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1 Introduction
In this paper, we study the Cahn–Hilliard equation

∂u

∂t
+ div [m(u)(k∇Δu −∇A(u)] = 0, k > 0 (1.1)

in a two-dimensional bounded domain Ω ⊂ R
2 with smooth boundary. On the basis of physical

consideration, the equation (1.1) is supplemented by the zero mass flux boundary condition,
the natural boundary condition

∂u

∂n

∣
∣
∣
∣
∂Ω

=
∂Δu

∂n

∣
∣
∣
∣
∂Ω

= 0 (1.2)

and the initial value condition
u(x, 0) = u0(x), x ∈ Ω. (1.3)

The Cahn–Hilliard equation was introduced to study several diffusive processes, such as
phase separation in binary alloys, growth and dispersal in population; see for example [1–3].
In particular, in the two-dimensional case, it can be used as a model describing the spreading
of an oil film over an solid surface; see [4]. In the past years, the Cahn–Hilliard equation with
constant mobility was intensively studied, and there are many outstanding results concerning
the existence, regularity and special properties of solutions; see for example [5–9]. In recent
years, the equation with concentration dependent mobility has also caused much attention. For
the one-dimensional case, results concerning the existence, regularity and other properties such
as the nonnegativity, finite speed of propagation, etc, have been obtained by several authors; see
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for example, [10–14]. However, only a few papers have been devoted to the multi-dimensional
case. It was Elliott and Garcke [15] who first studied the equation (1.1) in any space dimension,
in which the existence of *weak solutions is established; see also [16–19, 22, 23]. Recently, Yin
and Liu [20] discussed the regularity of solutions for the two-dimensional case with the rather
restrictive small initial energy assumption.

This paper is a step further in the study of the regularity. The purpose is to remove the
smallness restriction on the initial energy. The main result is as follows:
Theorem Assume that m(s) ∈ C1(R), A(s) ∈ C2(R),

´
Ω

u0(x)dx = 0 and
0 < m0 ≤ m(s) ≤ m1 < +∞, |m′(s)| ≤ M1,

H(s) =
ˆ s

0

A(s)ds ≥ C1|s|4 − C2, |A′(s)| ≤ C3|s|2 + C4,

where M ′s and C ′s are positive constants. Assume also that the initial data is smooth with
appropriate compatibility conditions. Then the problem (1.1)–(1.3) admits a unique classical
solution.

We note that a reasonable choice of A(s) is the cubic polynomial, namely,
A(s) = γ1s

3 + γ2s
2 + γ3s + γ4, γ1 > 0,

which corresponds to the so-called double-well potential

H(s) =
1
4
γ1s

4 +
1
3
γ2s

3 +
1
2
γ3s

2 + γ4s.

As for the proof of the theorem, the key step is to get a priori estimates on the Hölder norm
of solutions. In [20], two of the authors have applied the Campanato framework to obtain the
local Schauder type estimates, and finally obtain the Hölder norm estimates. In that derivation,
the smallness of the initial energy is necessary. To drop out the smallness restriction, we first
establish the Lp type estimates, which is much more complicated as can be seen from our proof.
Then we combine it with the technique used in [20] to obtain the Hölder norm estimates, and
finally complete the existence proof following a now standard approach.

2 Lp-estimates
In this section, we establish the a priori Lp-estimates for the solutions of the problem (1.1)–
(1.3). We begin with the interior Lp-estimates. Let x0 and t0 be fixed and denote by BR(x0)
the ball centers at the point x0 with radius R, SR = BR(x0) × (t0 − R4, t0 + R4). Let u be a
smooth solution. Denote also

(∇u)R =
1

|SR|
ˆ̂

SR

∇udxdt.

In addition, throughout this section, we set n = 2, just for the clarification of the dependence
of the Sobolev embedding exponent on the spatial dimension.
Lemma 2.1 Let u be a solution of the problem (1.1)–(1.3). If BR(x0) ⊂ Ω, then for some
p > 2, we have

(ˆ̂
−−−

SR/4

(R4|∇Δu|2 + |∇u − (∇u)R/4|2)p/2dxdt

)1/p

≤ C1

(ˆ̂
−−−

SR

(R4|∇Δu|2 + |∇u − (∇u)R|2)dxdt

)1/2

+ C2,

where C1, C2 are constants depending only on the known quantities, and the notation
´́−−− denotes

the average integral, namely ˆ̂
−−−

G

=
1
|G|
ˆ̂

.

