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Abstract

In this paper we study the large time behavior of non-negative solutions to the Cauchy

problem of ut ¼ Dum � uq in RN � ð0;NÞ; where m41 and q ¼ qc � m þ 2=N is a critical

exponent. For non-negative initial value uðx; 0Þ ¼ u0ðxÞAL1ðRNÞ; we show that the solution

converges, if u0ðxÞð1þ jxjÞk is bounded for some k4N; to a unique fundamental solution of

ut ¼ Dum; independent of the initial value, with additional logarithmic anomalous decay

exponent in time as t-N:
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the N-dimensional Cauchy problem

ðIÞ ut ¼ Dum � uq in RN � ð0;NÞ;
uðx; 0Þ ¼ u0ðxÞX0 in RN ; u0ðxÞAL1ðRNÞ-LNðRNÞ;

�

where m41 and q ¼ qc � m þ 2=N:
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Our interest is to study the global dynamics of general solution with L1-initial data
having mild decay as jxj-N: The purpose is to derive the exact spatial–temporal
profile of a solution when t-N:When consider an equation like (I) with power-type
non-linearity, a typical situation is to show certain type of asymptotic self-similarity
determined by simple scaling laws. This is certainly true when the exponent q is not
critical, see [8,9,13]. But it is not the case here due to the reason that the exponent q

with q ¼ qc � m þ 2=N; is critical as we explain below.
What makes the present case interesting and challenge is that the exponent q is

critical in the sense that the two competing forces, the diffusion and absorption are
perfectly balanced and therefore the simple self-similarity (or scaling) possessed by
the equation fails to give useful information to the global dynamics. Therefore, the
large time behavior of the solution has more delicate structure which cannot be
predicated by the simple scaling law.

Let us make our point clear by providing some background details. For simplicity,
we shall only expound the semilinear case of m ¼ 1:

Suppose q4qc ¼ 1þ 2=N; u0ðxÞAL1ðRNÞ and u0ðxÞjxjN-0 as jxj-N: Let

ukðx; tÞ ¼ kNuðkx; k2tÞ:

Then, uk satisfies

ut ¼ Du � k�nuq;

uðx; 0Þ ¼ kNu0ðkxÞ

with n ¼ Nðq � 1Þ � 240: That is, the absorption is negligible. Since the L1ðRNÞ-
norm of initial value of uk is the same as that of u0; jjukð
; 0Þjj1 ¼ jju0jj1 and

kNu0ðkxÞ-jju0jj1dðxÞ as k-N; it is imaginable that uk should converge to a

fundamental solution EcðxÞ of ut ¼ Du with mass c40: Indeed, it was proved in [13],
that

tN=2juðx; tÞ � Ecðx; tÞj-0 as t-N:

But, when qpqc; the above argument breaks down since n ¼ ðq � 1ÞN � 2p0:
This is because the absorption is too strong to be ignored. As a matter of fact, when
qoqc; the large time behavior depends on the more detailed information of the initial
value as jxj-N: Indeed, suppose

lim
jxj-N

jxjau0ðxÞ ¼ A; ð1:1Þ

where a ¼ 2=ðq � 1Þ4N: The scaling law appropriate in this case is

ukðx; tÞ ¼ kauðkx; k2tÞ:

ARTICLE IN PRESS
Y. Qi, X. Liu / J. Differential Equations 198 (2004) 442–463 443



It is easy to see that uk satisfies the same equation as u but the initial value of uk;

when k41; has larger L1-norm than u0: The large time behavior of u reads as
follows:

(i) If A ¼ N (see [13]), then

t1=ðq�1Þuðx; tÞ- 1

q � 1

� �1=ðq�1Þ
as t-N

uniformly in the set of the form SC ¼ fxARN : jxjpCt1=2g; where C40 is a
constant.

(ii) If A ¼ 0 (see [8,9]), then

t1=ðq�1Þjuðx; tÞ � W0ðx; tÞj-0 as t-N;

uniformly in the set of the form SC; where W0ðx; tÞ is the unique very singular
solution of ut ¼ Du � uq:

(iii) If 0oAoN (see [9]), then

t1=ðq�1Þjuðx; tÞ � WAðx; tÞj-0 as t-N;

uniformly in the set of the form SC; where WAðx; tÞ is the unique self-similar
solution of ut ¼ Du � uq with asymptotics

lim
jxj-N

WAðx; 0Þjxj2=ðq�1Þ ¼ A:

Similar results to the above hold for both mo1 and m41; see [6,15,18].
To see why the arguments for qaqc fails for q ¼ qc; we look at the case of q4qc

and that of qoqc separately.
If we guess the argument for q4qc is true for q ¼ qc; it leads us to the obvious but

not very useful conclusion: u converges to a fundamental solution of the same
equation ðn ¼ 0Þ: But, we know [1] that there exists no non-trivial fundamental

solution when q ¼ qc: Hence, we may guess uk-0 as k-N and we are led to believe

t1=ðq�1Þuðx; tÞ-0 as t-N: ð1:2Þ

But, it is not good enough to give the exact picture of large time dynamics, even it is
true. Clearly, a more refined estimate is necessary if we want to accurately
characterize the large time behavior of solutions for critical exponent case.

