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Abstract We study the blow-up and/or global existence of the following p-Laplacian evolution equation with

variable source power

ut(x, t) = div(|∇u|p−2∇u) + uq(x) in Ω× (0, T ),

where Ω is either a bounded domain or the whole space R
N , and q(x) is a positive and continuous function

defined in Ω with 0 < q− = inf q(x) � q(x) � sup q(x) = q+ < ∞. It is demonstrated that the equation with

variable source power has much richer dynamics with interesting phenomena which depends on the interplay of

q(x) and the structure of spatial domain Ω, compared with the case of constant source power. For the case that

Ω is a bounded domain, the exponent p − 1 plays a crucial role. If q+ > p − 1, there exist blow-up solutions,

while if q+ < p − 1, all the solutions are global. If q− > p − 1, there exist global solutions, while for given

q− < p − 1 < q+, there exist some function q(x) and Ω such that all nontrivial solutions will blow up, which is

called the Fujita phenomenon. For the case Ω = R
N , the Fujita phenomenon occurs if 1 < q− � q+ � p−1+p/N ,

while if q− > p− 1 + p/N , there exist global solutions.
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1 Introduction

In this paper, we study non-negative solutions of the following p-Laplacian evolution equation with source

of variable power:

ut(x, t) = div(|∇u|p−2∇u) + uq(x) in Ω× (0, Tmax), (1.1)

u(x, 0) = u0(x) � 0 in Ω, (1.2)

where p > 2, u0 is a continuous, bounded and non-zero function, and q(x) is a positive, continuous and

bounded function. Tmax is the maximum existence time. We denote

q− = inf
x∈Ω

q(x) > 0, q+ = sup
x∈Ω

q(x) <∞.
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In our problem, Ω is either RN or a bounded, smooth, connected domain. In the latter case we assume

the Dirichlet boundary condition

u(x, t) = 0 on ∂Ω× (0, Tmax). (1.3)

Due to the degeneracy of this parabolic problem we can only define a weak solution of (1.1) and (1.2)

(with (1.3) in the Dirichlet problem). The well-posedness and regularity for general p-Laplacian evolution

problems has been investigated since the classical work [7], and we refer to [25,37–39], etc., for the further

developments. For our problem, the definition of a weak solution and its existence will be discussed in

Section 2. Under our assumption that u0 is continuous, which we assume for convenience, the solution is

always continuous. The uniqueness may fail, if q(x) takes values less than 1 in some region of Ω, which

causes the source term to be non-Lipschitz on u. Nevertheless, in this case we can prove existence of

a maximal solution and a minimal solution and the comparison principle for the maximal solution and

minimal solution, respectively. These will also be discussed in Section 2.

Our main interest is in global existence vs. finite time blow-up of solutions. We say a solution of (1.1)

and (1.2) blows up at finite time T if

lim
t↗T

‖u(·, t)‖∞ = +∞.

Blow-up is an important phenomenon in parabolic problems and has attracted great interest. In the

case when p = 2 and q(x) is a constant q, there are blow-up solutions if and only if q > 1. So qb = 1,

which is called the blow-up exponent, is a critical exponent to determine whether the problem has a

blow-up solution. Moreover, if Ω = R
N there is another critical exponent qF = 1 + 2/N , which is called

Fujita exponent (see [13]). If q > qF , then the solution will be global provided that the initial value

is small, while for 1 < q � qF every non-trivial solution blows up at finite time. In the Dirichlet case

there is no Fujita exponent, since there are always both global and blow-up solutions for q > 1. It is

worth mentioning that after the pioneering work of [13], there emerged fruitful results concerning the

blow-up phenomenon of the semilinear heat equations. For example, [19, 26] discussed about the life

span of the solution, [22, 23, 30] treated the case of nonlinear boundary condition, [28, 35] investigated

the blow-up estimate of the solution. For other important developments on semilinear heat equations,

see [4, 10, 12, 16–18,20, 21, 36].

The case that p > 2 and q(x) is a constant is different from the case of p = 2 in several aspects. When

Ω = R
N , there is also the blow-up exponent qb = 1, but Fujita exponent becomes qF = p − 1 + p/N

(see [14]). In [14], it was shown that every solution blows up when 1 < q < qF . Moreover, one of the

authors and his collaborator have done a series of works concerning the blow-up for the critical case when

q = qF , and its generalization (see [32–34]). More importantly, the blow-up exponent is qb = p − 1 in

the bounded domain case (see [27]), which is larger than 1. Moreover, if q = p − 1, blow-up or global

existence depends on the size of domain: if the domain size is large enough, then all non-trivial solutions

blow up; but if it is small, all non-trivial solutions exist globally (see [27]).

For a more comprehensive survey, we refer [6] to the role of critical exponents in blow-up theorems in

diversified settings. There are also many works dealing with the blow-up for other evolution equations

involving with p-Laplacian term (see [1, 3, 8, 29, 31]).

Recently, the case where q(x) is not a constant attracts much attention. In [9], the blow-up and Fujita

type phenomenon were discussed when p = 2. Furthermore, Bai and Zheng [2] dealt with coupled systems

in a bounded domain when p = 2.

The quasi-linear equation we study has a different structure from the semi-linear case of p = 2, and

new ideas and methods are called upon.

Our main results are summarized in the following two theorems.

Theorem 1.1. Let Ω be a bounded domain in R
N . Then, the following results hold for (1.1)–(1.3).

(i) If q+ > p− 1, then there are solutions that blow up in finite time.

(ii) If q+ < p− 1, then every solution is global.
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(iii) Given (q−, q+) with q− < p − 1 < q+, there are functions q(x) and Ω which contains a large ball

BL(x0) such that every solution blows up in finite time. If, on the other hand, the diameter of Ω is small

enough, then there always exist global non-trivial solutions for any given q(x).

(iv) If q− > p− 1, then there are global solutions regardless of the size of the domain Ω.

Theorem 1.2. Let Ω = R
N . Then, the following results are valid for (1.1)–(1.2).

(i) If q+ � 1, then every solution of (1.1)–(1.2) is global.

(ii) If q+ > p− 1, then there exist solutions that blow up in finite time.

(iii) If q− > p− 1 + p/N , then there exist global solutions.

(iv) If 1 < q− � q+ � p− 1 + p/N , then all solutions blow up in finite time.

The organization of this paper is as follows. In Section 2, we give a precise definition of a weak solution

and discuss fundamental properties such as existence, uniqueness and comparison principle. In Section 3,

we construct self-similar sub-solutions with interesting properties. In Section 4, we study the bounded

domain case and prove Theorem 1.1. In Section 5, we study the whole space case and prove Theorem 1.2.

In Section 6, we present some conclusion and discussion.

2 Definition of solutions, existence and uniqueness

In this section, we discuss the definition of weak solutions to our problem, the existence, uniqueness and

the comparison principles. For convenience, we denote ST = R
N × (0, T ) and QT = Ω × (0, T ) in what

follows.

For the case Ω = R
N , the results here are parallel to those in [39], where a constant power q case is

studied. First, we define a weak solution to (1.1) and (1.2) as follows.

Definition 2.1. A measurable function u(x, t) defined in ST is a weak solution of (1.1)–(1.2) if for

every bounded open set D with smooth boundary ∂D,

u ∈ C(0, T : L1(D)) ∩ Lp
loc(0, T :W 1,p(D)) ∩ L∞

loc(ST ),

and satisfies ∫
D

u(x, t)φ(x, t)dx +

∫ t

t0

∫
D

(−uφt + |∇u|p−2∇u · ∇φ)dxdτ

=

∫ t

t0

∫
D

uq(x)φdxdτ +

∫
D

u(x, t0)φ(x, t0)dx, (2.1)

for all 0 � t0 < t � T and all testing functions φ ∈ C1(D × [0, T ]), φ = 0 near ∂D × (0, T ). Moreover,

lim
t→0

∫
BR

|u(x, t)− u0(x)|dx = 0, ∀R > 0.

