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Abstract

In this paper we study the large time behavior of non-negative solutions to the Cauchy
problem of u, = A" — w4 in RV x (0, ), where m>1 and ¢ = q. =m +2/N is a critical
exponent. For non-negative initial value u(x,0) = uo(x)e L' (R"), we show that the solution
converges, if u(x)(1 + |x|)* is bounded for some k> N, to a unique fundamental solution of
u; = Au™, independent of the initial value, with additional logarithmic anomalous decay
exponent in time as t— o0.
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1. Introduction

In this paper, we consider the N-dimensional Cauchy problem

) {u,—Au’”—u‘f in RV x (0, ),
u(x,0) = up(x)=0 in RV, up(x)e L'(RN)nL*(RY),
where m>1 and ¢ = ¢. =m+2/N.
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Our interest is to study the global dynamics of general solution with L!-initial data
having mild decay as |x|— oo. The purpose is to derive the exact spatial-temporal
profile of a solution when ¢t — oo. When consider an equation like (I) with power-type
non-linearity, a typical situation is to show certain type of asymptotic self-similarity
determined by simple scaling laws. This is certainly true when the exponent ¢ is not
critical, see [8,9,13]. But it is not the case here due to the reason that the exponent ¢
with ¢ = ¢. =m + 2/N, is critical as we explain below.

What makes the present case interesting and challenge is that the exponent ¢ is
critical in the sense that the two competing forces, the diffusion and absorption are
perfectly balanced and therefore the simple self-similarity (or scaling) possessed by
the equation fails to give useful information to the global dynamics. Therefore, the
large time behavior of the solution has more delicate structure which cannot be
predicated by the simple scaling law.

Let us make our point clear by providing some background details. For simplicity,
we shall only expound the semilinear case of m = 1.

Suppose ¢>¢, = 1 +2/N, up(x)e L' (RY) and uy(x)|x[¥ >0 as |x| > o0. Let
Wk (x, 1) = kKNu(kx, K1),
Then, * satisfies
u, = Au—k="uf,
u(x,0) = kN ug(kx)

with v = N(¢ — 1) —2>0. That is, the absorption is negligible. Since the L'(RY)-

norm of initial value of u* is the same as that of uy, ||u*(-,0)||, = ||uo||;, and

kNug(kx) = ||uo||;8(x) as k— co, it is imaginable that u* should converge to a

fundamental solution E.(x) of u, = Au with mass ¢>0. Indeed, it was proved in [13],
that
N2u(x,t) — Ec(x,1)| >0 as t— 0.

But, when ¢<g¢., the above argument breaks down since v = (¢ — 1)N —2<0.

This is because the absorption is too strong to be ignored. As a matter of fact, when

q <., the large time behavior depends on the more detailed information of the initial
value as |x| - oo. Indeed, suppose

lim  |x|"up(x) = 4, (1.1)

x| o0
where = 2/(q — 1) > N. The scaling law appropriate in this case is

Wk (x, 1) = Ku(kx, kK1)
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It is easy to see that u; satisfies the same equation as u but the initial value of u~,
when k> 1, has larger L'-norm than uy. The large time behavior of u reads as
follows:

(1) If A = oo (see [13]), then

L\
M Dy(x, 1) — (—) as t— oo
q-—1
uniformly in the set of the form %4 = {xeRM: |x|<Ct'/?}, where C>0 is a
constant.
(i1) If A =0 (see [8,9]), then

V9 Dlu(x, 1) — Wo(x,1)| -0 as t— oo,

uniformly in the set of the form ¢, where Wy(x,?) is the unique very singular
solution of u, = Au — u9.
(i) If 0< A < o0 (see [9]), then

VD u(x, 1) — Wa(x,1)| >0 as 1— o0,

uniformly in the set of the form %4, where Wy(x, 1) is the unique self-similar
solution of u, = Au — u? with asymptotics

lim  Wy(x,0)x[ 7V = 4.
|x]— o0

Similar results to the above hold for both m<1 and m>1, see [6,15,18].

To see why the arguments for g#g¢. fails for ¢ = ¢., we look at the case of ¢>g¢,
and that of g<g, separately.

If we guess the argument for ¢ > ¢, is true for ¢ = ¢, it leads us to the obvious but
not very useful conclusion: u converges to a fundamental solution of the same
equation (v =0). But, we know [1] that there exists no non-trivial fundamental
solution when ¢ = ¢.. Hence, we may guess u¥ —0 as k — oo and we are led to believe

/@ Dy(x,6)->0 as 1— 0. (1.2)

But, it is not good enough to give the exact picture of large time dynamics, even it is
true. Clearly, a more refined estimate is necessary if we want to accurately
characterize the large time behavior of solutions for critical exponent case.