In fact, for u0AL1ðRNÞ; the identityZ
RN

uðx; tÞ dx �
Z

RN

u0ðxÞ dx ¼
Z t

0

Z
RN

uqðx; tÞ dx dt

holds and the right-hand side must converge as t-N: If q4qc; by a Harnack-type
inequality,

uðx; tÞpCt�N=2 for t40:
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Consequently, Z
RN

uqðx; tÞ dxpCt�Nðq�1Þ=2
Z

RN

uðx; tÞ dx;

where Nðq � 1Þ=241 since q4qc: It follows thatZ
RN

uðx; tÞ dx-l40 as t-N: ð1:3Þ

But, as was shown in [14] that when q ¼ qc;Z
RN

uðx; tÞ dx-0 as t-N:

By a Harnack-type inequality, it follows that

sup
xARN

uðx; tÞpCt�N=2

Z
RN

uðx; t=2Þ dx

� �
:

Hence, (1.2) is indeed true.
The results for qoqc also fails to extend to include the q ¼ qc case, since 2=ðqc �

1Þ ¼ N; and u0 satisfying (1.1) with A40 is not in L1ðRNÞ: Whereas the basic setup

for qoqc is u0 in L1ðRNÞ:
Nevertheless, together with our discussion of q4qc; it tells us something

useful. In particular, it indicates that the decaying rate of jjuð
; tÞjj1 cannot be of

the form t�ð1þdÞ for any d40: This subtlety seems to suggest that the additional
decay should be a lower order term, like a power of log t; which is the key in

determining the exact decay of L1-norm and the asymptotic behavior of solutions for
large time. Indeed, the first sharp lower bound involving log t is derived by Gmira
and Veron [13] for the m ¼ 1 case. Later on, Galaktionov et al. [11], obtain the large
time behavior of solutions of (I) for m ¼ 1 under a very special assumption that
initial value satisfies

u0ðxÞ ¼ oðexpð�djxj2ÞÞ as jxj-N

for some d40: The case of m41 is considered by Galaktionov and Vazquez [12]
under the assumption that u0 has a compact support. In their approach, the
construction of super-solution or the derivation of a sharp a priori estimate is valid
only when the initial value has a compact support.

To our best knowledge, the only works which deal with the general initial value
are that of Bricmont et al. [14], where the method of renormalization group has been
used successfully to obtain asymptotic behavior of (I), and a recent work of Herraiz
[14]. Both works are on m ¼ 1: The work of Herraiz covers much wider class of
initial data than that of Bricmont et al., since the latter is a perturbation type
argument and the former a more classical type of hard analysis. But it is interesting
to note that the method of renormalization group is very powerful which enables the
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authors of [3–5] to study a wide range of parabolic equations and prove
outstanding results. But it seems very hard to generalize that approach to the
porous media case.

The key to our approach (I) is to obtain sharp a priori estimate through
the construction of suitable super-solutions, and then use maximum principle.
But due to the reason that the equation is quasilinear, the detailed analysis is
more involved than the semilinear case of m ¼ 1: Another complication is that
the limiting spatial–temporal profile is a unique one, independent of initial value.
In addition, since it is of compact support, there is no way to construct a super-
solution using no other function than itself to bound a solution with non-compact
initial value.

The main result of this paper is the following theorem:

Theorem 1. Suppose m41 and q ¼ m þ 2=N: If u0ðxÞ satisfies

lim sup
jxj-N

jxjK u0ðxÞoN;

where K4N; then the corresponding solution u of (I) has the following asymptotic

behavior:

t1=ðq�1Þðlog tÞ1=ðq�1Þ
uðx; tÞ-G

x

t1=Nðq�1Þ logð1�mÞ=2ðq�1Þt

 !
as t-N

uniformly in set of the form fxARN : jxjpCt1=Nðq�1Þ logð1�mÞ=2ðq�1Þtg; where GðxÞ is

the unique, radially symmetric solution of

Dum þ 2

Nðq � 1Þ
N

2
u þ x 
Xu

2

� �
¼ 0: ð1:4Þ

That is,

GðxÞ ¼ Gðx; a�Þ ¼ a� �
ðm � 1Þjxj2

2mNðq � 1Þ

 !1=ðm�1Þ

þ

with a� being uniquely determined by the property, among fGðx; aÞga40; that

jjGjj1 �
2ðq � 1Þ

2þ ðm � 1ÞN jjGjjq ¼ 0: ð1:5Þ

Remark. It is not difficult to see that

t�1=ðq�1ÞGðx=t1=Nðq�1Þ; aÞ ¼ t�1=ðq�1Þ a � ðm � 1Þx2

2mNðq � 1Þt2=Nðq�1Þ

� �1=ðm�1Þ

þ

is the Barenblatt–Pattle solution of ut ¼ Dum:
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Remark. It is easy to see from the statement of the theorem that our result is

almost the best possible in the sense that our result works for most of L1 initial

values. It is an amazing fact that the attractor for almost all L1 initial values is a
single function.

Remark. Another novelty is the appearance of additional logarithmic terms both in
the decay of solution in time and also the spatial–temporal profile of the limiting

function. In particular, the logarithmic anomalous exponent in ðlogtÞ1=ðq�1Þ is the
work of subtle balance between diffusion and absorption, the hallmark of the critical
exponent case under consideration.

Remark. On a more technical ground, the exact value of a� is calculated
painstakingly in [12] as

a� ¼
m � 1

2mNðq � 1Þ

� ��ðm�1Þ=2
NBðN=2;m=ðm � 1ÞÞ

2BðN=2; ðm þ q � 1Þ=ðm � 1ÞÞ

� �ðm�1Þ=2ðq�1Þ

with q ¼ qc ¼ m þ N=2; where Bða; bÞ is the b function. For m ¼ 1; the unique G is
given explicitly by

G�ðyÞ ¼ N

2

� �N=2

ð1þ 2=NÞN2=4 expð�jyj2=4Þ: ð1:6Þ

We use a� to denote the constant

N

2

� �N=2

ð1þ 2=NÞN2=4:

The organization of this paper is as follows. In Section 2 we prove Theorem 1. In
Section 3, we present a new proof for m ¼ 1: In Section 4 we show how to generalize
our result to more general equations and make a few remarks.