Weak subsolutions (supersolutions) are defined in the same way except that the “=” in (2.1) is replaced

by “�” (“�”) and φ is taken to be non-negative.

If q(x) ≡ q, a constant, the results for the local existence of the weak solution have been studied in [39]

as a special case. In fact, Zhao [39] has considered the following problem:

ut(x, t) = div(|∇u|p−2∇u) + uq

(1 + |x|)α in Ω× (0, T ), (2.2)

u(x, 0) = u0(x) in Ω. (2.3)

For α = 0, a norm |‖ · ‖|h can be defined as

|‖f‖|h = sup
x∈RN

(∫
B1(x)

|f |h
) 1

h

and the existence theorem is as follows:
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Theorem 2.2 (See [39]). Let h be a constant satisfying h = 1 if q < p− 1+ p
N or h > N

p (q− p+1) if

q � p− 1 + p
N . For (2.2) and (2.3) with Ω = R

N , if |‖u0‖|h < ∞, then there exist γ = γ(N, p, q, h) and

T0 = T0(γ, |‖u0‖|h) such that there exists a weak solution u in ST0 satisfying

(1) |‖u(·, t)‖|h � γ(|‖u0‖|h),
(2) |u(x, t)| � γt

− N
κh (|‖u0‖|

ph
κh

h ),

(3) |Du(x, t)| � γt−
N+1

κ max (1, |‖u0‖|1+
p−1
κ

1 ),

(4)
∫ t

0

∫
B1(x0)

|Du|σdxdτ � γ(σ)t1−
σ
p−N(2σ−p)

κp · ( sup0<τ<t

∫
B2(x0)

u(x, τ)dx)1+
2σ−p

κ , where κh = N(p

− 2) + hp, κ = N(p− 2) + p, p− 1 � σ < p− 1 + 1
N+1 .

For our problem, let q = max (q+, 1) and use the inequality uq(x) � 1+uq and the estimate for “1+uq”

to replace “uq” in the proof in [39], one can derive the existence and other estimates following exactly

the same procedure. The existence result, with apparent modification from [39, Theorem 2.2], can be

stated as follows.

Theorem 2.3. Let q = max (q+, 1) and fix a constant h satisfying h = 1 if q < p − 1 + p
N or

h > N
p (q − p+ 1) if q � p − 1 + p

N . For (1.1) and (1.2) with Ω = R
N , if |‖u0‖|h < ∞, then there exist

γ = γ(N, p, q, h) and T0 = T0(γ, |‖u0‖|h) such that there exists a weak solution u in ST0 satisfying

(1) |‖u(·, t)‖|h � γ(|‖u0‖|h + 1),

(2) |u(x, t)| � γt
− N

κh (|‖u0‖|
ph
κh

h + 1),

(3) |Du(x, t)| � γt−
N+1

κ max (1, |‖u0‖|1+
p−1
κ

1 ),

(4)
∫ t

0

∫
B1(x0)

|Du|σdxdτ � γ(σ)t1−
σ
p−N(2σ−p)

κp · ( sup0<τ<t

∫
B2(x0)

u(x, τ)dx)
1+ 2σ−p

κ ,

where κh = N(p− 2) + hp, κ = N(p− 2) + p, p− 1 � σ < p− 1 + 1
N+1 .

Since the proof is highly similar to that in [39] and is long and technical, we omit it here and suggest

the interested reader verify it by himself. Here we only point out that in our theorem, since q(x) is no

longer a constant, we need more strict condition on u0 (|‖u0‖|h < ∞ for a probably larger h) and in

the conclusion we must add a constant to |‖u0‖|h in the estimate above. Since our paper mainly focuses

on the behavior of the solution, we do not need the precise results for the existence problem, and the

condition that u0 is bounded is enough to ensure the local existence of a solution.

The regularity of the weak solution can be derived using the results in [7]. In our case, where the initial

data is continuous, the solution will be Cα with some 0 < α < 1 in ST and continuous up to t = 0.

For the uniqueness and the comparison principle, we notice that if q− � 1, then the reaction term

f(x, s) = sq(x) is continuous in both variables and locally Lipschitz with respect to s. Once again following

exactly the same proof as in [39, Section 8], we can prove the comparison principle and consequently the

uniqueness in the class of R, in which every function has the following properties:

(1) supx∈RN

∫
B1(x)

|u(y, t)|dy � C,

(2) supx∈RN |u(x, t)| � Ct−δ,

(3) supx∈RN
|Du(x,t)|

(1+|x|)
2

p−2
� Ct−δ1 ,

for t ∈ (0, T ). Here C, δ and δ1 are positive constants, and

δ <
1

λ− 1
, δ1 <

1

p− 2
, λ = max{q, p− 1}.

Lemma 2.4. Suppose q− � 1 and w is a supersolution of (2.1) with initial value w0. If v is a

subsolution of (2.1) with initial value v0, w0(x) � v0(x) in R
N and w and v belong to the class R, then

w � v in R
N × (0, T ).

We will give the detailed proof of this lemma in Appendix, and the reader can check how the methods

in [39] can be applied in our case.

Remark 2.5. It can be easily seen that the weak solution we get from Theorem 2.3 is in the class R.

Moreover, in the rest of this article, the supersolution and subsolution we construct always satisfy the

condition of the comparison principle.



Zheng Z et al. Sci China Math March 2017 Vol. 60 No. 3 473

If q− < 1, we still have the existence of weak solutions but uniqueness is not true in general. In this

case we use the method in [5] to construct a maximal solution by taking the limit

u = lim
ε→0

u(ε),

where u(ε) is the unique solution to our problem with initial value u(ε)(x, 0) = u0(x)+ε, and the reaction

f(x, s) = sq(x) replaced by

f(ε)(x, s) =

{
sq(x), if s � ε or q(x) � 1,

εq(x)−1s, if s < ε and q(x) < 1.

We point out that for the problem for u(ε), the existence of solution is valid because f(ε)(x, s) � sq(x).

Also, u(ε) satisfies the properties listed in Theorem 2.2. Moreover, since f(ε)(x, s) is locally Lipschitz, the

comparison principle can be applied to the solutions, subsolutions and supersolutions in the classR. Thus

we get a non-increasing sequence of positive functions. The existence time is then uniformly bounded

from below.

A minimal solution is obtained by taking limits for similar problems that approximate (1.1) from below.

To be precise, let

u = lim
ε→0

u(ε),

where u(ε) is the unique solution to the problem (1.1) with f replaced by f(ε) and with the same initial

data. It is not difficult to verify that the maximal solution and the minimal solution are both weak

solutions, furthermore every solution u of the problem (1.1) satisfies

0 � u � u � u.

It is easy to prove the following results of the comparison principle related to the maximal solution

and minimal solution.

(1) If z is a supersolution of (1.1) with initial value z0 � u0, then z � u.

(2) If z is a supersolution of (1.1) with initial value z0 � u0 and satisfies z � μ > 0, then z � u.

(3) If z is a subsolution of (1.1) with initial value z0 � u0, then z � u.

(4) If z is a subsolution of (1.1) with initial value z0 � u0 and satisfies z � μ > 0, then z � u.

Next, we turn to the discussion for the case that Ω is a bounded domain. In this case the results can

be directly derived from those in [38].

Definition 2.6. A measurable function u(x, t) defined in QT is a weak solution of (1.1)–(1.3) if

u ∈ L∞(QT ) ∩ Lp(0, T :W 1,p
0 (Ω))

satisfies

ut ∈ L2(QT ),

and ∫
Ω

u(x, t)φ(x, t)dx +

∫ t

0

∫
Ω

(−uφt + |∇u|p−2∇u · ∇φ)dxdτ

=

∫ t

0

∫
Ω

uq(x)φdxdτ +

∫
Ω

u0(x)φ(x, 0)dx, (2.4)

for any t ∈ (0, T ] and each testing function φ ∈ C1(Ω× [0, T ]) with φ = 0 near ∂Ω× (0, T ).

The existence theorem can be stated as follows (see [38]).

Theorem 2.7. If u0 ∈ L∞(Ω)∩Hp
0 (Ω), then there exists T such that (1.1)–(1.3) has a solution u ∈ QT .