Proof First, we set

F (t) =
ˆ

Ω

(
k

2
|∇u|2 + H(u)

)

dx.
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A direct calculation shows that

F ′(t) =
ˆ

Ω

(A(u) − kΔu)
∂u

∂t
dx = −

ˆ

Ω

m(u)(k∇Δu −∇A(u))2dx ≤ 0.

It follows that F (t) ≤ F (0) and hence from our assumption on A(s) and m(s), we have

sup
0<t<T

ˆ

Ω

|∇u|2dx ≤ C, (2.1)

sup
0<t<T

ˆ

Ω

|u|4dx ≤ C. (2.2)

Next, we multiply the equation (1.1) by Δu and integrate the resulting relation over Ω to obtain
1
2

d

dt

ˆ

Ω

|∇u|2dx + k

ˆ

Ω

m(u)|∇Δu|2dx =
ˆ

Ω

m(u)∇A(u)∇Δudx

≤ k

2

ˆ

Ω

m(u)|∇Δu|2 + C

ˆ

Ω

|A′(u)|2|∇u|2dx

≤ k

2

ˆ

Ω

m(u)|∇Δu|2 + C

ˆ

Ω

|u|4|∇u|2dx + C.

By ∂u
∂n |∂Ω = 0,

´
Ω

u0(x)dx = 0, and using the Gagliardo–Nirenberg inequality

sup |u| ≤ C1

(ˆ

Ω

|∇Δu|2dx

)1/10 (ˆ

Ω

|u|4dx

)1/5

+ C2

(ˆ

Ω

|u|4dx

)1/4

,

therefore,
ˆ

Ω

|u|4|∇u|2dx ≤ C sup |u|4 ≤ C1

(ˆ

Ω

|∇Δu|2dx

)2/5

+ C2.

Summing up, we obtain
d

dt

ˆ

Ω

|∇u|2dx +
ˆ

Ω

|∇Δu|2dx ≤ C,

and hence, ˆ̂

QT

|∇Δu|2dxdt ≤ C. (2.3)

Now, we choose a cut-off function χ(x), with support in BR(x0) with χ(x) = 1 in BR/2(x0),
0 ≤ χ(x) ≤ 1, and |∇χ| ≤ C

R , |D2χ| ≤ C
R2 . Let g(t) be an arbitrary function in C∞(−∞, +∞)

with 0 ≤ g(t) ≤ 1, 0 ≤ g′(t) ≤ C
R4 , g(t) = 1 for t ≥ t0 − (R

2 )4 and g(t) = 0 for t < t0 − R4.
Multiplying the equation (1.1) by g(t)∇·[χ4(∇u−(∇u)R)] and then integrating the resulting

relation over (t0 − R4, t) × BR(x0), we have
ˆ t

t0−R4

ˆ

BR(x0)

∂u

∂t
g(t)∇ · [χ4(∇u − (∇u)R]dxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

g(t)div[m(u)(k∇Δu −∇A(u))]∇ · [χ4(∇u − (∇u)R)]dxdt = 0.

Integrating by parts, we obtainˆ t

t0−R4

1
2

d

dt

ˆ

BR(x0)

g(t)χ4|∇u − (∇u)R|2dxdt −
ˆ t

t0−R4
g′(t)

ˆ

BR(x0)

χ4|∇u − (∇u)R|2dxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

g(t)[m(u)(k∇Δu −∇A(u))]∇[∇χ4(∇u − (∇u)R) + χ4Δu]dxdt = 0,

that is,
1
2

ˆ

BR(x0)

g(t)χ4|∇u − (∇u)R|2dx +
ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

= −
ˆ t

t0−R4

ˆ

BR(x0)

4kg(t)m(u)χ3∇Δu · D2u∇χdxdt
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−
ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)∇ΔuD2χ4(∇u − (∇u)R)dxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

g(t)m(u)A′(u)∇u · ∇Δuχ4dxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

4g(t)m(u)A′(u)χ3∇u · D2u∇χdxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

g(t)m(u)A′(u)∇uD2χ4(∇u − (∇u)R)dxdt

+
ˆ t

t0−R4
g′(t)

ˆ

BR(x0)

χ4|∇u − (∇u)R|2dxdt.