2. Proof of Theorem 1

The key here is to construct a suitable super-solution and then use the maximum
principle to obtain a sharp upper-bound. For final convergence analysis, we use the
elegant and simple dynamical system argument in [12] to prove the desired result,
rather than resort to a somewhat equivalent argument.

To simplify our calculation, we start by making a variable transformation

v ¼ mum�1=ðm � 1Þ:
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Then the equation for v is

vt ¼ ðm � 1ÞvDv þ jrvj2 � cðm; qÞvp; ð2:1Þ

where p ¼ ðq þ m � 2Þ=ðm � 1Þ42; p � 1 ¼ ðq � 1Þ=ðm � 1Þ and cðm; qÞ ¼
ðm � 1Þ½ðm � 1Þ=m�q�1: We shall construct our super-solution using (2.1) rather
than the original equation.

Lemma 1. The function

Aðx; tÞ ¼ ððT þ tÞlogðT þ tÞÞ�1=ðp�1Þ

� a � c0jxj2

ðT þ tÞ2=Nðq�1Þ log�1=ðp�1ÞðT þ tÞ
logðT þ tÞ

logðT þ tÞ þ b

 !
þ

is a super-solution of (2.1) provided a; b are properly chosen and TXT0ðm;NÞ: Here

the constant c0 ¼ 1=2Nðq � 1Þ: Furthermore, define s ¼ logðT þ tÞ and z ¼
jxjs1=2ðp�1Þ=es=Nðq�1Þ; we have

At � ðm � 1ÞADA þ jrAj2 þ cðm; qÞAp

Xe�s=ðp�1Þs�1=ðp�1Þ

cðm; qÞap

2ðs þ bÞ
k � 1

k

� �p

if
sc0z

2

s þ b
pa=k;

a

2ðs þ bÞ if a=kp
sc0z

2

s þ b
pa;

8>>><
>>>:

ð2:2Þ

where k ¼ 1þ 2ðp � 1Þc0:

Proof. We assume s40: It is easy to calculate that if a � c0z2s=ðb þ sÞ40;

At ¼ e�sp=ðp�1Þs�p=ðp�1Þ � 1þ s

p � 1
a � c0z

2s

s þ b

� �
þ
þ 2c0z2s2

Nðq � 1Þðb þ sÞ

 

� c0z
2s

ðp � 1Þðb þ sÞ �
c0z2bs

ðb þ sÞ2

!
;

rA ¼ e�sp=ðp�1Þs�p=ðp�1Þ � 2c0jxjs
e2s=Nðq�1Þs�1=ðp�1Þðb þ sÞ

� �
x

jxj;

DA ¼ e�sp=ðp�1Þs�p=ðp�1Þ � 2c0Ns

e2s=Nðq�1Þs�1=ðp�1Þðb þ sÞ

� �
:
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Hence,

IðAÞ � At � ðm � 1ÞADA þ jrAj2 þ cðm; qÞAp
� �

esp=ðp�1Þsp=ðp�1Þ

¼ � 1þ s

p � 1
a � c0z2s

s þ b

� �
þ
þ c0z

2s

ðb þ sÞ
2s

Nðq � 1Þ �
1

ðp � 1Þ �
1

ðb þ sÞ

� �

þ 2c0Nðm � 1Þs2
ðb þ sÞ a � c0z

2s

s þ b

� �
þ
� 4c20z2s3

ðb þ sÞ2
þ cðm; qÞ a � c0z

2s

s þ b

� �p

þ

¼ � a
sðb þ 1Þ þ b

ðs þ bÞðp � 1Þ þ
bc0sz2

ðs þ bÞ2
s½2ðm � 1Þc0N þ 4c0� �

p

p � 1

� �

þ cðm; qÞ a � c0z
2s

s þ b

� �p

þ
: ð2:3Þ

To prove A is a super-solution, we only need to show IðAÞX0 when a � c0z2s
sþb

� �
40:

Now, we fix b ¼ 2k=c0ðp � 1Þ: We show that if a is chosen to be larger than some
aðm;NÞ; the lemma holds.

Case 1: c0z2s=ðb þ sÞoa=k: In this case

cðm; qÞ a � c0z
2s

s þ b

� �p

þ
4cðm; qÞ k � 1

k

� �p

ap:

Since ðsðb þ 1Þ þ bÞ=ðs þ bÞob þ 1;

cðm; qÞ
2

k � 1

k

� �p

ap4a
ðb þ 1Þ
p � 1

;

if a is suitably large. By the inspection of (2.3), we see that IðAÞ40 when
s4s1ðm; q; nÞ:

Case 2: a=koc0z2s=ðb þ sÞoa: In this case, we shall use the second term in (2.3) to
bound the first term. Note that 2ðm � 1Þc0N ¼ 1=ðp � 1Þ;

IðAÞX a

ðs þ bÞðp � 1Þ �sðb þ 1Þ � b þ sb

k
þ 4bðp � 1Þsc0

k
� p

k

� �

X
a

ðs þ bÞðp � 1Þ 3s � b � p

k

� �
40

if s4s2ðm; q;NÞ: This complete the proof of lemma. &

Remark. The fact that Aðx; tÞ is a super-solution is already demonstrated in [13],
but since we need more detailed information such as the inequality in (2.2),
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we include a proof here. The shortcoming of a super-solution like Aðx; tÞ is
that it cannot be used to control solutions with initial data with non-compact
support. The next lemma shows, nevertheless, it can be used as a foundation
to construct one which can control solutions of (I) whose initial data is