In fact, for upe L'(R"), the identity

/RN u(x,t) dx — /RN uo(x) dx = /()I/RJV ul (x, 1) dx dt

holds and the right-hand side must converge as t— co. If ¢>g¢., by a Harnack-type
inequality,

u(x,0)<Cr¥? for t>0.
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Consequently,

/ ul(x,1) dxéCt’N(‘f’l)/z/ u(x,t) dx,
RN

RN

where N(¢ — 1)/2>1 since ¢>¢,. It follows that
/ u(x,t)dx—1>0 as t— 0. (1.3)
RN
But, as was shown in [14] that when ¢ = ¢,
/ u(x,t)dx—0 as t— .
RN
By a Harnack-type inequality, it follows that

sup u(x,t)<CrN/? (/ u(x,1/2) dx).
RV

xeRN

Hence, (1.2) is indeed true.

The results for g<g,. also fails to extend to include the ¢ = ¢, case, since 2/(q, —
1) = N, and uj satisfying (1.1) with 4>0 is not in L' (R"). Whereas the basic setup
for g<gq. is up in L'(RV).

Nevertheless, together with our discussion of ¢>g,., it tells us something
useful. In particular, it indicates that the decaying rate of ||u(-,?)||, cannot be of
the form (%) for any 6>0. This subtlety seems to suggest that the additional
decay should be a lower order term, like a power of log#, which is the key in
determining the exact decay of L'-norm and the asymptotic behavior of solutions for
large time. Indeed, the first sharp lower bound involving log ¢ is derived by Gmira
and Veron [13] for the m = 1 case. Later on, Galaktionov et al. [11], obtain the large
time behavior of solutions of (I) for m = 1 under a very special assumption that
initial value satisfies

uo(x) = o(exp(~d|x)) s x| - o

for some 6>0. The case of m>1 is considered by Galaktionov and Vazquez [12]
under the assumption that uy has a compact support. In their approach, the
construction of super-solution or the derivation of a sharp a priori estimate is valid
only when the initial value has a compact support.

To our best knowledge, the only works which deal with the general initial value
are that of Bricmont et al. [14], where the method of renormalization group has been
used successfully to obtain asymptotic behavior of (I), and a recent work of Herraiz
[14]. Both works are on m = 1. The work of Herraiz covers much wider class of
initial data than that of Bricmont et al., since the latter is a perturbation type
argument and the former a more classical type of hard analysis. But it is interesting
to note that the method of renormalization group is very powerful which enables the
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authors of [3-5] to study a wide range of parabolic equations and prove
outstanding results. But it seems very hard to generalize that approach to the
porous media case.

The key to our approach (I) is to obtain sharp a priori estimate through
the construction of suitable super-solutions, and then use maximum principle.
But due to the reason that the equation is quasilinear, the detailed analysis is
more involved than the semilinear case of m = 1. Another complication is that
the limiting spatial-temporal profile is a unique one, independent of initial value.
In addition, since it is of compact support, there is no way to construct a super-
solution using no other function than itself to bound a solution with non-compact
initial value.

The main result of this paper is the following theorem:

Theorem 1. Suppose m>1 and g =m +2/N. If uy(x) satisfies

lim sup |x[%uo(x) < oo,
|x| > o

where K> N, then the corresponding solution u of (1) has the following asymptotic
behavior:

1/(g=1) 1/(g=1) X

t (log 1) u(x, f)—>G<l]/N(q—1) 10g(l—m)/2(q_1)t> as t— oo
uniformly in set of the form {xeRY: |x|<Cr/N&a=110g1="/24=Dp \ohere G(x) is
the unique, radially symmetric solution of

. 2 N x-Vu

That is,

_ 7\ 1/(m=1)
G(x) = G(x;a.) = (a* - %)

with a, being uniquely determined by the property, among {G(x;a)} ., that
2(¢—1)
Gll. — . 1.

Remark. It is not difficult to see that

) m-1)
G G /NG ) — 1/ (a (m—1)x )

" 2mN(q — 1)2/N=1)

is the Barenblatt—Pattle solution of u, = Au™.
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Remark. It is easy to see from the statement of the theorem that our result is
almost the best possible in the sense that our result works for most of L' initial
values. It is an amazing fact that the attractor for almost all L' initial values is a
single function.

Remark. Another novelty is the appearance of additional logarithmic terms both in
the decay of solution in time and also the spatial-temporal profile of the limiting
function. In particular, the logarithmic anomalous exponent in (logt)l/ @=1) is the
work of subtle balance between diffusion and absorption, the hallmark of the critical
exponent case under consideration.