Using the Hölder inequality, we obtain
1
2

ˆ

BR(x0)

g(t)χ4|∇u − (∇u)R|2dx +
ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

≤
ˆ t

t0−R4
g′(t)

ˆ

BR(x0)

χ4|∇u − (∇u)R|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ2|∇χ|2|D2u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)(4χ|D2χ| + 12|∇χ|2)2|∇u − (∇u)R|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

BR(x0)

g(t)m(u)|A′(u)|2χ4|∇u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

BR(x0)

g(t)χ4|D2u|2dxdt

+ C

ˆ t

t0−R4

ˆ

BR(x0)

g(t)m2(u)|A′(u)|2χ2|∇u|2|∇χ|2dxdt

+ C

ˆ t

t0−R4

ˆ

BR(x0)

g(t)χ4(|D2χ| + |∇χ|2)2|∇u − (∇u)R|2dxdt

+
ˆ t

t0−R4

ˆ

BR(x0)

g(t)m2(u)|A′(u)|2|∇u|2dxdt,

where D2u denotes the Hessian matrix of u.
Taking (2.1)–(2.3) into account, we have

ˆ

BR(x0)

g(t)χ4|∇u − (∇u)R|2dx +
ˆ t

t0−R4

ˆ

BR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

≤ C

R4

ˆ t

t0−R4

ˆ

BR(x0)

χ4|∇u − (∇u)R|2dxdt + C,
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and consequently

sup
t0−(R/2)4<t<t0+(R/2)4

ˆ

BR/2(x0)

|∇u − (∇u)R/2|2dx

≤ sup
t0−(R/2)4<t<t0+(R/2)4

ˆ

BR/2(x0)

|∇u − (∇u)R|2dx

≤ C

R4

ˆ t

t0−R4

ˆ

BR(x0)

|∇u − (∇u)R|2dxdt + C (2.4)

and ˆ̂

SR/2(x0)

|∇Δu|2dxdt ≤ C

R4

ˆ t

t0−R4

ˆ

BR(x0)

|∇u − (∇u)R|2dxdt + C. (2.5)

By a variant of the Sobolev–Poincaré inequality, ∀ ε > 0, we haveˆ̂

SR

|∇u − (∇u)R|2dxdt

=
ˆ t

t0−R4

[ˆ

BR

|∇u − (∇u)R|2dx

]2/(n+2)+n/(n+2)

dt

≤ C sup
t∈IR

(ˆ

BR

|∇u − (∇u)R|2dx

)2/(n+2) ˆ t

t0−R4

[ˆ

BR

|∇u − (∇u)R|2dx

]n/(n+2)

dt

≤ C sup
t∈IR

(ˆ

BR

|∇u − (∇u)R|2dx

)2/(n+2) ˆ t

t0−R4

ˆ

BR

|∇Δu|2n/(n+2)dxdt + C

≤ εR4 sup
t∈IR

ˆ

BR

|∇u − (∇u)R|2dx + C(ε)R−8/n

(ˆ t

t0−R4

ˆ

BR

|∇Δu|2n/(n+2)dxdt

)(n+2)/n

+ C.

By virtue of this inequality, (2.4) and (2.5), we haveˆ̂

SR/4

(R4|∇Δu|2 + |∇u − (∇u)R/4|2)dxdt

≤
ˆ̂

SR/4

R4|∇Δu|2dxdt +
ˆ̂

SR/4

|∇u − (∇u)R|2dxdt

≤ C1

ˆ̂

SR/2

|∇u − (∇u)R/2|2dxdt + C2

≤ εR4 sup
t∈IR/2

ˆ

BR/2

|∇u − (∇u)R|2dx

+ C(ε)R−8/n

(ˆ t

t0−(R/2)4

ˆ

BR/2

|∇Δu|2n/(n+2)dxdt

)(n+2)/n

+ C

≤ ε

ˆ̂

SR

|∇u − (∇u)R|2dxdt

+ C(ε)R−8/n−4

(ˆ t

t0−R4

ˆ

BR

[

R4|∇Δu|2 + |∇u − (∇u)R|2
]n/(n+2)

dxdt

)(n+2)/n

+ C

≤ ε

ˆ̂

SR

|∇u − (∇u)R|2dxdt

+ C(ε)R−8/n−4

(ˆ̂
−−−

SR

[

R4|∇Δu|2 + |∇u − (∇u)R|2
]n/(n+2)

dxdt · R4+n

)(n+2)/n

+ C

≤ ε

ˆ̂

SR

|∇u − (∇u)R|2dxdt
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+ C(ε)Rn+4

(ˆ̂
−−−

SR

[

R4|∇Δu|2 + |∇u − (∇u)R|2
]n/(n+2)

dxdt

)(n+2)/n

+ C.