Oðð1þ jxjÞ�K with K4N:

Lemma 2. Suppose b4Nðm � 1Þ; t ¼ ½b� Nðm � 1Þ�=4Nðq � 1Þ and E40; then

wðx; tÞ ¼ Aðx; tÞ þ ðT þ tÞ�1=ðp�1Þ log�1=ðp�1ÞðT þ tÞf ðx; tÞ;

where

f ðx; tÞ ¼
Ee�ts if jzjpC;

ECbjzj�b
Ee�ts if jzjXC

(

is a super-solution of (2.1) provided a ¼ aðm;N;EÞ is properly chosen and

TXT0ðm;NÞ: Here C40 is an arbitrary but fixed constant and z is as in Lemma 1.

Remark. It is clear from the composition of wðx; tÞ that it can be used to bound a

solution of (2.1) with initial data Oðð1þ jxjÞ�bÞ with b4Nðm � 1Þ: A direct
consequence of Lemma 2 is the following

Corollary 1. Suppose u is a solution of (I) with non-negative initial data u0ðxÞ ¼
Oðð1þ jxjÞKÞ as jxj-N with K4N; then uðx; tÞ can be bounded by a constant

multiple of w1=ðm�1Þðx; tÞ; and in particular, we have the bounds

uðx; tÞpMðT þ tÞ�1=ðq�1Þ log�1=ðq�1ÞðT þ tÞ;

jjuð
; tÞjj1pMðlogðT þ tÞÞ�ð2þðm�1ÞNÞ=2ðq�1Þ;

where M40 is a constant.

Proof of Lemma 2. Direct calculation reveals that

wt � ðm � 1ÞwDw � jrwj2 þ cðm; qÞwp

¼ ðT þ tÞ�1=ðp�1Þlog�1=ðp�1ÞðT þ tÞJðz; sÞ; ð2:4Þ

where

Jðz; sÞ ¼ %At �
f

p � 1
1þ 1

s

� �
� zfz

Nðq � 1Þ � tf � ðm � 1Þ %ADz %A � ðm � 1Þ %ADz f

� ðm � 1ÞfDz %A � ðm � 1ÞfDz f � %A2
z � 2 %Az fz � f 2

z þ cðm; qÞð %A þ f Þp: ð2:5Þ
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Here every term with overbar ‘‘�’’ is the original term times ½ðT þ tÞlogðT þ
tÞ��1=ðp�1Þ: Regrouping the terms and replacing ð %A þ f Þp by %Ap , we have

Jðz; sÞXIðAÞ þ J1 � ðm � 1ÞJ2 � J3; ð2:6Þ

where

J1 ¼ � f

p � 1
1þ 1

s

� �
� zfz

Nðq � 1Þ � tf ;

J2 ¼ %ADz f þ fDz %A þ fDz f ;

J3 ¼ 2 %Az fz þ f 2
z :

We now consider different ranges of z:
First, zpC: In this case fz ¼ Dz f ¼ 0:

Jðz; sÞXIðAÞ � Ee�ts

p � 1
1þ 1

s

� �
� tEe�ts

X
a

2ðs þ bÞ �
Ee�ts

p � 1
1þ 1

s

� �
� tEe�ts

by Lemma 1. If we choose a a large number such that aXE þ 1; Jðz; sÞ40 for
s4s1ðm;N; tÞ:

Next we consider the case where z4C: It is easy to see that

J1 ¼
b

Nðq � 1Þ �
1

p � 1
1þ 1

s

� �
� t

� �
ECbe�tbz�b40:

if sXs2ðN;m; tÞ: Furthermore,

J2 ¼ a � c0z2s

s þ b

� �
þ
bðbþ 2� NÞCbz�2 � 2c0NS

s þ b

�
þ bðbþ 2� NÞECbz�b�2e�ts

�
ECbz�be�ts

pD1 az�2 þ 1þ Ez�b�2e�ts
� �

Ez�be�ts;

where D1 ¼ D1ðN;m; b;CÞ: Similarly,

J3 ¼
4c0sb

s þ b
þ b2ECbz�b�2e�ts

� �
ECbz�be�ts

pD2 1þ Ez�b�2e�ts
� �

Ez�be�ts;

where D2 ¼ D2ðN;m; b;CÞ: Now we look at IðAÞ: If sc0z2=ðs þ bÞpa=k; then by
Lemma 1,

IðAÞX ap

2ðs þ bÞ
k � 1

k

� �p

:
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Hence, JXIðAÞ þ J1 � ðm � 1ÞJ2 � J340 if a4MðE þ 1Þ; with M ¼ MðN;m; b;CÞ
a big positive constant and sXs3ðm;N; tÞ:

If a=kosc0z2=ðs þ bÞoa; z�2oc0k=a:

J2pD3 a
k � 1

k

c0k

a
þ 1þ E

c0k

a
e�ts

� �
Ee�ts

pD3ðk þ 1ÞEz�be�ts

with a positive constant D3 ¼ D3ðN;m; b;CÞ: Likewise,

J3pD4ðk þ 1ÞEz�be�ts:

Therefore, JXIðAÞ þ J1 � ðm � 1ÞJ2 � J340 if sXs4ðm;N; tÞ; since IðAÞXa=2ðs þ
bÞ by Lemma 1.