If q− � 1, the comparison principle is also valid. Weak subsolutions (supersolutions) are defined by

replacing the “=” in (2.4) by “�” (“�”) and φ is taken to be non-negative.
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Lemma 2.8. Suppose q− � 1 and w is a supersolution of (2.4) with initial value w0. If v is a

subsolution of (2.4) with initial value v0, w0 � v0 � 0 in Ω and w � v � 0 on ∂Ω× (0, T ), then w � v � 0

in Ω× (0, T ).

Remark 2.9. The proof of the comparison principle above is contained in the proof of [38, Theo-

rem 2.1], where the uniqueness of solution is proved. In fact, what we need to prove here is (v−w)+ = 0

in QT instead of v − w = 0.

If q− � 1, we can construct the maximal and minimal solutions as in the case Ω = R
N . Here

u = lim
ε→0

u(ε),

where u(ε) is the solution of (1.1) in Ω with the reaction term replaced by f(ε), initial value u
(ε)(x, 0)

= u0(x) + ε and boundary condition u(ε)|∂Ω = ε, i.e.,

u = lim
ε→0

u(ε),

where u(ε) is the solution of (1.1) in Ω with the reaction term replaced by f(ε), initial value u
(ε)(x, 0) =

u0(x) and boundary condition u(ε)|∂Ω = 0.

Also,

0 � u � u � u.

For the bounded domain case, the comparison principles related to the maximal solution and minimal

solution are similar to the above (1)–(4) for the whole space case. The only thing we should notice is

that for supersolution z, it should also satisfy z � u on ∂Ω, and for subsolution z, z � u on ∂Ω.

3 Self-similar subsolutions

In this section, we introduce some important self-similar subsolutions to (1.1), which are very helpful to

derive a lower bound of our solutions.

First, let us recall the Barenblatt solution, which is given by

uaS(x− x0, t− t0) = [τ + (t− t0)]
− N

(p−2)N+pV a
S

( |x− x0|
[τ + (t− t0)]

1
(p−2)N+p

)
,

where

V a
S (r) = A[a− r

p
p−1 ]

p−1
p−2

+ ,

A =

(
p− 2

p

) p−1
p−2

(
1

(p− 2)N + p

) 1
p−2

and τ > 0 and a > 0 are arbitrary constants.

We know that uaS is a weak solution of the equation

ut = div(|∇u|p−2∇u), (3.1)

so it is a subsolution of (1.1). We notice that if we fix τ = 1, then uaS � Aa
p−1
p−2 and the support of

uaS(x− x0, t0) is BR(x0), where R = a
p−1
p (1 + t0)

1
(p−2)N+p . Letting a→ 0, the value and the diameter of

the support of uaS(x−x0, t0) tend to zero. Therefore, as long as our initial data u0(x) 
≡ 0, it is larger than

some uaS(x − x0, t0). A comparison argument implies that the solution u of (1.1), with initial data u0,

is larger than uaS(x − x0, t − t0), as long as it is defined. (Notice that although we may not be able to

use directly the comparison principle to (1.1), it is easy to see u is a supersolution to (3.1), where the

comparison principle is true.) Thus we obtain the following lemma.

Lemma 3.1. Assume u is a global solution to (1.1)–(1.2). Then for any open subset Ω1 of Ω, with Ω1

compact, there is a finite time t0 > 0 such that u(x, t) > 0 in Ω1 when t � t0.
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Proof. The case that Ω = R
N does not need to be proved because the support of uaS is spreading to

R
N as t→ ∞ and u � uaS for some a > 0.

In the bounded domain case, without loss of generality we assume u0(x) > 0 in some ball B(x0, δ1).

Let x ∈ Ω be another point. First, we show that there is a finite time t and a neighborhood Vx of x

such that u(x, t) > 0 in Vx. Since Ω is connected, there exists a continuous curve Γ connecting x0 and x.

Denote 2δ2 = dist(Γ, ∂Ω) and δ = min(δ1, δ2). Let x1 = Γ ∩ ∂B(x0, δ/2), . . . , xk = Γ ∩ ∂B(xk−1, δ/2), . . .

such that xk 
= xk−2. It is clear that x ∈ B(xn, δ/2) for some n. Since B(x1, δ/4) ⊂ B(x0, δ), we have

u0(x) > 0 in B(x1, δ/4). Choose a small such that supp uaS(x−x0, 0) ⊂ B(x1, δ/4), and ‖uaS(x−x0, 0)‖∞
� minx∈B(x1,δ/4) u0(x), then u is a weak supersolution to (3.1) in B(x1, 2δ) with zero boundary condition.

The comparison principle implies that there exists τ1 > 0 such that u(x, τ1) > 0 in B(x1, δ). Thus

u(x, τ1) > 0 in B(x2, δ/2). Repeating the above procedure, by finite steps, there exists a finite time t

such that u(x, t) > 0 in B(xn, δ/2).

We note that if u(x, t0) > 0, then for all t > t0, u(x, t) > 0. This follows from the fact that we can

always compare u(·, t0) with some uaS , and if the value of uaS is smaller, the time interval in which the

comparison principle holds is larger.

Since Ω1 is compact, the conclusion follows from a finite covering argument.

Next, we use V a
S to construct a blow-up subsolution with a > 0 fixed and we write it as VS .

Lemma 3.2. Suppose q− > 1, let α1 = 1
q+−1 , β1 = q+−p+1

p(q+−1) , α2 = 1
q−−1 and β2 = q−−p+1

p(q−−1) . Then there

exist constants C1 and C2, depending only on p, q+, q− and a, such that u1 = (T − t)−α1C1VS(
C2|x|

(T−t)β1
)

is a subsolution to (1.1) when T − t � 1, while u2 = (T − t)−α2C1VS(
C2|x|

(T−t)β2
) is a subsolution to (1.1)

when T − t � 1.

Proof. Let q be a constant with q− � q � q+. Denote

α =
1

q − 1
, β =

q − p+ 1

p(q − 1)
.

Define

w(r) = C1VS(C2r)

and

ũ(x, t) = (T − t)−αw

( |x|
(T − t)β

)
, r =

|x|
(T − t)β

.

We compute directly that

ũt − div(|∇ũ|p−2∇ũ)− (ũ)q(x) = (T − t)−α−1(αw + βw′r − (|w′|p−2w′)′

− (N − 1)|w′|p−2w′/r − (T − t)(α+1)−αq(x)wq(x)). (3.2)

We need to have the right-hand side of (3.2) � 0 when T − t � 1, α = α1 and when T − t � 1, α = α2.

In any case, (T − t)α+1−αq(x) � 1, so it is sufficient to show

αw + βw′r − (|w′|p−2w′)′ − (N − 1)|w′|p−2w′/r − wq(x) � 0. (3.3)

Taking w = C1VS , w
′ = C1C2V

′
S into (3.3) and noticing that VS satisfies

(|V ′
S |p−2V ′

S)
′ + (N − 1)|V ′

S |p−2V ′
S/r +NκVS + κV ′

Sr = 0,

with κ = 1/((p− 2)N + p), we have that (3.3) is equivalent to

C
q(x)−1
1 V

q(x)
S − (NκCp−2

1 Cp
2 + α)VS − (κCp−2

1 Cp
2 + β)V ′

Sr � 0. (3.4)

Denote s = r
p

p−1 . It is known that

VS = A(a− s)
p−1
p−2

+ , V ′
Sr = −A p

p− 2
(a− s)

1
p−2

+ s.



476 Zheng Z et al. Sci China Math March 2017 Vol. 60 No. 3

Therefore, it is sufficient that

C
q(x)−1
1 Aq(x)(a− s)

(p−1)q(x)−1
p−2 + (κCp−2

1 Cp
2 + β)A

p

p− 2
s

− (NκCp−2
1 Cp

2 + α)A(a − s) � 0, s ∈ (0, a). (3.5)

It is clear that (3.5) is true when

s � s1 :=
a(NκCp−2

1 Cp
2 + α)

(κCp−2
1 Cp

2 + β) p
p−2 + (NκCp−2

1 Cp
2 + α)

or

s � s2 := a−
(
NκCp−2

1 Cp
2 + α

Cq−1
1 Aq−1

) p−2
(p−1)(q−1)

.