Then from a lemma of the Gehring type, Proposition 1.3 in [21], we see that for some p > 2,
there holds

(ˆ̂
−−−

SR/4

(R4|∇Δu|2 + |∇u − (∇u)R/4|2)p/2dxdt

)1/p

≤ C1

(ˆ̂
−−−

SR

(R4|∇Δu|2 + |∇u − (∇u)R|2)dxdt

)1/2

+ C2.

The proof is complete.
Now, let us turn to the Lp-estimates near the boundary. Let (x0, t0) ∈ ∂Ω× (0, T ) be fixed

and set ΩR(x0) = BR(x0) ∩ Ω.

Lemma 2.2 Let u be a solution of the problem (1.1)–(1.3). If (x0, t0) ∈ ∂Ω× (0, T ), then we
have

(ˆ̂
−−−

ΩR/4

(R4|∇Δu|2 + |∇u|2)p/2dxdt

)1/p

≤ C1

(ˆ̂
−−−

ΩR

(R4|∇Δu|2 + |∇u|2)dxdt

)1/2

+ C2,

where C1, C2 are constants depending only on the known quantities.

Proof The main difference from interior estimates is that we cannot now take the average of
∇u in a ball. Choose a cut-off function χ(x), defined for all x in ΩR(x0) with support contained
strictly in BR(x0), χ(x) = 1 in ΩR/2(x0), 0 ≤ χ(x) ≤ 1 and |∇χ| ≤ C

R , |D2χ| ≤ C
R2 . Let

g(t) ∈ C∞(−∞, +∞), 0 ≤ g(t) ≤ 1, 0 ≤ g′(t) ≤ C
R4 , g(t) = 1 for t ≥ t0 − (R

2 )4 and g(t) = 0 for
t < t0 − R4.

Multiplying the equation (1.1) by g(t)∇ · (χ4∇u) and then integrating over (t0 − R4, t) ×
BR(x0), we have

ˆ t

t0−R4

ˆ

ΩR(x0)

∂u

∂t
g(t)∇ · [χ4∇u]dxdt

+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)div[m(u)(k∇Δu −∇A(u))]∇ · [χ4∇u]dxdt = 0

that is,
ˆ t

t0−R4

1
2

d

dt

ˆ

ΩR(x0)

g(t)χ4|∇u|2dxdt −
ˆ t

t0−R4
g′(t)

ˆ

ΩR(x0)

χ4|∇u|2dxdt

+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)[m(u)(k∇Δu −∇A(u))]∇[∇χ4∇u + χ4Δu]dxdt = 0.

It follows that
1
2

ˆ

ΩR(x0)

g(t)χ4|∇u|2dx +
ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

= −
ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)∇ΔuD2u · 4χ3∇χdxdt

−
ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)∇ΔuD2χ4∇udxdt

+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m(u)A′(u)∇u · ∇Δuχ4dxdt

+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m(u)A′(u)∇uD2u · 8χ3∇χdxdt
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+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m(u)A′(u)∇uD2χ4∇udxdt

+
ˆ t

t0−R4
g′(t)

ˆ

ΩR(x0)

χ4|∇u|2dxdt.

Therefore
1
2

ˆ

ΩR(x0)

g(t)χ4|∇u|2dx +
ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

≤
ˆ t

t0−R4
g′(t)

ˆ

ΩR(x0)

χ4|∇u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ2|∇χ|2|D2u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)(4χ|D2χ| + 12|∇χ|2)2|∇u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

+ C

ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m(u)|A′(u)|2χ4|∇u|2dxdt

+
1
8

ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)χ4|D2u|2dxdt

+ C

ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m2(u)|A′(u)|2χ2|∇u|2|∇χ|2dxdt

+ C

ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)χ4(|D2χ| + |∇χ|2)2|∇u|2dxdt

+
ˆ t

t0−R4

ˆ

ΩR(x0)

g(t)m2(u)|A′(u)|2|∇u|2dxdt.