Remark. On a more technical ground, the exact value of a, is calculated
painstakingly in [12] as

m—1 —(m—1)/2 NB(N/Z,m/(m— 1)) (m—1)/2(qg—1)
“= <2mN<q - 1)) (2B<N/z, (m+q—1)/(m— 1>>>

with ¢ = g, = m + N /2, where B(a,b) is the §§ function. For m = 1, the unique G is
given explicitly by

NJ2 )
601 = (3) (42N expllyf ) (16)

We use ax to denote the constant

@) N/2<1 +2/N)V.

The organization of this paper is as follows. In Section 2 we prove Theorem 1. In
Section 3, we present a new proof for m = 1. In Section 4 we show how to generalize
our result to more general equations and make a few remarks.

2. Proof of Theorem 1

The key here is to construct a suitable super-solution and then use the maximum
principle to obtain a sharp upper-bound. For final convergence analysis, we use the
elegant and simple dynamical system argument in [12] to prove the desired result,
rather than resort to a somewhat equivalent argument.

To simplify our calculation, we start by making a variable transformation

v=mu""/(m—1).
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Then the equation for v is

v = (m— )Av + | Vo> — c(m, g)r?, (2.1)
where p=(q+m-2)/im—1)>2, p—-1=(¢—-1)/(m—1) and c(m,q)=
(m—1)[(m—1)/m)*"". We shall construct our super-solution using (2.1) rather
than the original equation.
Lemma 1. The function

A(x, 1) = (T + 0)log(T + 1)) "/¢~D

M- colx)? log(T + 1)
(T_|_t)2/N(‘/_1)logfl/(P*I)(T_FZ)lOg(T—FZ)-‘rb .

is a super-solution of (2.1) provided a,b are properly chosen and T =Ty(m,N). Here
the constant ¢y =1/2N(q —1). Furthermore, define s=1log(T +1t) and z=
|x[s!/2(=1) /e5/N@=1) e have

A, — (m—1)AAA + |V A + c¢(m, q) A7

Pk — 1\ 2
cz(m,q)ba (k . 1) i SCOZbSa/k,
S e /0-g /1) 28 +D) o (2.2)
a if a/k<scoz <u
2(s+b) Ss+b

where k =14 2(p — 1)cyo.

Proof. We assume s> 0. It is easy to calculate that if @ — coz%s/(b + 5) >0,

2 22
A, = 2/ p/o-1) [ _ I+ ,_ GoFs n 2cz%s
W

p—1 s+b g—1)(b+s)
B Coz2s B coz2bs
P=Db+s) (b+s)
Zsp/(p—1) —p/(p— 2¢olx|s X
— o5/p=1) ¢—p/(p=1) [ _ 0 e
VA =e s ( NG5 1/0-1(h 1 s)) El

2¢oNs
— —sp/(p—1) —p/(p-1) [ _ 9
AAd =e s < e2s/N(q—1)s—1/<l’_l)(b+S)>.
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1(A) = (Al — (m— 1)AAA + |V A]* + c(m, q)AP)ew/@*)sP/@*l)
_ 1+s<a 3 cozzs> N coz2s ( 2 11 )
- op—1 s+b), (b+s)\N(g—-1) (p—-1) (b+s)

N 2¢oN(m —1)s* (a 3 cozzs> 3 4c§zzs32 + e(m, ) (a 3 cozzs>p
(b+s) s+b) . (b+5s) s+b),

~ s(b+1)+b | beos?? )
- —a(S+b)(p— ) + (S+b)2<s[2(m — 1)eoN + 4¢o] _pT1>

+ ¢(m,q) (a - cozzs)p (2.3)

s+b).

. . Zz‘
To prove 4 is a super-solution, we only need to show 7(A4) >0 when (a - ‘A?Hf) > 0.

Now, we fix b = 2k/co(p — 1). We show that if a is chosen to be larger than some
a(m, N), the lemma holds.
Case 1: coz%s/(b + s)<a/k. In this case

2.\ 7 P
Ccoz”s k—1
c(m,q) (a_s+b) >c(m,q) <k> a.

+

Since (s(b+ 1)+ b)/(s+b)<b+1,

C(m7q) k_l pp (b+1)
2 ( k >“>“p—1’

if a is suitably large. By the inspection of (2.3), we see that I(4)>0 when
s>51(m, q,n).