If sc0z
2=ðs þ bÞXa; then A � 0 and z�2oc0=ao1=E; z�boðc0=aÞb=251:

J2 ¼ bðbþ 2� NÞECbz�b�2e�ts � ECbz�be�ts

pD5Ez�be�2ts;

with a positive constant D5 ¼ D5ðN;m; b;CÞ: Similarly,

J3pD6Ez�be�2ts:

Hence,

JXJ1 � ðm � 1ÞJ2 � J3X
b

Nðq � 1Þ �
1

p � 1
1þ 1

s

� �
� t� mD7e�ts

� �
ECbz�be�2ts40

if sXs4ðm;N; tÞ: Thus, the function w is indeed a super-solution. &

Now, we come to the final ingredient of our proof-the dynamical system setup of
[12]. For completeness and easy reference in our proof of Theorem 1, we describe
briefly the setup in [12] by stating the key Theorem 3 there as follows.

Suppose a general dynamical system is given by the evolution equation

ut ¼ AðuÞ ð2:7Þ

and a perturbation by

ut ¼ Bðt; uÞ: ð2:8Þ

Theorem 3 (Galaktionov and Vazquez [12]). The o-limit sets for the solution

of (2.8) in the class F are contained in the o-limit sets O for the solution of (2.7)
under assumption (H1)–(H3) below. Consequently, the orbits approach uniformly O as

t-N:
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(H1) The class F of solutions uACð½0;NÞ : X Þ of (2.8) is defined for t40 with values

in a complete metric space X (with distance d). The assumption is that the orbits

fuðtÞgt40 are relatively compact in X : Moreover, if

utðtÞ ¼ uðt þ tÞ; t; t40;

then we assume the sets futgt40 are relatively compact in LN

locð½0;NÞ : XÞ:
(H2) B is a small perturbation of A in the sense that given a solution uAF of (1.8), if

for a sequence ftj-Ng; uðt þ tjÞ converges to a function vðtÞ in LN

locð½0;NÞ : XÞ
as j-N; then v is a solution of (2.7).

(H3) The o-limit set of (2.7) in X ;

O ¼f fAX : (uACð½0;NÞ : XÞ solution of ð2:7Þ and a sequence

tj-N such that uðtjÞ-f g

is non-empty, compact and uniformly stable in the sense that for every e40;
(d40 such that if u is any solution of (2.7) with dðuð0Þ;OÞpd then

dðuðtÞ;OÞpe for every t40:

Proof of Theorem 1. The proof is based upon the observation that with the sharp
upper bound in Lemma 2, the argument in [12], in particular the Theorem 3 there is
valid for our situation.

We start by making a variable transformation. If uðx; tÞ is a solution of (I), then,
for any T40; denoting s ¼ logðT þ tÞ;

vðy; sÞ ¼ ððT þ tÞlogðT þ tÞÞ�1=ðq�1Þ
uðx; tÞ; y ¼ x

ðT þ tÞ1=Nðq�1Þlogð1�mÞ=2ðq�1ÞðT þ tÞ

is a solution of

vs ¼ Dvm þ 1

Nðq � 1Þ ðNv þ y 
 rvÞ þ 1

sðq � 1Þ v þ 1� m

2
y 
 rv

� �
� vq

s
: ð2:9Þ

Furthermore, by Lemma 2 u can be bounded by a super-solution, and the u bound
there is directly translated into the following estimate:

vðy; sÞpGðy; aÞ þ E minð1; jyj�kÞe�ts; ð2:10Þ

A lower bound for v is easy and is supplied by Lemma 2.3 in [12] which is

Gðy; a�Þpvðy; sÞ ð2:11Þ

for all sXs0; where a�40:
From now on, we concentrate on solutions with fixed K4N and their bounds in

(2.10) and (2.11) are given by fixed E; a ¼ aþ and a� with 0oa�oa ¼ aþ:
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Following [12], we let

X ¼ f fAL1ðBÞ: Gðy; a�Þp f ðyÞpGðy; aþÞ a:e: in Bg; B ¼ Baþð0ÞCRN :

It is well known [10] that the o-limit set O of unperturbed equation

vs ¼ Dvm þ 1

Nðq � 1Þ ðNv þ y 
 rvÞ ð2:12Þ

with initial value v0AX is the Barenblatt–Pattle profile Gðy; aÞ with the same L1-
norm as v0: O is apparently compact in X :

Let F be the class of functions vACð½0;NÞ;YÞ; where

Y ¼ f fAL1ðRNÞ: Gðy; a�ÞpfpGðy; aþÞ þ E minð1; jyj�kÞg:

The compactness of solution orbit fvðsÞgsXM of (2.9) in L1; with M a fixed positive

number, follows from interior regularity (cf. [2,7]) and the uniform bound (2.10).
Furthermore, the family is compact in CðBRÞ for any R40: Moreover, let vtðsÞ ¼
vðs þ tÞ; sXM and t40: The fact that the set fvtgt40 is relatively compact in

LN

Locð½0;NÞ : Y Þ follows from the same reasoning. This verifies (H1) in Theorem 3 of

[12].
It is clear that given a solution vAF; if for a sequence ftj-Ng; vðt þ tjÞ converges

to a function wðtÞ in LN

Locð½0;NÞ : Y Þ as j-N; then w is a solution of (2.12) and

wðtÞACð½0;NÞ;XÞ as a consequence of estimates (2.10) and (2.11). This validates
(H2) in Theorem 3 of [13]. Assumption (H3) is automatically satisfied, see [12].