By virtue of (2.1)–(2.3), we have
ˆ

ΩR(x0)

g(t)χ4|∇u|2dx +
ˆ t

t0−R4

ˆ

ΩR(x0)

kg(t)m(u)χ4|∇Δu|2dxdt

≤ C

R4

ˆ t

t0−R4

ˆ

ΩR(x0)

χ4|∇u|2dxdt + C.

Therefore

sup
t0−(R/2)4<t<t0+(R/2)4

ˆ

ΩR/2(x0)

|∇u|2dx ≤ C

R4

ˆ t

t0−R4

ˆ

ΩR(x0)

|∇u|2dxdt + C (2.7)

and ˆ̂

ΩR/2(x0)

|∇Δu|2dxdt ≤ C

R4

ˆ t

t0−R4

ˆ

ΩR(x0)

|∇u|2dxdt + C. (2.8)

By the Sobolev–Poincaré inequality,
ˆ̂

ΩR

|∇u|2dxdt =
ˆ t

t0−R4

[ˆ

ΩR

|∇u|2dx

]2/(n+2)+n/(n+2)

dt
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≤ C sup
t∈IR

(ˆ

BR

|∇u|2dx

)2/(n+2) ˆ t

t0−R4

[ˆ

ΩR

|∇u|2dx

]n/(n+2)

dt

≤ C sup
t∈IR

(ˆ

BR

|∇u|2dx

)2/(n+2) ˆ t

t0−R4

ˆ

ΩR

|∇Δu|2n/(n+2)dxdt

≤ εR4 sup
t∈IR

ˆ

BR

|∇u|2dx + C(ε)R−8/n

(ˆ t

t0−R4

ˆ

ΩR

|∇Δu|2n/(n+2)dxdt

)(n+2)/n

.

Taking this into account and using (2.7) and (2.8), we haveˆ̂

ΩR/4

(R4|∇Δu|2 + |∇u|2)dxdt

≤
ˆ̂

ΩR/4

R4|∇Δu|2dxdt +
ˆ̂

ΩR/4

|∇u|2dxdt

≤ C1

ˆ̂

ΩR/2

|∇u|2dxdt + C2

≤ εR4 sup
t∈IR/2

ˆ

ΩR

|∇u|2dx + C(ε)R−8/n

( ˆ t

t0−(R/2)4

ˆ

ΩR/2

|∇Δu|2n/(n+2)dxdt

)(n+2)/n

≤ ε

ˆ̂

ΩR

|∇u|2dxdt

+ C(ε)R−8/n−4

( ˆ t

t0−R4

ˆ

BR

[

R4|∇Δu|2 + |∇u|2]n/(n+2)
dxdt

)(n+2)/n

≤ ε

ˆ̂

ΩR

|∇u|2dxdt

+ C(ε)R−8/n−4

(ˆ̂
−−−

ΩR

[

R4|∇Δu|2 + |∇u|2]n/(n+2)
dxdt · R4+n

)(n+2)/n

+ C

≤ ε

ˆ̂

ΩR

|∇u|2dxdt + C(ε)Rn+4

(ˆ̂
−−−

ΩR

[

R4|∇Δu|2 + |∇u|2]n/(n+2)
dxdt

)(n+2)/n

+ C

and hence as in the proof of Lemma 2.1, for some p > 2, there holds
(ˆ̂
−−−

ΩR/4

(R4|∇Δu|2 + |∇u|2)p/2dxdt

)1/p

≤ C1

(ˆ̂
−−−

ΩR

(R4|∇Δu|2 + |∇u|2)dxdt

)1/2

+ C2.

The proof is complete.

3 Hölder Estimates
We establish the Hölder norm estimates based on the Lp-estimates obtained in the last section.
Lemma 3.1 Let u be a smooth solution of the problem (1.1)–(1.3). Then there exists a
constant C depending only on the bounds of A, m and the initial value u0, such that for any
(x1, t1), (x2, t2) ∈ QT and some 0 < α < 1, |u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|α/4 + |x1 − x2|α).
Proof For simplicity, we only show the interior Hölder norm estimates. The boundary esti-
mates are essentially the same with apparent modification. Choose a cut-off function η(x) with
support in Bρ(x0), such that η(x) = 1 on Bρ/2(x0), 0 ≤ η(x) ≤ 1. Multiplying the equation
(1.1) by ∇ · (χ4∇u) and then integrating over (0, t) × Bρ(x0), we have
ˆ t

0

1
2

d

dt

ˆ

Bρ(x0)

χ4|∇u|2dxdt +
ˆ t

0

ˆ

Bρ(x0)

[m(u)(k∇Δu −∇A(u))]∇[∇χ4∇u + χ4Δu]dxdt = 0.