Case 2: a/k<coz*s/(b + s) <a. In this case, we shall use the second term in (2.3) to
bound the first term. Note that 2(m — 1)cgN = 1/(p — 1),

a sb 4b(p—l)sco p
I(A)Zm(—s(b+l)—b+?+To—%)

;m(3s—b—£)>0

if s>s5(m,q, N). This complete the proof of lemma. [

Remark. The fact that A(x,f) is a super-solution is already demonstrated in [13],
but since we need more detailed information such as the inequality in (2.2),
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we include a proof here. The shortcoming of a super-solution like A(x,?) is
that it cannot be used to control solutions with initial data with non-compact

support. The next lemma shows, nevertheless, it can be used as a foundation
to construct one which can control solutions of (I) whose initial data is

O((1 + |x|)® with K>N.

Lemma 2. Suppose f>N(m —1),t=[f— N(m—1)]/4N(q — 1) and E>0, then
wix, 1) = A(x, 1) + (T + 0) /P V1og V0=D(T + 1)f (x, 1),

where

Ee~ i -l<C,
f(X, ) = B —B —1s .
ECP|z| "Ee if |z|=C

is a super-solution of (2.1) provided a=a(m,N,E) is properly chosen and
T=Ty(m,N). Here C>0 is an arbitrary but fixed constant and z is as in Lemma 1.

Remark. It is clear from the composition of w(x, ¢) that it can be used to bound a

solution of (2.1) with initial data O((1+ |x|)™") with f>N(m—1). A direct
consequence of Lemma 2 is the following

Corollary 1. Suppose u is a solution of (1) with non-negative initial data uy(x) =
O((1 + |x])*) as |x|—» oo with K>N, then u(x,t) can be bounded by a constant
multiple of w'/""=V(x. 1), and in particular, we have the bounds

u(x, ) < M(T + 1)V 10g™ /@D (T 4 ¢),
l[u(-, ||, <M (log(T + 1))~ GHm=bN)/2g=1)
where M >0 is a constant.
Proof of Lemma 2. Direct calculation reveals that
w, — (m — D)wAw — [Vw]* + ¢(m, g)w”

= (T + 1) /0 Dlog VP=D(T 1 1)J(z,s), (2.4)

- f 1 zf; - -
J(z,s) A,<1 +S) fmfrff (m—1)AA.A — (m — 1)AA. f

—(m—=DfAA—(m—=V)fAf — A2 =24, f. — f2 + c(m,q)(A +1). (2.5)
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Here every term with overbar “—” is the original term times [(T + f)log(T +
)]~V Regrouping the terms and replacing (4 + /)’ by 47 , we have

J(z,8)=1(A) +Jy — (m— 1)Jo — J3, (2.6)

where

7 ! o
Jl - _F(l +E> _N(q— 1) _Tfu
J2 :IZIAzf+fA2/_1 +fAZfa

Jy =24.f. +f*

We now consider different ranges of z.
First, z< C. In this case /. = A, f = 0.

Ee™™ 1 a Ee™™ 1
J =1(A4) — 1+-) —tEe ™= = (1+-) —tEe ™
(z,5)=1(A) p—l( -I-S) tEe 254 D) p—1< +S) tEe

by Lemma 1. If we choose a a large number such that a=E+ 1, J(z,5)>0 for
s>s1(m, N, 7).
Next we consider the case where z> C. It is easy to see that

B 1 1 B —1B_—P
= - 1 - - E T .
Ji (N( 0 I —I—s T |ECPe™Pz7P >0

if s=s,(N,m, 7). Furthermore,

2
B _czs B g2 2¢oNS
Jz—(<a s—+b>+ﬂ(ﬂ+2 N)C’z b

+B(B+2— N)ECPIz P2 ™ )ECPz P
<Di(az? + 1+ Ez P2 ™)Ez o™,

where Dy = D|(N,m, §, C). Similarly,

+b
<D, (1 + Ez”"ze’”)Ez’ﬂe’”,

4cosh
Ji— (Scos " ﬂZEC/)’Zﬁzers>ECﬁZﬁers

where D; = Dy(N,m, B, C). Now we look at I(4). If scyz?/(s + b)<a/k, then by

Lemma 1,
a? k—1\*
> - ([
I<A)/2(s+b)< k ) '
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Hence, JZ2I(A)+J, — (m— 1)J, = J3>0ifa>M(E + 1), with M = M(N,m, 5, C)
a big positive constant and s=s3(m, N, 7).
If a/k<scyz? /(s + b)<a, 22 <cok/a.

k—1cok k
U B lid e‘”) Ee™™
k a a

Jr< Dy (a

< Ds(k+ 1)Ez Pe™™
with a positive constant D3 = D3(N,m, f§, C). Likewise,
J3<Dy(k + 1)Ez Pe ™.