So it remains to show that there exist constants C1 and C2 such that s1 � s2. By elementary calculation,

we can see that since 1 < q− � q � q+, if we let C1 → ∞, Cp−2
1 Cp

2 → ∞ and C
p−q−−1
1 Cp

2 → 0, s1 � s2
will be satisfied. This will do if we take C2 = C−γ

1 , p−q−−1
p < γ < p−1

p .

The lemma is then proved.

The next lemma is a direct corollary of Lemma 3.2.

Lemma 3.3. Denote D1 to be the maximum of VS(r; a) and D2 to be the radius of the support of

VS(r; a). Consider (1.1) and (1.2) in R
N with q− > 1. If there exist constants δ > 0, ε > 0 such that

u0 � ε in the ball {x | |x| � δ}, and

δε
q+−p+1

p � D2

C2
(C1D1)

q+−p+1

p ,
C1D1

ε
� 1,

then u must blow up. Here C1 and C2 are the constants which appeared in Lemma 3.2.

Proof. Let α1 = 1
q+−1 , β1 = q+−p+1

p(q+−1) , α2 = 1
q−−1 , β2 = q−−p+1

p(q−−1) as in Lemma 3.2 and

T =

(
C1D1

ε

) 1
α1

� 1.

We compare the solution u(x, t) with

u1 = (T − t)−α1C1VS

(
C2|x|

(T − t)β1

)
in [0, T − 1]. When t = 0, the maximum of u1 is

T−α1C1D1 = ε,

and the radius of the support of u1 is

T β1D2

C2
=

(
C1D1

ε

) β1
α1 D2

C2
=

(
C1D1

ε

) q+−p+1

p D2

C2
� δ,

which implies u0 � u1(x, 0). By Lemma 3.2 and the comparison principle, u(x, t) � u1(x, t) when

t ∈ [0, T − 1].

Next, we compare the solution u(x, t) with

u2 = (T − t)−α2C1VS

(
C2|x|

(T − t)β2

)
in [T − 1, T ). When t = T − 1,

u2(x, T − 1) = C1VS(C2|x|) = u1(x, T − 1) � u(x, T − 1).

By Lemma 3.2 and the comparison principle, u(x, t) � u2(x, t) when t ∈ [T −1, T ), which implies u blows

up before T .
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4 The bounded domain case

In this section, we give the proof of Theorem 1.1, which deals with the case that Ω is bounded. First we

prove some lemmas.

Lemma 4.1. Let D ⊂ Ω be an open domain. Suppose one of the following conditions holds: (1)

q(x) � σ < 1 for x ∈ D; (2) 1 < γ2 � q(x) � γ2 < p− 1 for x ∈ D, and u is a global solution, then for

any compact set D̃ ⊂ D, there exist constants t0, δ > 0 such that u(x, t) � δ in D̃ for t � t0.

Proof. We can find a constant r such that for all x0 ∈ D̃, Br(x0) ⊂ D. If we can prove that for each

Br(x0), there exist constants t0, δ > 0 such that u(x, t) � δ in B r
2
(x0) for t � t0, then by finite covering,

the conclusion of the lemma holds. Next, we prove it for the following two cases:

Case 1. q(x) � σ < 1 for x ∈ D.

By Lemma 3.1, there exists a constant t0 independent of x0, such that

μ = min {u(x, t) : x ∈ Br(x0), t0 � t � t0 + 1} > 0.

For ε < μ, η > 0, α = 1
1−σ , we consider the following function

w̃ = ε+ ηtαϕ1

(
x− x0
r

)
,

where ϕ1 is the first eigenfunction of p-Laplacian in B1 with ϕ1(0) = 1.

We compare w̃(x, t) and u(x, t+ t0) in Br(x0)× (0, 1]. Since both functions are strictly away from zero,

by the discussion in Section 2, the comparison principle holds.

On the parabolic boundary of Br(x0)× (0, 1], we have

w̃ = ε < μ � u,

thus it remains to verify that w̃ is a subsolution, i.e.,

w̃t − div(|∇w̃|p−2∇w̃)− w̃q(x)

= ηαtα−1ϕ1 + (ηtα)p−1 λ1
rp
ϕp−1
1 − (ηtαϕ1 + ε)q(x).

If we take η = min(1, (α+ λ1

rp )
−α) then the above expression � 0 and w̃ is a subsolution.

Then we have u(x, t+ t0) � w̃(x, t), which implies

u(x, t+ t0) � ctα for x ∈ B r
2
(x0), 0 � t � 1, c = ηmin

B 1
2

ϕ1

and

u(x, t+ t0) � δ for x ∈ B r
2
(x0), t0 +

1

2
� t � t0 + 1.

Since the above comparison still holds if we replace t0 by any t′0 > t0, we have u(x, t) � δ for x ∈
B r

2
(x0), t � t0 +

1
2 , and this case is proved.

Case 2. 1 < γ2 � q(x) � γ1 < p− 1 for x ∈ D.

Again, by Lemma 3.1, there exists time t0 independent of x0, u(x, t0) � ε0 in Br(x0).

By Lemma 3.2,

u1 = (T − t)−
1

γ1−1C1VS

(
C2|x− x0|

(T − t)
γ1−p+1

p(γ1−1)

)
is a subsolution to (1.1) when T − t � 1, while

u2 = (T − t)−
1

γ2−1C1VS

(
C2|x− x0|

(T − t)
γ2−p+1

p(γ2−1)

)
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is a subsolution when T − t � 1.

Take T sufficiently large such that

C1T
− 1

γ1−1 a
p−1
p−2 � ε0,

1

C2
a

p−1
p T

γ1−p+1

p(γ1−1) � r,

where a is the constant in VS , and C1 and C2 are the constants in Lemma 3.2. Thus u1(x, 0) � u(x, t0)

in Br(x0).

Since 1 < γ2 � q(x) � γ1 < p− 1, the supports of u1 and u2 are both spreading as t increases. So the

comparison principle will hold before the support of u1 or u2 expands beyond ∂Br(x0). To be precise, if
1
C2
a

p−1
p � r, the comparison will stop when t = t1, where t1 satisfies

T − t1 =

(
C2r

a
p−1
p

) p(γ1−1)
γ1−p+1

� 1.

In this case we compare u(x, t+ t0) with u1 in Br(x0)× (0, t1], and when t = t1,

u(x, t1 + t0) � C1

(
C2r

a
p−1
p

) p
p−1−γ1

VS

(
a

p−1
p

|x− x0|
r

)
.

Then we have u(x, t1 + t0) � δ1 in B r
2
(x0).

If 1
C2
a

p−1
p < r, the comparison will hold until t = t2, where t2 satisfies

T − t2 =

(
C2r

a
p−1
p

) p(γ2−1)
γ2−p+1

< 1.

In this case we first compare u(x, t + t0) with u1 in Br(x0)× (0, T − 1]. Notice that when t = T − 1,

u1(x, t) = u2(x, t), so we can continue to compare u(x, t+ t0) with u2(x, t) until t = t2, and

u(x, t2 + t0) � C1

(
C2r

a
p−1
p

) p
p−1−γ2

VS

(
a

p−1
p

|x− x0|
r

)
.

Then we have u(x, t2 + t0) � δ2 in B r
2
(x0).

Therefore, we can always have that for some time t3 and δ > 0, u(x, t3 + t0) � δ in B r
2
(x0).

Since u1 is increasing as t increases, we can repeat the above comparison for all t � t0, thus u(x, t) � δ

for x ∈ B r
2
(x0), t � t0 + t3.

The lemma is then proved.

Corollary 4.2. If there exists a domain D ⊂ Ω such that q(x) satisfies in D the conditions in

Lemma 4.1, then for any compact set Ω̃ ⊂ Ω, there exist t0 and δ > 0 such that u(x, t) � δ in Ω̃

for t � t0.