Using Hölder inequality and Poincaré inequality, we have
1
2

ˆ

Bρ(x0)

χ4|∇u|2dx +
ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2dxdt
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≤ 1
8

ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2dxdt + C

ˆ t

0

ˆ

Bρ(x0)

km(u)χ2|∇χ|2|D2u|2dxdt

+
1
8

ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2dxdt

+ C

ˆ t

0

ˆ

Bρ(x0)

km(u)(4χ|D2χ| + 12|∇χ|2)2|∇u|2dxdt

+
1
8

ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2dxdt + C

ˆ t

0

ˆ

Bρ(x0)

m(u)χ4|∇u|2dxdt

+
1
8

ˆ t

0

ˆ

Bρ(x0)

χ4|D2u|2dxdt + C

ˆ t

0

ˆ

Bρ(x0)

m2(u)χ2|∇u|2|∇χ|2dxdt

+ C

ˆ t

0

ˆ

Bρ(x0)

χ4(|D2χ| + |∇χ|2)2|∇u|2dxdt +
ˆ t

0

ˆ

Bρ(x0)

m2(u)|∇u|2dxdt.

Thereforê

Bρ(x0)

χ4|∇u(t)|2dx −
ˆ

Bρ(x0)

χ4|∇u0|2dx +
ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2

≤ C1

ˆ t

0

ˆ

Bρ(x0)

|∇Δu|2dxdt +
C2

ρ4

ˆ t

0

ˆ

Bρ(x0)

|∇u|2dx.

Then by the Lp-estimates established in Section 2, we haveˆ

Bρ(x0)

χ4|∇u(t)|2dx +
ˆ t

0

ˆ

Bρ(x0)

km(u)χ4|∇Δu|2

≤
ˆ

Bρ(x0)

χ4|∇u0|2dx + C1

ˆ t

0

ˆ

Bρ(x0)

|∇Δu|2dxdt +
C2

ρ4

ˆ t

0

ˆ

Bρ(x0)

|∇u|2dx

≤ Cρn + C

(ˆ̂
−−−

Sρ

(ρ4|∇Δu|2 + |∇u|2)p/2dxdt

)2/p( ˆ t

0

ˆ

Bρ(x0)

dxdt

)(p−2)/p

≤ C1ρ
n + C2ρ

n(p−2)/p

≤ Cρn(p−2)/p.
Due to the arbitrariness of t and ρ, we obtain

sup
0<t<T

ˆ

Bρ/2

|∇u(t)|2dx ≤ Cρn(p−2)/p.

The conclusion follows from the Morrey Theorem for the integral description of Hölder contin-
uous functions, namely, for α = min{1, n(p − 2)/2p}, |u(x1, t1) − u(x2, t2)| ≤ C(|t1 − t2|α/4 +
|x1 − x2|α). The proof is complete.

4 Proof of the Main Result
In this section, we prove the theorem that there exists a classical solution of the problem (1.1)–
(1.3), under our assumptions on m and A. The proof is quite similar to the corresponding part
in [20]. However, for the convenience of readers, here we list the lemmas from [20], and show
the main idea of the existence proof by two propositions.
Proposition 4.1 If u is Hölder continuous in the interior of QT , then u is classical in the
interior of QT .
Proof We first change the equation (1.1) into the form

∂u

∂t
+ ∇[a(t, x)∇Δu] = ∇ →

F , (4.1)

where a(t, x) = km(u(t, x)),
→
F= m(u(t, x))∇A(u(t, x)). We may think of a(t, x) and

→
F (t, x)

as known functions and consider the reduced linear equation (4.1). Since u is locally Hölder
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continuous, we see that a(t, x) is locally Hölder continuous too. Without loss of generality, we
may assume that a(t, x) and

→
F (t, X) are sufficiently smooth; otherwise we replace them by their

approximation functions. According to the boundary value condition (1.2),
→
F (t, X) · 	n = 0,

(t, x) ∈ (0, T ) × ∂Ω. The crucial step is to establish the estimates on the Hölder norm of ∇u.
Let (t0, x0) ∈ (0, T ) × Ω be fixed and define