Therefore, J=I(A) +J1 — (m — 1)J, — J3>0 if s=s4(m, N, 7), since I(A)=a/2(s +
b) by Lemma 1.
If scoz2/(s + b)=a, then 4 =0 and z2<c¢y/a<1/E, zF < (co/a)’* <1.

Jr=B(B+2— N)ECP =727 x ECPz Pe™

< DsEz Pe™?,
with a positive constant Ds = Ds(N,m, 8, C). Similarly,
J3<DgEzPe™2w.

Hence,

B 1 1 - B -2
Jeli—(m=DJh—J> (1 +-) —t—mDse™ | ECPzPe 2 >0
1= o= Js (N(q—l) p—1 s ! 7€ =re >

if s=s4(m, N, 7). Thus, the function w is indeed a super-solution. [
Now, we come to the final ingredient of our proof-the dynamical system setup of
[12]. For completeness and easy reference in our proof of Theorem 1, we describe

briefly the setup in [12] by stating the key Theorem 3 there as follows.
Suppose a general dynamical system is given by the evolution equation

u, = A(u) (2.7)
and a perturbation by
u, = B(t,u). (2.8)

Theorem 3 (Galaktionov and Vazquez [12]). The w-limit sets for the solution
of (2.8) in the class ® are contained in the w-limit sets Q for the solution of (2.7)
under assumption (H1)—(H3) below. Consequently, the orbits approach uniformly Q as
t— 0.
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(H1) The class ® of solutions ue C([0, ) : X) of (2.8) is defined for t >0 with values
in a complete metric space X (with distance d). The assumption is that the orbits
{u(t)},~ are relatively compact in X. Moreover, if

u (t) =u(t+1), t1>0,

then we assume the sets {u"}._, are relatively compact in L7 ([0, c0): X).
(H2) B is a small perturbation of A in the sense that given a solution ue @ of (1.8), if
Jor a sequence {t;— oo}, u(t + t;) converges to a function v(t) in L%.([0, 00 ) : X)
as j— oo, then v is a solution of (2.7).
(H3) The w-limit set of (2.7) in X,

Q={feX: ueC(0,0):X) solution of (2.7) and a sequence
t;— oo such that u(t;)—f}

is non-empty, compact and uniformly stable in the sense that for every ¢>0,
30> 0 such that if u is any solution of (2.7) with d(u(0),Q2)<J then

d(u(t),Q)<e for every t>0.

Proof of Theorem 1. The proof is based upon the observation that with the sharp
upper bound in Lemma 2, the argument in [12], in particular the Theorem 3 there is
valid for our situation.

We start by making a variable transformation. If u(x, ) is a solution of (I), then,
for any 7> 0, denoting s = log(T + ¢),

X
(T + ,)l/N(qfl)log(l—m)ﬂ(q—l)(T +1)

o(y,8) = (T + Olog(T + 1))~/ Du(x,1), y=
is a solution of

vy = A" +

1 Il —m v?
(Nv+y~Vv)+S(q_l)<v+ y~Vv>——. (2.9)

N(g-1) 2 s

Furthermore, by Lemma 2 u can be bounded by a super-solution, and the # bound
there is directly translated into the following estimate:

o(y,8) < G(y;a) + Emin(1, [y| *)e™®, (2.10)
A lower bound for v is easy and is supplied by Lemma 2.3 in [12] which is
G(y;a-)<v(y,s) (2.11)
for all s>, where a_ >0.

From now on, we concentrate on solutions with fixed K> N and their bounds in
(2.10) and (2.11) are given by fixed E, a = a, and a_ with 0<a_<a=a..
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Following [12], we let

X ={feL'(B): G(ria_)</()<G(y.as) ae. in BY, B=B,. (0)=R".

It is well known [10] that the w-limit set Q of unperturbed equation

vy = AV" + (Nv+y- Vo) (2.12)

N(g—1)

with initial value voe X is the Barenblatt-Pattle profile G(y;a) with the same L!-
norm as vy. 2 is apparently compact in X.
Let @ be the class of functions ve C([0, 0 ); Y), where

Y = {/eL'(RY): G(y;a-)<f<G(y;as) + Emin(1,|y[™)}.

The compactness of solution orbit {v(s)}, ;, of (2.9) in L', with M a fixed positive
number, follows from interior regularity (cf. [2,7]) and the uniform bound (2.10).
Furthermore, the family is compact in C(Bg) for any R>0. Moreover, let v*(s) =

v(s+71), s=M and t>0. The fact that the set {v*} ., is relatively compact in

L% .([0, o) : Y) follows from the same reasoning. This verifies (H1) in Theorem 3 of
[12].