Hence, by Theorem 3 in [12], the o-limit set of (2.9) is contained in O:
Now we show vðy; sÞ-Gðy; a�Þ uniformly in y as s-N under the assumption that

jjvð
; sÞjj1-I040 as s-N: This is the content of Lemma 5.1 in [12]. Our case is only

slight different from the proof of Lemma 5.1 in [12], which is caused by v not having
a compact support. But, again, (2.10) assures that vðy; sÞ-0 uniformly outside B as
s-N: Therefore, the exact argument in Lemma 5.1 in [12] applies.

The convergence of jjvð
; sÞjj1 as s-N can be demonstrated using the

compactness of orbit fvðsÞgsXM in CðBÞ and the rapid decay to zero outside B by

Lemma 2. We refer the interested reader to Proposition 5.2 in [12]. This completes
the proof of Theorem 1. &

Remark. An interesting fact which comes out of our proof of Theorem 1, in
particular out of the super-solution we constructed is that the algebraic decay in
space of the initial value does have a material effect in the convergence rate of the
solution to the limiting profile. More specifically, the convergence rate is
proportional to K � N; where K is the decay rate of initial value at jxj ¼ N: There
is an apparent slow down of the convergence when K is close to N: This may explain
again why our case is much more involved than the case when the initial value is of
compact support.
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3. The semilinear case of m ¼ 1

In this section, we present a new proof for the semilinear case m ¼ 1 of (I).
Our contribution here is a more transparent demonstration how a super-solution
can be constructed after the equation is transformed by a self-similar change of
variable, and by taking advantage of the structure of the transformed equation.
Another benefit is our result applies to more general initial data than the known
results.

Theorem 2. Suppose m ¼ 1 and q ¼ 1þ 2=N: If u0ðxÞ satisfies

lim sup
jxj-N

jxjku0ðxÞoN;

where k4N; then the corresponding solution u of (I) has the following asymptotic

behavior:

tN=2ðlog tÞN=2
uðx; tÞ-G

x

t1=2

� �
as t-N

uniformly in set of the form fxARN : jxjpCt1=2g; where GðxÞ is the unique, radially

symmetric solution of

Du þ 2

Nðq � 1Þ
N

2
u þ x 
Xu

2

� �
¼ 0: ð3:13Þ

That is,

GðyÞ ¼ N

2

� �N=2

ð1þ 2=NÞN2=4expð�jyj2=4Þ:

As in the case of m41; the crucial step is to construct a suitable super-solution
with sharp bound. First, we make a change of variables. Let

s ¼ logðt þ TÞ; y ¼ x

ðT þ tÞ1=2
; vðy; sÞ ¼ ½ðT þ tÞlogðT þ tÞ�1=ðq�1Þ

uðx; tÞ;

then we obtain the equation for v as:

vs ¼ Dv þ 1

2
ðNv þ y 
 rvÞ þ 1

s

N

2
v � vq

� �
: ð3:14Þ

Define

IðvÞ � vs � Dv � 1

2
ðNv þ y 
 rvÞ � 1

s

N

2
v � vq

� �
: ð3:15Þ

It is easy to see that a super-solution to (3.14) is one satisfying IðvÞX0:
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We construct a super-solution in the form of

Vðy; sÞ ¼ CðyÞ 1þ f ðyÞ
s

� �
; ð3:16Þ

by choosing f properly, where CðyÞ ¼ CMðyÞ ¼ M expð�jyj2=4Þ with M40 a
constant.

Simple calculation shows

Vs ¼ � fC
s2

; rV ¼ rC 1þ f ðyÞ
s

� �
þC

s
rf ;

DV ¼ DC 1þ f ðyÞ
s

� �
þ 2rC 
 rf

s
þC

s
Df

and

IðVÞ ¼ � fC
s2

� 1þ f ðyÞ
s

� �
DCþ 1

2
ðNCþ y 
 rC

� �

� C
s

Df þ 1

2
y 
 rf � y 
 rf þ N

2
�Cq�1

� �
�C

s2
N

2
f þCq

s
1þ f

s

� �q

�1

� �
:

Since,

DCþ 1
2
ðNCþ y 
 rCÞ ¼ 0;

IðVÞ ¼ �C
s

Df þ 1

2
y 
 rf � y 
 rf þ N

2
�Cq�1

� �

þ fC
s2

� N þ 2

2
þCq�1

1þ f
s

� �q

�1

f
s

0
@

1
A

0
@

1
A

� � 1

s
I1 þ

1

s2
I2: ð3:17Þ

From now on, we assume f is radial, and consider the following equation for f :

C f 00 þ N � 1

r
� r

2
f 0

� �
þ N

2
C�Cq ¼ �IMGðrÞ; ð3:18Þ

where r ¼ jyj; G is a positive function satisfying

Z
N

0

rN�1GðrÞ dr ¼ 1
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and

IM � Mq

Z
N

0

rN�1e�qr2=4 dr � MN

2

Z
N

0

rN�1e�r2=4 dr ¼
Z

RN

Cq
M dx � N

2

Z
RN

CM dx:

The first assumption we make on G is:

ðA1Þ (L4N such that rG0ðrÞ þ LGðrÞ40; for all r4r140: ð3:19Þ

That is, G will not have very rapid decay at r ¼ N: Indeed, an integration of

rG0ðrÞ þ LGðrÞ implies rLGðrÞ4rL
1 Gðr1Þ for all r4r1:

