proof. Notice that Ec is invariant under the scaling

E(x, t) → Eh := h1/kE(h1/(nk)x, ht) ∀h > 0

so that ∫
Rn

Ec(x, t) dx =
∫

Rn

Ec(x, 1) dx = c ∀t > 0.

In addition, it is easy to verify that limt↘0 Ec(x, t) = 0 for all x 
= 0, and∫
|x|<1

Ec(x, t) dx =
∫
|y|<t−

1
nk

Ec(y, 1) dy → c as t ↘ 0. Direct differentiation shows

that Ec satisfies (1.10). Hence, Ec is an FS of (1.10) with initial mass c.
Next we prove the uniqueness. Assume that u is any fundamental solution of

(1.10) with initial mass c. We want to show that u = Ec. We divide the proof into
three steps.

Step 1. Consider the family {uh}h>0, where uh(x, t) = h1/ku(h1/(nk)x, ht).
Direct calculation shows that each uh is a solution of (1.10). In addition, from

Remark 2.1, ∫
Rn

uh(x, t) dx =
∫

Rn

u(y, ht) dy = c ∀h > 0, t > 0.

Furthermore, using Lemma 2.1 (ii),

uh(x, t) ≤ Bt1/(2−p)|x|−p/(2−p).

Hence, by the regularity of solutions of (1.10), the family {uh(·, 1)}h>0 is equicon-
tinuous in any bounded domain of R

n, so that there exists a sequence {hj}∞j=1

satisfying hj ↘ 0 as j → ∞ and a function uo such that uhj (·, 1) → uo(·) uniformly
in any compact subset of R

n. As p/(2 − p) > n and uh(·, 1) ≤ B|x|−p/(2−p), the
Lebesgue dominated convergence theorem then gives that

uhj (·, 1) −→ uo in L1(Rn).

Let v(x, t) be the solution to (1.10) in R
n × (1,∞) with initial data v(·, 1) = uo.

Then, as both uhj and v are solutions of (1.10), the contraction principle shows
that, for all t ≥ 1,

(4.1)
∫

Rn

|uhj (·, t) − v(·, t)| ≤
∫

Rn

|uhj (·, 1) − v(·, 1)| → 0 as j → ∞.

Step 2. Denote, for each h > 0,

(4.2) eh(t) =
∫

Rn

|uh(·, t) − Ec(·, t)|.

By the contraction principle, eh(t) is a non-increasing function of t. Also, for any
h > 0, by the scaling invariance Ec = Eh

c ,

eh(t) =
∫

Rn

|uh(·, t) − Eh
c (·, t)| = h1/k

∫
Rn

|u(h1/(nk)x, ht) − E(h1/(nk)x, ht)| dx

=
∫

Rn

|u(y, ht) − Ec(y, ht)| dy = e1(ht).

Thus eh(t) is non-increasing in both t and h. Since the initial mass of u and Ec is
c, eh(t) is bounded by 2c for all h and t. It then follows that limh↘0 eh(t) exists,
and

lim
h↘0

eh(1) = lim
h↘0

e1(h) = lim
h↘0

e1(2h) = lim
h↘0

eh(2).
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Denote the limit by eo. Then, in view of (4.1) and (4.2) we obtain

eo = lim
j→∞

ehj (1) = lim
j→∞

∫
Rn

|uhj (·, 1) − Ec(·, 1)| =
∫

Rn

|v(·, 1) − Ec(·, 1)|

= lim
j→∞

ehj (2) =
∫

Rn

|v(·, 2) − Ec(·.2)|.

Step 3. We first show that eo = 0. Suppose to the contrary that eo > 0. We
define u and u as the solutions of (1.10) in R

n × (1,∞) with initial data

u(·, 1) := max{v(·, 1), Ec(·, 1)}, u(·, 1) := min{v(·, 1), Ec(·, t)}.

The comparison principle then gives

u ≥ max{v, Ec} ≥ min{v, Ec} ≥ u in R
n × [1,∞).

Since v(·, 2) 
≡ Ec(·, 2) and
∫

Rn Ec(·, 2) =
∫

Rn v(·, 2) = c, there are points x where
v(x, 2) = Ec(x, 2). Thus, as u(·, 2) > u(·, 2),

∫
Rn

[u(·, 2) − u(·, 2)] >

∫
Rn

[
max{v(·, 2), Ec(·, 2)} − min{v(·, 2), Ec(·, 2)}

]

=
∫

Rn

|v(·, 2) − Ec(·, 2)| = eo.

On the other hand, by the contraction principle,

∫
Rn

|u(·, 2) − u(·, 2)| ≤
∫

Rn

|u(·, 1) − u(·, 1)| =
∫

Rn

|v(·, 1) − Ec(·, 1)| = eo.