It is clear that given a solution ve @, if for a sequence {¢; > oo }, v(t + ¢;) converges
to a function w(¢) in L[ ([0, 00): Y) as j— oo, then w is a solution of (2.12) and
w(?)e C([0, c0); X) as a consequence of estimates (2.10) and (2.11). This validates
(H2) in Theorem 3 of [13]. Assumption (H3) is automatically satisfied, see [12].

Hence, by Theorem 3 in [12], the w-limit set of (2.9) is contained in Q.

Now we show v(y, s) > G(y; @,) uniformly in y as s— co under the assumption that
[lv(-,8)||; = Io>0 as s— co. This is the content of Lemma 5.1 in [12]. Our case is only
slight different from the proof of Lemma 5.1 in [12], which is caused by v not having
a compact support. But, again, (2.10) assures that v(y,s) — 0 uniformly outside B as
s— 0. Therefore, the exact argument in Lemma 5.1 in [12] applies.

The convergence of ||v(-,s)||;, as s— oo can be demonstrated using the
compactness of orbit {v(s)},>,, in C(B) and the rapid decay to zero outside B by
Lemma 2. We refer the interested reader to Proposition 5.2 in [12]. This completes
the proof of Theorem 1. [

Remark. An interesting fact which comes out of our proof of Theorem 1, in
particular out of the super-solution we constructed is that the algebraic decay in
space of the initial value does have a material effect in the convergence rate of the
solution to the limiting profile. More specifically, the convergence rate is
proportional to K — N, where K is the decay rate of initial value at |x| = oo. There
is an apparent slow down of the convergence when K is close to V. This may explain
again why our case is much more involved than the case when the initial value is of
compact support.
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3. The semilinear case of m = 1

In this section, we present a new proof for the semilinear case m =1 of (I).
Our contribution here is a more transparent demonstration how a super-solution
can be constructed after the equation is transformed by a self-similar change of
variable, and by taking advantage of the structure of the transformed equation.
Another benefit is our result applies to more general initial data than the known
results.

Theorem 2. Suppose m =1 and ¢ =1+ 2/N. If uy(x) satisfies

lim sup |x|*uo(x) < o0,
|x| > 0

where k> N, then the corresponding solution u of (1) has the following asymptotic
behavior:
x

N/2 N/2
N2 (log )Y ulx, t)—»G(tl/2

> as t— oo
uniformly in set of the form {xeRN: |x|<Ct'/?}, where G(x) is the unique, radially

symmetric solution of
2 N x-Vu
Au+——(—= =0. 3.13
u+N(q—l)<2u+ 5 > 0 (3.13)

That is,

NJ2 )
601 = (5) (14 2/ exp-IoP /.

As in the case of m>1, the crucial step is to construct a suitable super-solution
with sharp bound. First, we make a change of variables. Let
X

TagrE 0 = (T Dlog(T+ 01Vl ),

SZIOg(Z—’_T)a y=

then we obtain the equation for v as:

1 1
vy =Av+=-(Nv+y-Vv)+- Ev—vq . (3.14)
2 s\ 2
Define
1 1/N
I(U)EUS—AU—E(NU+y'VU)_E<EU—U4>. (315)

It is easy to see that a super-solution to (3.14) is one satisfying /(v) >0.
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We construct a super-solution in the form of
i) = v (1+72), (3.16)

by choosing f properly, where ¥(y) = ¥y (y) = M exp(—|y|*/4) with M >0 a

constant.
Simple calculation shows

vV, = —f—lf, vV = Wf(l +@) +ZVf,
A S

AV:A'I’(] +@) MEALSAY) quf

N

and

1v) = —fs—lﬁy— (H’%y)) (A‘P+%(N¥’+y-V'P)
b o) 2 2(125)

Since,
AY +5(N¥ +y-V¥P) =0,

1(V) = —§<Af+%y-w—y-w+%— w‘)

14+4)" 1
I[N ( +;_) -
32 2 I
N
= 1I + : I (3.17)

= P 1 Sz 2. .
From now on, we assume f is radial, and consider the following equation for f

(f/,+_f)+ WP — 1, G(r), (3.18)

where r = |y|, G is a positive function satisfying

/ ‘rN’lG(r)dr: 1
0
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and
® > MN [* y N
IMEM‘f/ rN’le*q’/“dr——/ rN*Ie*’z/“dr:/ ‘P?de——/ Yo dx.
0 2 0 RN 2 R"V

The first assumption we make on G is:
(Al) 3IL>N such that rG'(r) + LG(r)>0, for all r>r;>0.  (3.19)

That is, G will not have very rapid decay at r = co. Indeed, an integration of
rG'(r) + LG(r) implies r2G(r) >k G(ry) for all r>ry.
An integration of (3.18) yields that

r r r
Fty — / q,quflds,g / W ds 1, / N G(s)ds. (3.20)
0 0 0

It is clear that 3r, >0, independent of M, such that

Pi(r) — % Y(r) — InG(r)<0 for all r>r,>0.