Proof. By Lemma 4.1, we have that for a compact domain D̃ ⊂ D, there exist constants t1, δ1 > 0

such that u(x, t) � δ in D̃ for t � t1.

By Lemma 3.1, if we compare u(x, t + t1) with some uaS which has the support in D̃ and not larger

than δ1, we obtain that there exist some time t2 and δ > 0 such that u(x, t1 + t2) � δ in Ω̃.

Since the comparison argument in Lemma 4.1 applies to any t′2 � t2, the corollary is proved by taking

t0 = t1 + t2.

Lemma 4.3. If u(x, t) � δ > 0 in a ball BR(0) with radius R � 1 when t � t0 and q(x) � σ < p− 1

in BR(0), then there exist constants c > 0 and t1 such that u(x, t) � cR
p

p−1−σ in BR
2
(0) when t � t1.

Proof. Consider the following problem:⎧⎪⎨⎪⎩
vt = div(|∇v|p−2∇v) + vq(x) in BR(0)× (t0,∞),

v = δ on ∂BR(0)× (t0,∞),

v = δ for BR(0)× {t0}.
(4.1)
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It is clear that v � δ > 0, and u � v on BR(0) × {t0} and on ∂BR(0) × (t0,∞). We can apply the

comparison principle to obtain u � v for t � t0.

On the other hand, with A large, we have that

w(x, t) = A−Aα|x| p
p−1

is a supersulotion of (4.1), where σ
p−1 < α < 1. This implies v is uniformly bounded. Moreover, there

exists a Lyapunov functional given by

F (v) =
1

p

∫
BR(0)

|∇v|p −
∫
BR(0)

|v|q(x)+1

q(x) + 1
,

which satisfies
d

dt
F (v)(t) = −

∫
BR(0)

|vt|2dx � 0.

By the weak compactness of the unit ball inW 1,p(BR(0)), we conclude that, for every sequence tj → ∞,

we can extract a subsequence, still denoted by tj , such that

v(x, tj)⇀ V (x) in W 1,p(BR(0))

and then v(x, tj) → V (x) strongly in Lp(BR(0)) and V (x) � δ.

Since F (v) is bounded from below, it is obvious that vt → 0 in L2(BR(0)) as t → ∞, which means

that V (x) is a stationary solution of (4.1). Note that here V (x) may depend on the sequence {tj}.
We now prove that V (x) is unique and therefore is independent of the sequence {tj}. Consider the

following convex set in W 1,p(BR(0)):

Γ = {v ∈ W 1,p(BR(0)) | v is bounded and v > 0}.

It is easy to verify that F (v) has certain convex property, i.e., for all 0 < λ < 1, u, v ∈ Γ, u is not a

constant multiple of v,

F ((λup + (1 − λ)vp)
1
p ) < λF (u) + (1− λ)F (v).

Therefore a stationary solution V (x) ∈ Γ must be a minimizer of F (v) in Γ with boundary condition

V (x) = δ, which is unique. Thus V (x) is the limit of every convergent sub-sequence {v(tj)}∞1 , which

means that

lim
t→∞ v(x, t) = V (x) a.e.

By classical regularity theory [7], v(x, t) is Hölder continuous and the Cα norm of x variable is uniformly

bounded for t � t0. Then by Arzela-Ascoli theorem, v(x, t) converges uniformly to V (x) and for a

sufficiently large t0, v(x, t) � 1
2V (x), t � t0.

Now we estimate the size of V (x).

Set V (x) = R
p

p−1−σ Ṽ ( x
R ), if R � 1, Ṽ satisfies

− div(|∇Ṽ |p−2∇Ṽ ) � Ṽ q(Rx) in B1,

Ṽ = δR− p
p−1−σ on ∂B1.

We consider the following functional on the Sobolev space W 1,p
0 (B1(0)):

E(v) =
1

p

∫
B1(0)

|∇v|p −
∫
B1(0)

|v|σ+1

σ + 1
.

Similar to the above arguement, E(v) has a unique positive minimizer φ, which satisfies{
− div(|∇φ|p−2∇φ) = φσ in B1,

φ = 0 on ∂B1.
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By the classical regularity theory φ ∈ Cα(B1(0)). Set z = ηφ with η = min(1, ‖φ‖−1
∞ ). Then z satisfies

z � 1 and −div(|∇z|p−2∇z) � zσ in B1(0). Next, we show that Ṽ � z in B1(0).

Suppose it is not true. We set

τ0 = sup{τ � 1 | τṼ − z takes some negative values in B1(0)}.

Then τ0Ṽ � z in B1(0) and attains a null minimum at some point in B1(0) (Note that τ0Ṽ > z on

∂B1(0)). On the other hand,

−div(|∇(τ0Ṽ )|p−2∇(τ0Ṽ )) � τp−1
0 Ṽ q(Rx)

� (τ0Ṽ )q(Rx) � zq(Rx) � zσ � −div(|∇z|p−2∇z)

with the boundary condition τ0Ṽ � τ0δR
− p

p−1−σ > 0 = z on ∂B1(0). We conclude that τ0Ṽ > z on B1(0),

which leads to a contradiction. Thus, Ṽ � z in B1(0).

Next, when x ∈ BR
2
(0), t > t0,

u(x, t) � 1

2
V (x) =

1

2
R

p
p−1−σ Ṽ

(
x

R

)
� 1

2
R

p
p−1−σ min

x∈B 1
2
(0)
z(x) = cR

p
p−1−σ .

Proof of Theorem 1.1. (i) If q+ > p − 1, we show that u is larger than a blow-up subsolution if the

initial data is large enough.

Without loss of generality, we suppose Br0(0) ⊂ Ω and q(x) � γ > p− 1 in Br0(0). Since γ > p − 1,

(T − t)
γ−p+1
p(γ−1) → 0 when t → T . Thus we can take t0 sufficiently close to T such that the support of

uγ = (T − t)−
1

γ−1C1VS(
C2|x|

(T−t)
γ−p+1
p(γ−1)

) is contained in Br0(0) when t0 � t < T .

By Lemma 3.2, uγ is a subsolution to (1.1). Therefore as long as u0(x) � uγ(x, t0), by the comparison

principle we have u(x, t) � uγ(x, t+ t0). Then u must blow up in finite time.

(ii) If q+ < p− 1, for any initial data we construct a global supersolution larger than u.

Let Ω′ ⊃ Ω be a smooth bounded connected domain and ψ be a non-negative first eigenfunction of

p-Laplacian in Ω′, i.e.,
− div(|∇ψ|p−2∇ψ) = λ1ψ

p−1,

ψ|∂Ω′ = 0,
(4.2)

where λ1 is the first eigenvalue of p-Laplacian in Ω′.
We know that ψ > 0 in Ω′, thus infΩ ψ � δ > 0. We take ϕ = Kψ with K sufficiently large such that

Kδ > 1, ϕ � u0 and −λ1ϕp−1 + ϕq+ � 0 in Ω, then

div(|∇ϕ|p−2∇ϕ) + ϕq(x) = −λ1ϕp−1 + ϕq(x)

� −λ1ϕp−1 + ϕq+ � 0.

Thus, by the comparison principle, the maximum solution u(x, t) � ϕ(x) and u is global. Then every

solution u is global.

(iii) Let q− < p− 1 < q+.

We will construct functions q(x) which take q+ and q− as their supremum and infimum and domains Ω

such that all solutions blow up.

First, we suppose q(x) � γ > p − 1 in some ball Br0(x0). As in the proof of Theorem 1.1(i), we see

that as long as u is larger than some M > 0, depending on r0 and γ, in Br0(x0) at time t0, then u must

blow up.