Hence we obtain a contradiction. This contradiction shows that eo = 0.
As e1(t) is non-increasing in t, 0 = eo = limt↘0 e1(t) then implies that e1(t) = 0

for all t > 0. Thus, u ≡ Ec. The proof is completed. �

4.2. Uniqueness of FS of ut = div (|∇u|p−2∇u) − uq.

Theorem 4.2. Assume (3.1). Then for any given c > 0, (1.1) admits a unique
fundamental solution uc with initial mass c. In addition, uc is monotonic in c.

Proof. We need only prove the uniqueness of FS. The following proof follows the
idea of [13].

Let v be an FS of (1.1) with initial mass c. We first show that v ≤ Ec. In fact,
for every τ > 0, let vτ be the solution to (1.10) for t > τ with initial value vτ = v on
{t = τ}. Then by comparison, vτ ≥ v for all t > τ , so that when τ1 ≤ τ2, vτ1 ≥ vτ2

for all t > τ2, i.e., {vτ}τ>0 is monotonic decreasing in τ . Consequently, the limit
function w = limτ↘0 vτ exists there.

By the upper bound for singular solutions (Lemma 2.2) and local regularity of
solutions of (1.6), we know that for any t > 0, vτ (·, t) → w, as τ ↘ 0, uniformly
in any compact set of R

n and in L1(Rn). As
∫

Rn vτ (x, t) dx is a constant equal
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to
∫

Rn v(x, τ) dx, which, by Remark 2.1, approaches c as τ → 0, we conclude that∫
Rn w(·, t)dx = c for all t. Thus, w is an FS of (1.6) with initial mass c. By

uniqueness, w = Ec. Consequently, v ≤ limτ↘0 vτ = Ec.
Let u1 and u2 be any two FS solutions of (1.1) with initial mass c. Then ui ≤ Ec

for i = 1, 2, so that by the contraction principle, for any t > s > 0,

∫
Rn

|u1(·, t) − u2(·, t)| ≤
∫

Rn

|u1(·, s) − u2(·, s)|

≤
∫

Rn

{
|u1(·, s) − Ec(·, s)| + |Ec(·, s) − u2(·, s)|

}

=
∫

Rn

{
[Ec(·, s) − u2(·, s)] + [Ec(·, s) − u2(·, s)]

}
.

Sending s ↘ 0 we conclude that u1(·, t) = u2(·, t), since all the integrals
∫

Ec(·, s),∫
u1(·, s), and

∫
u2(·, s) approach c as s ↘ 0. This completes the proof of the

theorem. �

4.3. Uniqueness of VSS for ut = div (|∇u|p−2∇u) − uq.

Theorem 4.3. Assume (3.1). Then problem (1.1) has a unique VSS.

Proof. Let u∞ be the VSS established in Theorem 3.4. We first show that u∞ is
the minimal singular VSS solution. Namely, any VSS of (1.1) is no less than u∞.
Since u∞ is the limit of uc, we need only show that any VSS of (1.1) is an upper
bound of any FS of (1.1).

For this purpose, let u be any VSS of (1.1). Let also c > 0 be any fixed con-
stant. Since u satisfies (1.4), for all sufficiently small τ > 0, there exists a non-
negative continuous function ϕτ (·) defined on R

n such that (i) ϕτ (·) ≤ u(·, τ ) and
(ii)

∫
Rn ϕτ (x) dx = c. As u(·, τ ) ≤ Bτ1/(2−p)|x|−p/(2−p), we have

lim sup
τ↘0

∫
|x|>ε

ϕτ (x, τ) dx ≤ lim sup
τ↘0

∫
|x|>ε

Bτ1/(2−p)|x|−p/(2−p) dx = 0 ∀ ε > 0.

Thus {ϕτ}τ>0 is a c δ-family. Consequently, from Theorem 3.1 and Theorem 4.2,
limτ↘0 uτ → uc where uτ is the solution of (1.1) with initial value uτ (·, 0) = ϕτ .
Also by comparison, we have uτ (·, ·) ≤ u(·, ·+τ ) in R

n×(0,∞). It then follows that
uc(·, t) ≤ u. Thus, every VSS of (1.1) is an upper bound of every FS. Consequently,
u∞ is the minimal VSS.

Next we show that u∞ is self-similar. Since uc is unique, it must be radially
symmetric. As u∞ is the limit, as c → ∞ of uc, so is u∞ radially symmetric.

Now following the same proof for the self-similarity of u∗ in the proof of Lemma
2.3 we can show that u∞ is scaling invariant; namely, u∞ = T �(u∞) for every � > 0.
Thus u∞ is a self-similar solution of (1.1). Consequently, from Proposition 1, we see
that u∗ = u∞. As u∗ is the maximal VSS and u∞ the minimal VSS, we conclude
that all VSS coincide with u∗ = u∞. This completes the proof of the theorem. �
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Note that our main Theorem 1.1 follows from Lemma 2.1, Theorem 2.4, Corollary
3.3, and Theorems 3.4, 4.2, and 4.3.
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