Hence, />0 for all r>r», since the right-hand side of (3.20) has a limit equal to zero
as r— c0. An integration of (3.20), after being divided by rV~'¥ shows

10 =10)+ [ 0700 ao ([ (#1065 06 - 1609 ) s ) =0

Clearly, we can make f >0 for all »>0 by making f(0) large enough. An equivalent
form of the above equation is

. —1
. o J(r
s ([ 960d) = g ay

It is easy to show that the right-hand side has a limit which equals to ;. Therefore,

1 o0 0
7M sNLG(s) ds<f(r)e_’2/4rN<2IM/ NG (s) ds (3.21)

for r>r;3, where r; is independent of M.
Given the form of the super-solution we try to construct and (3.17), which now
takes the form

1 ol N2 o (14D
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it is very important to compare /¥ with G(r). By (Al),

L/ G(S)stl ds > —/ G/(S)SN ds = G(r)rN + N G(S)SNil ds.

r

Consequently,

®© _ G(r)r¥
N-1
/r G(s)s"~ ds> TN

This, in combination of (3.21), shows

for r>r;. Next, we assume
o0
(A2) 3IC>0 such that / G(s)sV ' ds< CG(r)rN  for all r>ry>0. (3.23)

This implies, using (3.21),
f(NP(r)<2CIyG(r) for all r>R = max(rs,ry4).

Now we can finally show that

)

i) = v0) (1+72)
with f satisfying (3.18) and G satisfying (A1) and (A42) is a super-solution for
s>s1(m, N, G), when M is sufficiently large.

It is clear from (3.22) that I(v) >0 if ¥4~ > N/2, since

N4
7<1+) 1>q—1—|—§7

@~

But, if ¥"'<N/2, then

1/(a=1)
i)
M1 ’

or r>ry, where ry — oo as M — oo. Hence,

InG(r) N+2.., f¥ N+2

I(v) = (V= 3Cs

S 52
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if > R and s> s, where s is independent of M. Therefore, v is a super-solution for
§>51.

Proof of Theorem 2. Since the proof follows the same procedure as that of Theorem
1, we shall be brief.
Let u be a solution of (I) satisfying the assumption of Theorem 2. Let v(y, s) be the

function after self-similar transformation. Then, clearly we can choose G(r) =

C(l+ r)fK for constructing a super-solution V" as in (3.16) with M sufficiently large.
Furthermore,

o(y.5) <V (2.9) <E<ey'2/“ + M) , (3.24)

where E>0 is a suitable constant. A lower bound for v is obtained in [13]
which is

me /4 < v(y,s) (3.25)

for all s>s, where m>0.

From now on, we concentrate on solutions with fixed K> N and their bounds in
(2.10) and (2.11) are given by fixed C, m>0 with 0<m<E.

Let

X ={feL'(R"): me_‘ylz/4<f(y) <Ee M ae. in RV}
It is well known that the w-limit set of unperturbed equation

vy = Av+ (Nv+y-Vvo) (3.26)

o
N(g—1)

with initial value vy e X is ae~'/4 with the same L!-norm as vo. This is because (3.26)
is nothing but the self-similar transformed heat equation u, = Au. Therefore, w-limit
sets with initial value in X is:

Q = {ae "* m<a<E},

which is clearly a compact set, and asymptotically stable because the L! contraction
of heat equation. Hence, (H3) holds.
Let @ be the class of functions ve C([0, o0); Y), where

Y= { FeL RY): me b < F <B4 (14 ) ).
The compactness of solution orbit {v(s)},>,, of (3.14) in L', with M a fixed

positive number, follows from interior regularity and the uniform bound (3.24).
Furthermore, the family is compact in C(Bg) for any R>0, Moreover, let v*(s) =
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v(s+71), s>M and 1>0. The fact that the set {v'} _, is relatively compact
in L% ([0,00):Y) follows from the same reasoning. This verifies (HI) in
Theorem 3 of [12].

It is clear that given a solution ve @, if for a sequence {t; > o0 }, v(t + ¢;) converges
to a function w(¢) in L ([0, 00): Y) as j— co, then w is a solution of (3.26) and
w(t)e C([0, c0); X) as a consequence of estimates (3.24) and (3.25). This validates
(H2) in Theorem 3 of [13].