Since q− < p− 1 and q(x) is continuous, the assumption of Corollary 4.2 is satisfied. We suppose that

q(x) � σ < p − 1 in BR(0) ⊂ Ω, where R is a large number to be determined. By Corollary 4.2, there

exist constants t0, δ > 0 such that u(x, t) � δ in BR(0) for t � t0. By Lemma 4.3, u(x, t) � cR
p

p−1−σ in

BR
2
(0) when t is sufficiently large.
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Let L > 0 be such that BR(0)∪Br0(x0) ⊂ BL
2
(0) ⊂ BL(0) ⊂ Ω. Then u � w, where w is a solution of

the following problem: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wt = −div(|∇w|p−2∇w) in BL(0) \BR
2
(0),

w = 0 on ∂BL(0),

w = cR
p

p−1−σ on ∂BR
2
(0),

w(x, 0) = u(x, t0) in BL(0) \BR
2
(0).

We know that w converges uniformly to the unique stationary solution given by

r(x) = cR
p

p−1−σ
|x|α − Lα

(R2 )
α − Lα

,

where α = p−N
p−1 . For t large enough,

u(x, t) � w(x, t) � r(x) − ε � c

2
R

p
p−1−σ

in BL
2
(0) \BR

2
(0) ⊃ Br0(x0). Then if R is large enough, u must blow up.

Next, we prove that if the diameter of Ω is sufficiently small then there exist global solutions. It is not

hard to verify that

g(x) = 1− (p− 1)|x| p
p−1

pN
1

p−1

is a supersolution. Then if Ω ⊂ Br(x0), r < ( p
p−1N

1
p−1 )

p−1
p , the solution is global when the initial data

is less than g(x).

(iv) Let q− > p− 1. Let Ω′ ⊃ Ω be a smooth bounded connected domain and ψ the non-negative first

eigenfunction of p-Laplacian in Ω′ with supx∈Ω ψ(x) = 1. Then ψ is a supersolution. When the initial

data u0(x) � ψ(x), by the comparison principle the solution is global.

Remark 4.4. If q+ = p− 1, in the spirit of [27], the blow-up or the global existence of solutions will

be closely related to the size of the area where q(x) ≡ p − 1. In fact, if Ω contains a domain Ω′ where
q(x) ≡ p − 1 and the first eigenvalue of Ω′ for the p-Laplacian operator is less than 1, all solutions will

blow up. Other cases are rather intricate and we will not treat them here.

5 The case of whole space

In this section we discuss the case when Ω = R
N . As we have seen in the previous section, the solution

is more likely to blow up when the domain Ω is larger. So the solutions in R
N behave differently from

solutions in bounded domains.

Proof of Theorem 1.2. (i) q+ � 1.

It suffices to observe that

w(t) = C‖u0‖∞et

with C � 1, C‖u0‖∞ � 1 is a supersolution and w(0) is larger than u0(x). Moreover, w is strictly positive,

thus the comparison principle implies that the maximal solution to the problem is global. Therefore, any

solution is global.

(ii) q+ > p− 1.

Suppose in a region q(x) � γ > p− 1 and the initial data is sufficiently large, the solution must blow

up. The proof is the same as the proof of Theorem 1.1(i).

(iii) q− > p− 1 + p/N .

In [14], a global supersolution h less than 1 is constructed when q(x) ≡ q > p− 1 + p
N . So it is also a

supersolution to (1.1) since q(x) � q− > p− 1 + p
N . It follows that if u0(x) � h(x, 0), then u is global.

(iv) 1 < q− � q+ � p− 1 + p/N .
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We use the method in [15] to derive the nonexistence of global solution. Since the procedure is similar,

we only give an outline of the proof and point out the difference.

We prove by contradiction by supposing that u is a global solution and then derive a contradiction.

Step 1. Let θ(y, τ) = (1 + t)κNu(x, t), where y = x
(1+t)κ , τ = log(1 + t) and κ = 1

(p−2)N+p . Then

θτ = div(|∇θ|p−2∇θ) + κ∇θ · y + κNθ + (1 + t)
(p−1)N+p−Nq(x)

(p−2)N+p θq(x)

� div(|∇θ|p−2∇θ) + κ∇θ · y + κNθ + θq(x)

� div(|∇θ|p−2∇θ) + κ∇θ · y + κNθ +min(θq− , θq+) (5.1)

and

θ(y, 0) = u0(y).

Denote g(y, τ) to be the solution of

gτ = div(|∇g|p−2∇g) + κ∇g · y + κNg +min(gq− , gq+) (5.2)

with the initial data

g(y, 0) = VS(|y|; a) � u0(y).

Then θ(y, τ) � g(y, τ) in R
N × R

+, which implies g is a global solution of (5.2).

Step 2. g(y, τ) is nondecreasing in τ in R
N × R

+.

To prove this, we consider for arbitrary ε > 0 the solution gε of the following problem:{
(gε)τ = div((|∇gε|p−2 + ε)∇gε) + κ∇gε · y + κNgε +min(g

q−
ε , g

q+
ε ),

gε(y, 0) = VS(|y|; a).
(5.3)

Differentiating the equation above with respect to τ , we have that z = (gε)τ solves a linear uniformly

parabolic equation with initial value

z(y, 0) = εΔVS +min{V q−
S , V

q+
S }.

It is easy to verify that when ε is sufficiently small, z(y, 0) � 0. Therefore, by the maximum principle [11],

z(y, τ) � 0 for τ � 0, which means gε is non-decreasing in τ .

By the regularity results in [7, 24], as ε→ 0,

gε → g uniformly on compact subsets of R
N × [0,∞).

Therefore g is non-decreasing in τ .

Step 3. By construction, g = g(η, τ) with η = |y| is a radical symmetric solution of (5.2) satisfying

the following equation:

gτ =
1

ηN−1
(ηN−1|g′|p−2g′)′ + κg′η + κNg + F (g), (5.4)

where

F (x) =

{
xq− , 0 � x � 1,

xq+ , x > 1
(5.5)

is a locally Lipschitz function of x.

Since g(0, τ) > 0, the following symmetric boundary condition holds:

g′(0, τ) = 0, for τ � 0.

Applying the maximum principle [11] and a standard regularisation argument, we have g(η, τ) is

nonincreasing in η for all τ > 0.
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Step 4. We claim that for any η > 0, there exists a finite limit g(η, τ) → f(τ) as τ → ∞. Indeed, if

this claim is not valid, then for a fixed η0 > 0,

g(η0, τ) → ∞.

Since g(η, τ) is nonincreasing in η, it follows that

g(η, τ) → ∞ as τ → ∞

uniformly on η ∈ [0, η0].

We set M(τ) = infη∈[0,η0] g(η, τ). Then M(τ) is nondecreasing and M(τ) → ∞ as τ → ∞.

For the original function u, this means when |x| � η0(1 + t)κ, u(x, t) � M1(t)
(1+t)κN with M1(t) → ∞ as

t→ ∞.

Since M1(t) → ∞ as t → ∞ and M1(t) is nondecreasing, we can find a t0 such that when t � t0,

u(x, t) � M0

(1+t)κN in the ball |x| � η0(1 + t)κ and

η0(1 + t)κ
(

M0

(1 + t)κN

) q+−p+1

p

� η0M
q+−p+1

p

0 � M2

C2
(C1M1)

q+−p+1

p .

Next, we take t1 � t0 sufficiently large such that

C1M1

M0
(1 + t1)

κN � 1

and let ε = M0

(1+t1)κN , δ = η0(1 + t1)
κ. Then u(x, t1) � ε when |x| � δ, and ε and δ satisfy the condition

in Lemma 3.3, which implies u blows up. This leads to a contradiction.

Step 5. f(η) � 0 is a weak symmetric stationary solution satisfying

1

ηN−1
(ηN−1|f ′|p−2|f ′)′ + κf ′η + κNf + F (f) = 0, (5.6)

f ′(0) = 0, 0 < f(0) <∞. (5.7)

Step 6. It is easy to verify that (5.5) and (5.6) do not have a non-trivial non-negative solution f(η).

Thus we derive a contradiction again and complete the proof.

Remark 5.1. For the case 1 < q+ < p − 1, we have found an interesting phenomenon that all the

solutions with compactly supported initial data will blow up or be global, depending on the detailed

property of q(x).