An integration of (3.18) yields that

f 0rN�1C ¼
Z r

0

CqsN�1 ds � N

2

Z r

0

CsN�1 ds � IM

Z r

0

sN�1GðsÞ ds: ð3:20Þ

It is clear that (r240; independent of M; such that

CqðrÞ � N

2
CðrÞ � IMGðrÞo0 for all r4r240:

Hence, f 040 for all r4r2; since the right-hand side of (3.20) has a limit equal to zero

as r-N: An integration of (3.20), after being divided by rN�1C shows

f ðrÞ ¼ f ð0Þ þ
Z r

0

C�1ðsÞs1�Nds
Z s

0

CqðsÞ � N

2
CðsÞ � IMGðsÞ

� �
sN�1 ds

� �
� JðrÞ:

Clearly, we can make f40 for all r40 by making f ð0Þ large enough. An equivalent
form of the above equation is

f ðrÞe�r2=4rN

Z
N

r

sN�1GðsÞ ds

� ��1

¼ JðrÞ
er2=4r�Nð

R
N

r
sN�1GðsÞ dsÞ

:

It is easy to show that the right-hand side has a limit which equals to IM : Therefore,

IM

2

Z
N

r

sN�1GðsÞ dsof ðrÞe�r2=4rNo2IM

Z
N

r

sN�1GðsÞ ds ð3:21Þ

for r4r3; where r3 is independent of M:
Given the form of the super-solution we try to construct and (3.17), which now

takes the form

IðvÞ ¼ 1

s
IMGðrÞ þ fC

s2
� N þ 2

2
þCq�1

1þ f
s

� �q

�1

f
s

0
@

1
A

0
@

1
A; ð3:22Þ
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it is very important to compare fC with GðrÞ: By (A1),

L

Z
N

r

GðsÞsN�1 ds4�
Z

N

r

G0ðsÞsN ds ¼ GðrÞrN þ N

Z
N

r

GðsÞsN�1 ds:

Consequently,

Z
N

r

GðsÞsN�1 ds4
GðrÞrN

L � N
:

This, in combination of (3.21), shows

f ðrÞCðrÞ4 IMGðrÞ
2ðL � NÞ:

for r4r3: Next, we assume

ðA2Þ (C40 such that

Z
N

r

GðsÞsN�1 dsoCGðrÞrN for all r4r440: ð3:23Þ

This implies, using (3.21),

f ðrÞCðrÞo2CIMGðrÞ for all r4R � maxðr3; r4Þ:

Now we can finally show that

Vðy; sÞ ¼ CðyÞ 1þ f ðyÞ
s

� �
;

with f satisfying (3.18) and G satisfying ðA1Þ and ðA2Þ is a super-solution for
s4s1ðm;N;GÞ; when M is sufficiently large.

It is clear from (3.22) that IðvÞ40 if Cq�14N=2; since

1þ f
s

� �q

�1

f
s

4q ¼ 1þ 2

N
:

But, if Cq�1pN=2; then

e�r2=4o
N

Mq�1

� �1=ðq�1Þ
;

or r4rM ; where rM-N as M-N: Hence,

IðvÞXIMGðrÞ
s

� N þ 2

s2
fCX

fC
2Cs

� N þ 2

s2
fC40

ARTICLE IN PRESS
Y. Qi, X. Liu / J. Differential Equations 198 (2004) 442–463458



if r4R and s4s1; where s1 is independent of M: Therefore, v is a super-solution for
s4s1:

Proof of Theorem 2. Since the proof follows the same procedure as that of Theorem
1, we shall be brief.

Let u be a solution of (I) satisfying the assumption of Theorem 2. Let vðy; sÞ be the
function after self-similar transformation. Then, clearly we can choose GðrÞ ¼
Cð1þ rÞ�K for constructing a super-solution V as in (3.16) with M sufficiently large.
Furthermore,

vðy; sÞpVðy; sÞpE e�jyj2=4 þ ð1þ jyjÞ�K

s

 !
; ð3:24Þ

where E40 is a suitable constant. A lower bound for v is obtained in [13]
which is

me�jyj2=4pvðy; sÞ ð3:25Þ

for all sXs0; where m40:
From now on, we concentrate on solutions with fixed K4N and their bounds in

(2.10) and (2.11) are given by fixed C; m40 with 0omoE:
Let

X ¼ f fAL1ðRNÞ: me�jyj2=4p f ðyÞpEe�jyj2=4 a:e: in RNg:

It is well known that the o-limit set of unperturbed equation

vs ¼ Dv þ 1

Nðq � 1Þ ðNv þ y 
 rvÞ ð3:26Þ

with initial value v0AX is ae�jyj2=4 with the same L1-norm as v0: This is because (3.26)
is nothing but the self-similar transformed heat equation ut ¼ Du: Therefore, o-limit
sets with initial value in X is:

O ¼ fae�jyj2=4: mpapEg;

which is clearly a compact set, and asymptotically stable because the L1 contraction
of heat equation. Hence, (H3) holds.

Let F be the class of functions vACð½0;NÞ;YÞ; where

Y ¼ fAL1ðRNÞ: me�jyj2=4p fpEðe�jyj2=4 þ ð1þ jyjÞ�KÞ
n o

:

The compactness of solution orbit fvðsÞgsXM of (3.14) in L1; with M a fixed

positive number, follows from interior regularity and the uniform bound (3.24).
Furthermore, the family is compact in CðBRÞ for any R40; Moreover, let vtðsÞ ¼

ARTICLE IN PRESS
Y. Qi, X. Liu / J. Differential Equations 198 (2004) 442–463 459



vðs þ tÞ; sXM and t40: The fact that the set fvtgt40 is relatively compact

in LN

Locð½0;NÞ : YÞ follows from the same reasoning. This verifies (H1) in

Theorem 3 of [12].
It is clear that given a solution vAF; if for a sequence ftj-Ng; vðt þ tjÞ converges

to a function wðtÞ in LN

Locð½0;NÞ : Y Þ as j-N; then w is a solution of (3.26) and

wðtÞACð½0;NÞ;XÞ as a consequence of estimates (3.24) and (3.25). This validates
(H2) in Theorem 3 of [13].