ϕ(ρ) =
ˆ̂

Sρ

(|∇u − (∇u)ρ|2 + ρ4|∇Δu|2) dtdx, (ρ > 0),

where Sρ = (t0 − ρ4, t0 + ρ4)×Bρ(x0), (∇u)ρ = 1
|Sρ|
´́

Sρ
∇u dtdx and Bρ(x0) is the ball centred

at x0 with radius ρ.
Let u be the solution of the problem (4.1), (1.2), (1.3). We split u on SR into u = u1 + u2,

where u1 is the solution of the problem
∂u1

∂t
+ a(t0, x0)Δ2u1 = 0, (t, x) ∈ SR (4.2)

∂u1

∂n
=

∂u

∂n
,

∂Δu1

∂n
=

∂Δu

∂n
, (t, x) ∈ (t0 − R4, t0 + R4) × ∂BR(x0) (4.3)

u1 = u, t = t0 − R4, x ∈ BR(x0), (4.4)
and u2 is the solution of the problem

∂u2

∂t
+ a(t0, x0)Δ2u2 = ∇[(a(t0, x0) − a(t, x))∇Δu] + ∇ →

F , (t, x) ∈ SR, (4.5)

∂u2

∂n
= 0,

∂Δu2

∂n
= 0, (t, x) ∈ (t0 − R4, t0 + R4) × ∂BR(x0), (4.6)

u2 = 0, t = t0 − R4, x ∈ BR(x0). (4.7)
By classical linear theory, the above decomposition is uniquely determined by u.

We need several lemmas on u1 and u2.
Lemma 4.2 ([18]) Assume that

|a(t, x) − a(t0, x0)| ≤ aσ(|t − t0|σ/4 + |x − x0|σ), t ∈ (t0 − R4, t0 + R4), x ∈ BR(x0).
Then

sup
(t0−R4,t0+R4)

ˆ

BR(x0)

|∇u2(t, x)|2 dx +
ˆ̂

SR

(∇Δu2)2 dtdx

≤ CR2σ

ˆ̂

SR

(∇Δu)2 dtdx + C sup
SR

| →
F |2R6.

Lemma 4.3 ([20]) For any (t1, x1), (t2, x2) ∈ Sρ,
|∇u1(t1, x1) −∇u1(t2, x2)|2

|t1 − t2|1/4 + |x1 − x2|
≤ C sup

(t0−ρ4,t0+ρ4)

ˆ

Bρ(x0)

(ρ−3|∇u1(t, x) − (∇u1)ρ|2 + ρ|∇Δu1(t, x)|2) dx

+ C

ˆ̂

Sρ

(ρ−3|∇Δu1|2 + ρ|∇Δ2u1|2) dtdx.

Lemma 4.4 ([20]) (Caccioppoli type inequality)

sup
(t0−(R/2)4,t0+(R/2)4)

ˆ

BR/2(x0)

|∇u1(t, x) − (∇u1)R|2 dx +
ˆ̂

SR/2

|∇Δu1|2 dtdx

≤ C

R4

ˆ̂

SR

|∇u1(t, x) − (∇u1)R|2 dtdx

sup
(t0−(R/2)4,t0+(R/2)4)

ˆ

BR/2(x0)

|Δu1|2 dx +
ˆ̂

SR/2

|Δ2u1|2 dtdx

≤ C

R4

ˆ̂

SR

|Δu1|2 dtdx ≤ C

R6

ˆ̂

S2R

|∇u1(t, x) − (∇u1)R|2 dtdx
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sup
(t0−(R/2)4,t0+(R/2)4)

ˆ

BR/2(x0)

|∇Δu1|2 dx +
ˆ̂

SR/2

|∇Δ2u1|2 dtdx ≤ C

R4

ˆ̂

SR

|∇Δu1|2 dtdx.

Lemma 4.5 ([20]) Assume that
|a(t, x) − a(t0, x0)| ≤ aσ(|t − t0|σ/4 + |x − x0|σ), t ∈ (t0 − R4, t0 + R4), x ∈ BR(x0).

Then for any ρ ∈ (0, R),
1
ρ7

ˆ̂

Sρ

(|∇u1 − (∇u1)ρ|2 + ρ4|∇Δu1|2) dtdx ≤ C

R7

ˆ̂

SR

(|∇u1 − (∇u1)R|2 + R4|∇Δu1|2) dtdx.