To prove this, first we claim that for any compact set D ⊂ R
N and M > 0, there exists a time t0

such that u(x, t) �M , for x ∈ D, t � t0. By this claim, there cannot exist a global solution and blow-up

solution at the same time. Let us suppose that there are two solutions u and v, where u is global and v

blows up. Then by the claim above, after some time, u(x, t0) � v0(x) since v0(x) is compactly supported,

thus u must blow up, which leads to a contradiction.

Now we prove the claim.

Let q(x) � σ < p− 1.

By Corollary 4.2, for any BR ⊃ BR
2
⊃ D, there exists a time t1, δ > 0, such that u(x, t) � δ in BR for

t � t1. By the method in the proof of Theorem 1.1(iii), for t large, u(x, t) � cR
p

p−1−σ in BR
2
. Then if R

is sufficiently large, u �M .

We have proved above that if 1 < q− � q+ < p− 1, all the solutions will blow up. However, if q− < 1,

the comparison method cannot be applied in the whole R
N and we need a new argument to judge which

case it belongs to. This is still an open case.
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6 Conclusion and discussion

The central topic of this article is to study the existence/nonexistence of global solutions under various

conditions of q(x) and Ω. By making use of the comparison argument, especially the one designated for

the variable exponent case (see Lemma 3.2), we are able to analyse in depth the rich dynamics of the

solutions.

When Ω is a bounded domain, the exponent p−1 plays a crucial role. If q+ < p−1, all the solutions are

global, while if q+ > p− 1, there exist blow-up solutions. If q− > p− 1, there exist global solutions, while

if q− < p− 1 < q+, as we have shown, the Fujita phenomenon will occur for some q(x) and Ω, which is in

strong contrast to the constant exponent case. In the bounded domain case, we use the first eigenfunction

of p-Laplacian operator in Ω, and self-similar subsolution to prove suitable lower bound. The proof process

indicates that in larger domain the solution is more likely to blow up, and in sufficiently small domain

there always exist global solutions for a given functon q(x). From the eigenfunction argument, we also

know the critical case q+ = p− 1 will be highly complicated.

When Ω = R
N , the problem exhibits very different dynamics of solutions, because of the unboundedness

of the domain. In this case, the Fujita exponent p− 1 + p/N plays a crucial role. Our result shows that

if 1 < q− � q+ � p − 1 + p/N , all the solutions will blow up, while if q− > p − 1 + p/N , there exist

global solutions. Unlike the case of bounded domains, here the condition q+ < p − 1 fails to guarantee

the solution to be global, and the strict sublinear condition q+ � 1 seems to be necessary. There is a gap

between 1 and p − 1, which does not appear in the semilinear case (p = 2). As in Remark 5.1, we have

found that if 1 < q+ < p− 1, all the solutions with compactly supported initial data will blow up or be

global, depending on the detailed property of q(x). This is a significant difference from the semilinear

case and need further investigation. Since if q− < 1, the comparison argument fails to apply, some new

techniques are needed to study this open case.

In addition to the problem raised above, there are many other interesting topics which can be pursued.

For example, what happens if Ω is a half space or other cone-shaped domain? In these cases, the Fujita

phenomenon can develop with different exponents. The interaction among different values of q(x) in

different areas could present highly complex situations.

Also, the results in this article can be generalized to the equation

ut = div(|∇um|p−2∇um) + uq(x),

where m > 1. Here a new comparison technique should be used.
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9 Ferreira R, de Pablo A, Pérez-Llanos M, et al. Critical exponents for a semilinear parabolic equation with variable

reaction. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1027–1042
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Appendix A: Proof of the comparison principle

In this appendix, we give a detailed proof of Lemma 2.4. First we list the properties satisfied in the

class R,

sup
x∈RN

∫
B1(x)

|u(y, t)|dy � C, (A.1)

sup
x∈RN

|u(x, t)| � Ct−δ, (A.2)

sup
x∈RN

|Du(x, t)|
(1 + |x|) 2

p−2

� Ct−δ1 , (A.3)

for t ∈ (0, T ). Here C, δ, δ1 are positive constants, and

δ <
1

λ− 1
, δ1 <

1

p− 2
, λ = max{q, p− 1}, q = max{1, q+}.

We rewrite our equation as

ut(x, t) = div(|∇u|p−2∇u) + |u|q(x)−1u (A.4)

to include the potential case of variable sign. To prove Lemma 2.4, it is sufficient to prove the following

lemma.

Lemma A.1. Suppose q− � 1 and u is a subsolution of (A.4) with initial value u0. If v is a solution

of (A.4) with initial value v0, u0(x) � v0(x) in R
N and u and v belong to the class R, then u � v in ST .

Proof. Letting w = u− v, then w satisfies

wt � (aij(x, t)wxi)xj + b(x, t)w in ST (A.5)

and

w+(x, t) → 0 in L1
loc(R

N ) as t→ 0,

where

aij(x, t) =

∫ 1

0

|D(su + (1− s)v)|p−2ds · δij

+ (p− 2)

∫ 1

0

|D(su+ (1− s)v)|p−4 · (su + (1− s)v)xi(su+ (1− s)v)xjds,

b(x, t) = q(x)

∫ 1

0

|su+ (1− s)v|q(x)−1ds.

(A.6)

The matrix aij is positive semi-definite and for all ξ ∈ R
N , (x, t) ∈ ST ,

a0(x, t)|ξ|2 � aij(x, t)ξiξj � (p− 1)a0(x, t)|ξ|2, (A.7)

where

a0(x, t) =

∫ 1

0

|D(su + (1− s)v)|p−2ds.

For β > 0, set

Aβ(x) = (1 + |x|p)−β ,

hβ(t) = sup
0<τ<t

∫
RN

u(x, τ)Aβ(x)dx.

If

β � κ

p(p− 2)
, (A.8)

where κ = N(p− 2) + p, by (A.1), we have

hβ(t) � C(β) for t ∈ (0, T ). (A.9)

To prove the lemma, we need the following lemmas.
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Lemma A.2. There exists a constant C = C(N, p, q) such that∫ t

0

∫
RN

|Du|p−1Aβ+ 1
p
(x)dxdτ � C · t 1−δ(λ−1)

p for t ∈ (0, T ).

Proof. Since u is a subsolution, in the inequality that u satisfies, take the test function

φ = (t− ε)
1
p

+|u|−
2
p u(A

1
p

β+ 1
p

ξ)p,

where ξ is the usual cutoff function in Bρ. After a Steklov averaging process and standard calculations,

we obtain ∫ t

ε

∫
Bρ

(τ − ε)
1
p
|Du|p
|u| 2p

Aβ+ 1
p
ξpdxdτ

� C

∫ t

ε

∫
Bρ

(τ − ε)
1
p |u|p− 2

p |D(A
1
p

β+ 1
p

ξ)|pdxdτ

+ C

∫ t

ε

∫
Bρ

(τ − ε)
1
p−1|u|2− 2

pAβ+ 1
p
dxdτ

+

∫ t

ε

∫
Bρ

(τ − ε)
1
p |u|q(x)+1− 2

pAβ+ 1
p
ξpdxdτ

=: J1 + J2 + J3.

For J2, we have

J2 � C

∫ t

ε

(τ − ε)
1−p−(p−2)δ

p ·
∫
Bρ

τ
(p−2)δ

p
|u|1− 2

p

1 + |x| |u|Aβ(x)dxdτ.

By (A.2) and (A.9), we have

J2 � C(t− ε)
1−(p−2)δ

p for ρ � 1.

We estimate J1,

J1 � C

∫ t

ε

∫
Bρ

(τ − ε)
1
p |u|p− 2

pAβ+ 1
p
|Dξ|pdxdτ

+ C

∫ t

ε

∫
Bρ

(τ − ε)
1
p |u|p− 2

p ξp|D(A
1
p

β+ 1
p

)|pdxdτ

=: J1,1 + J1,2.