Hence, by Theorem 3 in [12], the w-limit set of (3.14) is contained in Q.

Now we show v(y, s) > G*(y) (as given in (1.6)) uniformly in y in any finite ball Bg
with radius R>0, as s— oo under the assumption that ||v(-,s)||; > 1p>0 as s— o,
where I is the L'-norm of G*(y).

Since Q consists functions of the form of H, = ae I/ 4 there is a unique a with the
property that its L'-norm is the given limit fy. Therefore, v(y,s) — G*(y) as s— 0.
The uniform convergence in any finite ball Bg follows from (3.24) and regularity,
and thus equi-continuity of solutions.

We now show the convergence of w(s)=|[lv(-,s)|], to Iy as s— 0.
Suppose the contrary, then there exist sequences s;— oo and 33 — oo such that
v(y,s;)—H,, and v(y,5)— H,, uniformly in any finite ball Bg as j,k— oo, where
ai #ay. Since ||Hy ||, and ||H,,||, must be different, then one of them is different
from a x .

Suppose a * <a, a;<a,. Fix an arbitrary &' €(a;,a2), d>a*. Then, by the
continuity of w(s) and its oscillatory property near s = oo there exists a sequence
§/— o0 as j— oo such that [[o(5))|[, = ||Hyl], and

dw(s;)/ds=>0 for all j.
Then Theorem 3 in [12] implies
v(s})—>Hw uniformly in any finite ball Bz as j— 0.

It is clear from an integration of (3.14) that

dw N
SG ) =306~ [ )

which is negative for all j large by uniform convergence in any finite ball Bg, uniform

smallness at y = oo and the fact

N
> Hy(y) dy—/ H}(y) dy <0,
RN RN

since d'>ax. So, we have a contradiction. This completes the proof of
Theorem 2. O
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4. Extensions and remarks

Though it seems that the scaling invariant property of power non-linearities is
essential to our approach, the result of Theorem 1 can be extended to equations
which are small perturbation of Eq. (I). For instance, consider the equation

u = A" — f(u), (x,0)eRY x (0, 0) (4.27)

with /" a continuous function Rt — R" and f(0) = 0. In addition, we assume

u(x,0) = up(x)=0

and there exists M >0 and K> N such that uo(x) <M (1 + |x|) %, It is well known
from the works of Kalashnikov and Kersner [16,17] that there exists a unique
solution ue C([0, o) : L'(RY)) under our assumption of f and our initial value.
Moreover, one can deduce from the non-negativity of f and the Maximum Principle
that such a solution is bounded above by the solution of u, = Au™ with the same
initial data. In consequence, u will decay as t— oo with at least the rate
O(¢t~N/INm=1+21) "1f we make additional assumption such as

f(s)=Cis?,  for 0<s<
with C; >0 and C,>0, then

v(x, ) = u(\/ax, C t)

will be a sub-solution of (I): u;, = Au™ — u? whenever u is a solution of (4.27), when
> 1. Again, by the Maximum Principle, a decay rate of O((rlog 7)~"/“~V) is readily
obtained as ¢t — oo. In particular, we deduce from Theorem 1 that for any ¢ >0 there
exists 7= T'(¢) >0 such that when t>T,

—1/(ge=1)
)< (Goat/C)) T (G0ia) )

where y = xr~1/N@=D (log(z/ €)™~ V/2=D D/ gnd g, is as in Theorem 1.
In a similar way, we can get lower bound from below by assuming

f(8)<Cos? for 0<s<Cs.
In summary, we get the following result.

Theorem 3. Let u be a solution of (4.27) with the initial condition as specified above. In
addition, suppose

i £ )

u—0 uyde

=1

b

then Theorem 1 holds.
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Remark. it is clear that if the above limit is C>0, then a result which is a simple
scaling of Theorem 1 is valid.

It is probably more interesting to study how the perturbation of diffusion term will
affect the underlying result. For example, a good candidate will be the equation
u, = Ag(u) — f(u) with ¢ a small perturbation of u™. We believe the analysis will be
more involved.

Another interesting extension is to consider the P-Laplacian counterpart of (I):

u, = div(|Vul’ V) — u?

with p>2 and ¢ =p — 1+ p/N. The case of initial value with compact support is
considered in [12]. But to cover more general situation with non-compact-support
initial value with moderate decay as |x|— oo, which is sufficient to guarantee L!-
integrability but not much more, to derive a sharp estimate similar to one in (2.10) is
the key. But to our best knowledge, such work has not appeared. We are sure it can
be worked out, but the calculation seems to be formidable.
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