Hence, by Theorem 3 in [12], the o-limit set of (3.14) is contained in O:
Now we show vðy; sÞ-G�ðyÞ (as given in (1.6)) uniformly in y in any finite ball BR

with radius R40; as s-N under the assumption that jjvð
; sÞjj1-I040 as s-N;

where I0 is the L1-norm of G�ðyÞ:
Since O consists functions of the form of Ha � ae�jyj2=4; there is a unique a with the

property that its L1-norm is the given limit I0: Therefore, vðy; sÞ-G�ðyÞ as s-N:
The uniform convergence in any finite ball BR follows from (3.24) and regularity,
and thus equi-continuity of solutions.

We now show the convergence of wðsÞ � jjvð
; sÞjj1 to I0 as s-N:
Suppose the contrary, then there exist sequences sj-N and %sk-N such that

vðy; sjÞ-Ha1 and vðy; %skÞ-Ha2 uniformly in any finite ball BR as j; k-N; where

a1aa2: Since jjHa1 jj1 and jjHa2 jj1 must be different, then one of them is different

from a � :
Suppose a �oa2; a1oa2: Fix an arbitrary a0Aða1; a2Þ; a04a � : Then, by the

continuity of wðsÞ and its oscillatory property near s ¼ N there exists a sequence
s0j-N as j-N such that jjvð
; s0jÞjj1 ¼ jjHa0 jj1 and

dwðs0jÞ=dsX0 for all j:

Then Theorem 3 in [12] implies

vðs0jÞ-Ha0 uniformly in any finite ball BR as j-N:

It is clear from an integration of (3.14) that

s0j
dw

ds
ðs0jÞ ¼

N

2
wðs0jÞ �

Z
RN

vqðy; s0jÞ dy

which is negative for all j large by uniform convergence in any finite ball BR; uniform
smallness at y ¼ N and the fact

N

2

Z
RN

Ha0 ðyÞ dy �
Z

RN

H
q
a0 ðyÞ dyo0;

since a04a � : So, we have a contradiction. This completes the proof of
Theorem 2. &
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4. Extensions and remarks

Though it seems that the scaling invariant property of power non-linearities is
essential to our approach, the result of Theorem 1 can be extended to equations
which are small perturbation of Eq. (I). For instance, consider the equation

ut ¼ Dum � f ðuÞ; ðx; tÞARN � ð0;NÞ ð4:27Þ

with f a continuous function Rþ-Rþ and f ð0Þ ¼ 0: In addition, we assume

uðx; 0Þ ¼ u0ðxÞX0

and there exists M40 and K4N such that u0ðxÞpMð1þ jxjÞ�K : It is well known
from the works of Kalashnikov and Kersner [16,17] that there exists a unique

solution uACð½0;NÞ : L1ðRNÞÞ under our assumption of f and our initial value.
Moreover, one can deduce from the non-negativity of f and the Maximum Principle
that such a solution is bounded above by the solution of ut ¼ Dum with the same
initial data. In consequence, u will decay as t-N with at least the rate

Oðt�N=½Nðm�1Þþ2�Þ: If we make additional assumption such as

f ðsÞXC1s
qc ; for 0pspC2

with C140 and C240; then

vðx; tÞ ¼ u
ffiffiffiffiffiffi
C1

p
x;C1t

� �
will be a sub-solution of (I): ut ¼ Dum � uqc whenever u is a solution of (4.27), when

tb1: Again, by the Maximum Principle, a decay rate of Oððt log tÞ�1=ðq�1ÞÞ is readily
obtained as t-N: In particular, we deduce from Theorem 1 that for any e40 there
exists T ¼ TðeÞ40 such that when tXT ;

uðx; tÞp t

C1
logðt=C1Þ

� ��1=ðqc�1Þ
ðGðy; a�Þ þ eÞ;

where y ¼ xt�1=Nðqc�1Þðlogðt=C1ÞÞðm�1Þ=2ðqc�1Þ
C

ðm�1Þ=ðqc�1Þ
1 and a� is as in Theorem 1.

In a similar way, we can get lower bound from below by assuming

f ðsÞpC2s
qc for 0pspC2:

In summary, we get the following result.

Theorem 3. Let u be a solution of (4.27) with the initial condition as specified above. In

addition, suppose

lim
u-0

f ðuÞ
uqc

¼ 1;

then Theorem 1 holds.
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Remark. it is clear that if the above limit is C40; then a result which is a simple
scaling of Theorem 1 is valid.

It is probably more interesting to study how the perturbation of diffusion term will
affect the underlying result. For example, a good candidate will be the equation
ut ¼ DfðuÞ � f ðuÞ with f a small perturbation of um: We believe the analysis will be
more involved.

Another interesting extension is to consider the P-Laplacian counterpart of (I):

ut ¼ divðjrujp�2ruÞ � uq

with p42 and q ¼ p � 1þ p=N: The case of initial value with compact support is
considered in [12]. But to cover more general situation with non-compact-support

initial value with moderate decay as jxj-N; which is sufficient to guarantee L1-
integrability but not much more, to derive a sharp estimate similar to one in (2.10) is
the key. But to our best knowledge, such work has not appeared. We are sure it can
be worked out, but the calculation seems to be formidable.
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