Since |D(A
1
p

β+ 1
p

)|p � CAβA1+ 1
p
, by (A.2) and (A.9), we have

J1,2 �
∫ t

ε

∫
Bρ

(τ − ε)
1
p |u|p−1− 2

pA1+ 1
p
|u|Aβdxdτ � C(t− ε)(1+

1
p )(1−δ(p−2)).

As for J1,1, since |Dξ| � 2

p
, by (A.2) and (A.9), we have

J1,1 � C(t− ε)(1+
1
p )(1−δ(p−2)).

We now estimate J3,

J3 � C

∫ t

ε

∫
Bρ

(τ − ε)
1
p (|u|q+1− 2

p + |u|)Aβ+ 1
p
ξpdxdτ

� C

∫ t

ε

∫
Bρ

(τ − ε)
1
p (τ − ε)−δ(q− 2

p )hβ(τ)dxdτ

� C(t− ε)(1+
1
p )(1−δ pq−2

p+1 )

� C(t− ε)(1+
1
p )(1−δ(λ−1)).
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Combining these estimates, we have for ρ � 1,∫ t

ε

∫
Bρ

(τ − ε)
1
p
|Du|p
|u| 2p

Aβ+ 1
p
dxdτ � C(t− ε)

1
p (1−δ(λ−1)).

Therefore,∫ t

ε

∫
Bρ

|Du|p−1Aβ+ 1
p
dxdτ

�
(∫ t

ε

∫
Bρ

(τ − ε)
1
p
|Du|p
|u| 2p

Aβ+ 1
p
dxdτ

) p−1
p
(∫ t

ε

∫
Bρ

(τ − ε)−
p−1
p |u|2− 2

pAβ+ 1
p
dxdτ

) 1
p

� C(t− ε)
1
p (1−δ(λ−1)).

Letting ε→ 0, then the conclusion holds.

Since v is a solution of (A.4), the conclusion above also holds for v.

Lemma A.3. There exists a constant C such that w+ satisfies∫
RN

w+(x, t)Aβ(x)dx � Ct
1
p (1−δ(λ−1)).

Proof. By definition of w, we already have

w+(x, t) → 0 in L1
loc(R

N ) as t→ 0.

It is clear that w+ is a weak subsolution of (A.5). Take the test function Aβ(x)ξ(x), where ξ is the usual

cutoff function in Bρ. We have∫
Bρ

w+(x, t)Aβ(x)ξ(x)dx �
∫ t

0

∫
Bρ

(|Du|+ |Dv|)p−1|D(Aβξ)|dxdτ

+ C

∫ t

0

∫
Bρ

(|u|q−1 + |v|q−1 + 1)Aβ(|u|+ |v|)ξdxdτ. (A.10)

Noticing that

|DAβ | � CAβ+ 1
p
, |Dξ| = 0 on |x| � ρ

2
, Aβ |Dξ| � CAβ+ 1

p
,

by (A.2) and (A.9), and we have∫ t

0

∫
Bρ

(|u|q−1 + |v|q−1 + 1)Aβ(|u|+ |v|)ξdxdτ � C

∫ t

0

(τ−δ(q−1) + 1)hβ(τ)dτ

� Ct1−δ(q−1).

Letting ρ→ ∞ in (A.10), we have∫
RN

w+(x, t)Aβ(x)ξ(x)dx � C

∫ t

0

∫
RN

(|Du|+ |Dv|)p−1|D(Aβξ)|dxdτ + Ct1−δ(q−1).

By Lemma A.2, Lemma A.3 is proved.

Lemma A.4. For any ε ∈ (0, 1
pδ (1 − δ(λ− 1))),

w+(x, t) → 0 in L1+ε
loc (RN ) as t→ 0.

Proof. Let ε ∈ (0, 1
pδ (1− δ(λ − 1))) be fixed. Then by (A.2), for t ∈ (0, T ),∫

RN

w+(x, t)
1+εAβ+ ε

p−2
(x)dx � Ct−εδ

∫
RN

w+(x, t)Aβ(x)dx � Ct
1
p (1−δ(λ−1))−εδ.
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Then for ρ � 1, ∫
Bρ

w+(x, t)
1+εdx � Cρ(β+

ε
p−2 )p

∫
RN

w+(x, t)
1+εAβ+ ε

p−2
(x)dx

� C(N, p, q, ρ)t
1
p (1−δ(λ−1))−εδ.

Now we return to the proof of Lemma A.1. We use the test function

(w+ + η)ε(A
1
2

β ξ)
2, ε ∈

(
0,

1

pδ
(1− δ(λ− 1))

)
, η ∈ (0, 1).

Since w+(·, t) → 0 in L1
loc(R

N ), a standard Steklov averaging process gives that this is an admissible test

function. Therefore we can deduce

1

1 + ε

∫
Bρ(t)

(w+ + η)1+εAβξ
2dx+ ε

∫ t

η

∫
Bρ

a0(x, τ)
|Dw+|2

(w+ + η)1−ε
Aβξ

2dxdτ

� 1

1 + ε

∫
Bρ(η)

(w+ + η)1+εAβξ
2dx

+

∫ t

η

∫
Bρ

b(x, τ)w+(w+ + η)εAβξ
2dxdτ

+ C

∫ t

η

∫
Bρ

a0(x, τ)
|Dw+|

(w+ + η)
1−ε
2

(w+ + η)
1+ε
2 A

1
2

β ξ|D(A
1
2

β ξ)|dxdτ.

Notice that

Aβ |Dξ|2 + |DA 1
2

β |2 � CAβ(x)A 2
p
(x)

and by Schwarz inequality,∫ t

η

∫
Bρ

a0(x, τ)
|Dw+|

(w+ + η)
1−ε
2

(w+ + η)
1+ε
2 A

1
2

β ξ|D(A
1
2

β ξ)|dxdτ

� ε

2

∫ t

η

∫
Bρ

a0(x, τ)
|Dw+|2

(w+ + η)1−ε
Aβξ

2dxdτ

+ C(ε)

∫ t

η

∫
Bρ

a0(x, τ)(w+ + η)1+ε(Aβ |Dξ|2 + |DA 1
2

β |2)dxdτ.

We get ∫
Bρ(t)

(w+ + η)1+εAβξ
2dx

�
∫
Bρ(η)

(w+ + η)1+εAβξ
2dx

+ C

∫ t

η

∫
Bρ

a0(x, τ)A 2
p
(x)(w+ + η)1+εAβ(x)dxdτ

+ C

∫ t

η

∫
Bρ

b(x, τ)(w+ + η)1+εAβ(x)dxdτ.

By (A.2),

b(x, τ) � C(|u|q−1 + |v|q−1 + 1) � Cτ−δ(q−1).

By (A.3),

a0(x, τ) � Cτ−δ1(p−2).
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Therefore, ∫
B ρ

2
(t)

(w+ + η)1+εAβ(x)dx � C

∫ t

η

τ−σ

∫
RN

(w+ + η)1+εAβ(x)dxdτ

+

∫
Bρ(η)

(w+ + η)1+εAβ(x)dx,

where σ = max{δ1(p− 2), δ(λ− 1)}. Let η → 0, ρ→ ∞. By Lemma A.4, we have∫
RN

w+(x, t)
1+εAβ(x)dx � C

∫ t

η

τ−σ

∫
RN

w+(x, τ)
1+εAβ(x)dxdτ.

Since τ−σ is integrable, this implies∫
RN

w+(x, t)
1+εAβ(x)dx = 0 for t ∈ (0, T )

by Gronwall’s inequality, provided∫
RN

w+(x, t)
1+εAβ(x)dx ∈ L∞(0, T ). (A.11)

Notice that the parameter β in the calculation above is only restricted by (A.8), thus by Lemma A.3, if

we choose β > κ
p(p−2) +

ε
p−2 , we have∫

RN

w+(x, t)
1+εAβ(x)dx

�
∫
RN

(w+(x, t)A 1
p−2

)εw+(x, t)A κ
p(p−2)

(x)dx

� C

∫
RN

t−δεw+(x, t)A κ
p(p−2)

(x)dx

� Ct−δε+ 1
p (1−δ(λ−1)) � C.

Lemma A.1 is proved.