Lemma 4.6 ([20]) For λ ∈ (6, 7), ϕ(ρ) ≤ Cλ(1 + supSR0
| →
F |)ρλ, ρ ≤ R0 =

min(dist(x0, ∂Ω), t1/4
0 ), where Cλ depends on λ, R0 and the known quantities.

Proof of Proposition 4.1 Similarly to the discussion about the Campanato spaces in [21], we
first conclude from Lemma 4.6 that

|∇u(t1, x1) −∇u(t2, x2)|
|t1 − t2|(λ−6)/8 + |x1 − x2|(λ−6)/2

≤ C
(

1 + sup
SR0

→
F

)

≤ C
(

1 + sup
SR0

|∇u|
)

.

By the interpolation inequality, we thus obtain
|∇u(t1, x1) −∇u(t2, x2)| ≤ C(|t1 − t2|(λ−6)/8 + |x1 − x2|(λ−6)/2).

The conclusion follows immediately from the classical theory, since we can transform the equa-
tion (1.1) into the form

∂u

∂t
+ a1(t, x)Δ2u+

→
B1 (t, x)∇Δu + a2(t, x)Δu+

→
B2 (t, x)∇u = 0,

where the Hölder norms on a1(t, x) = km(u(t, x)),
→
B1 (t, x) = km′(u(t, x))∇u(t, x), a2(t, x) =

−m(u(t, x))A′(u(t, x)),
→
B2 (t, x) = −∇(m(u(t, x))A(u(t, x))) have been obtained from the pre-

ceding lemmas. The proof is complete.
Proposition 4.7 If u is Hölder continuous in QT , then u is classical in QT .
Proof Let (t0, x0) ∈ (0, T )×∂Ω be fixed, and assume that in some neighbourhood of x0, ∂Ω is
explicitly expressed by a function y = ϕ(x). We split u into u1+u2 in (t0−R4, t0+R4)×ΩR(x0)
with ΩR(x0) = BR(x0) ∩ Ω, where

∂u1

∂t
+ a(t0, x0)Δ2u1 = 0, in SR,

∂u1

∂n
=

∂u

∂n
,

∂Δu1

∂n
=

∂Δu

∂n
, (t, x) ∈ (t0 − R4, t0 + R4) × ∂BR(x0),

u1 = u, t = t0 − R4, x ∈ ΩR(x0),
and

∂u2

∂t
+ a(t0, x0)Δ2u2 = ∇[(a(t0, x0) − a(t, x))∇Δu] + ∇ →

F , in SR,

∂u2

∂n
= 0,

∂Δu2

∂n
= 0, (t, x) ∈ (t0 − R4, t0 + R4) × ∂ΩR(x0),

u2 = 0, t = t0 − R4, x ∈ ΩR(x0).
Define the normal and tangential derivatives as ∂n = ϕ′(x) ∂

∂x1
− ∂

∂x2
, ∂τ = ∂

∂x1
+ ϕ′(x) ∂

∂x2
.

Now, we modify the function ϕ(ρ) as ϕ(ρ) =
´́

Sρ
(|∂nu|2 + |∂τu− (∂τu)ρ|2 +ρ4|∇Δu|2) dtdx.

Similarly to the proof of Proposition 1, we conclude that
|∇u1(t1, x1) −∇u1(t2, x2)|2

|t1 − t2|1/4 + |x1 − x2|
≤ C sup

(t0−ρ4,t0+ρ4)

ˆ

Ωρ(x0)

(ρ−3|∂nu1|2 + ρ−3|∂τu1 − (∂τu1)ρ|2 + ρ|∇Δu1|2) dx

+ C

ˆ̂

Sρ

(ρ−3|∇Δu1|2 + ρ|∇Δ2u1|2) dtdx
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and

sup
(t0−(R/2)4,t0+(R/2)4)

ˆ

ΩR/2(x0)

|∂nu1|2 + |∂τu1 − (∂τu1)1/2|2 dx +
ˆ̂

SR/2

|∇Δu1|2 dtdx

≤ C

R4

ˆ̂

SR

|∂nu1|2 + |∂τu1 − (∂τu1)R|2 dtdx

+
C

R6

ˆ̂

SR

|u − uR|2 dtdx +
C

R4

ˆ̂

SR

|∇u2|2 dtdx.

The remaining part of the proof is similar to that of Proposition 4.1, and we omit the details.
Proof of Theorem It is a direct consequence of Lemmas 4.2–4.6 and Propositions 4.1 and 4.7.
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