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Murray–von Neumann algebras are algebras of operators affiliated
with finite von Neumann algebras. In this article, we study com-
mutativity and affiliation of self-adjoint operators (possibly un-
bounded).We show that amaximal abelian self-adjoint subalgebra
A of the Murray–von Neumann algebra AfðRÞ associated with a
finite von Neumann algebra R is the Murray–von Neumann alge-
bra AfðA0Þ, where A0 is a maximal abelian self-adjoint subalgebra
ofR and, in addition,A0 isA ∩ R. We also prove that the Murray–
von Neumann algebraAfðCÞwith C the center ofR is the center of
the Murray–von Neumann algebra AfðRÞ. Von Neumann’s cele-
brated double commutant theorem characterizes von Neumann al-
gebras R as those for which R 0 0 ¼ R, where R 0, the commutant
of R, is the set of bounded operators on the Hilbert space that
commute with all operators inR. At the end of this article, we pre-
sent a double commutant theorem for Murray–von Neumann alge-
bras.

affiliated operators ∣ unbounded operators

In ref. 1, J. von Neumann initiates the subject of von Neumann
algebras (which he refers to as “rings of operators”) and proves

what is the most fundamental theorem of the subject, his cele-
brated “double commutant theorem.” That theorem is, in effect,
an infinite-dimensional version of Schur’s lemma. The complex-
Hilbert-space setting in which this theorem of von Neumann’s is
proved is the most “classical” venue available for such an infinite-
dimensional version. Von Neumann’s purpose in proving this re-
sult was twofold. On the one hand, Schur’s lemma is basic to the
study of representation of finite groups; von Neumann was pre-
paring the way for an extension of that study to infinite groups.
The “rings of operators” introduced by von Neumann were to
(and they do) play the role of a (complex) group algebra of the
group. There are other possibilities for such a group algebra that
are useful for different purposes. As is often the case when a
concept from finite-dimensional algebra is extended to infinite
dimensions, that concept “ramifies,” splits into several distinct
concepts, subtly different from one another, especially when ana-
lysis and topology make an important appearance. It was von
Neumann’s hope that his group algebra would “coalesce” large
families of groups (that is, be the same algebra for each group
of the family) and, therefore, provide a simpler target for classi-
fication than the groups themselves. A sample instance of this
coalescing occurs when considering “locally finite” groups, those
for which each finite subset generates a finite subgroup. One im-
portant example of a locally finite group is given by the group of
permutations of the integers each of which moves at most a finite
set of integers. This example describes a group that has an addi-
tional important feature: Each of its conjugacy classes, with the
exception of that of the group identity, is infinite. We refer to such
groups as “i.c.c. groups.” The von Neumann group algebras of
i.c.c. groups have centers consisting just of scalar multiples of
the identity operator, the so-called “factors.” The locally finite,
i.c.c. groups all have the same group algebra (up to isomorphism).
This group algebra is a key von Neumann algebra, the “hyperfi-
nite factor of type II1.”

F. J. Murray and J. von Neumann undertook a thorough study
of factors (2–5) classifying them into various types. Each of the

i.c.c. groups has a von Neumann algebra that is (a factor) of type
II1. The free, noncommutative groups on two or more generators
are among these i.c.c. groups. To this day, we do not know
whether the II1-factor group algebras of the free groups on
two and three generators are or are not isomorphic to one
another.

On the other hand, at the time von Neumann was proving his
double commutant theorem and introducing his “rings of opera-
tors” on Hilbert spaces, quantum theorists were seeking a work-
able mathematical model that would encompass the ad hoc
quantum assumptions with which they altered the strictly classical
(Hamiltonian–Newtonian) analysis of the atomic and subatomic
physical systems they were examining. Planck’s formula for radia-
tion associated with a full, black-body radiator, Einstein’s photo-
electric effect, and Bohr’s remarkable derivation of the visible
(Balmer) energy spectrum from his quantized version of the
Rutherford (planetary) model of the hydrogen atom are among
the first and most basic instances of these quantum assumptions.
During this period, Heisenberg discovered his fundamental com-
mutation relation (see also ref. 6),QP − PQ ¼ iℏI, whereQ and
P play the role of position and “conjugate” momentum of a par-
ticle in the physical system and ℏ is h∕2π, where h is Planck’s ex-
perimentally determined constant. Heisenberg’s relation carries
with it the declaration that the mathematical model being sought
must be “noncommutative” (so, QP ¼ PQ has been ruled out)
and (finite) matrices would not be suitable (as the “trace” func-
tional on the matrices makes clear). Now, von Neumann was
aware of these developments and aware as well that Hilbert
spaces and the linear operators on them, especially families of
self-adjoint operators, with the algebraic structure such families
inherit from the usual product and addition of (everywhere-de-
fined) operators, provided an especially hospitable environment
for modeling quantum mechanical systems and supplying them
with the necessary degree of noncommutativity.

The simplest examples of such families are the self-adjoint ele-
ments in subalgebras of BðHÞ, the family of all bounded opera-
tors on the Hilbert space H, that contain A�, the adjoint of the
operator A, when they contain A. Such subalgebras are said to
be self-adjoint (“closed under the adjoint operation”). Among
the self-adjoint subalgebras ofBðHÞ, the most useful for the pur-
poses of modeling quantum mechanics are those closed inBðHÞ
with respect to some of the “natural” topologies on BðHÞ, the
“norm topology,” corresponding to the topology onBðHÞ arising
from the metric ‖A − B‖ as the distance between A and B in
BðHÞ and the “strong-operator topology” corresponding to con-
vergence of sequences (nets) on vectors in H (that is, An → A in
this topology when Anx → Ax, for each x in H). Those self-
adjoint algebras closed in the norm topology are called “C�-
algebras,” and those closed in the strong-operator topology are
called “von Neumann algebras.” In both cases, we include the
condition that I, the identity operator on H is in the algebra.
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In ref. 3, Murray and von Neumann discover that unbounded
operators closely associated with (we say “affiliated with” in a
technical definition) a certain class of von Neumann algebras,
the “finite” von Neumann algebras (again, a technical term), have
remarkable domain properties that allow virtually unlimited al-
gebraic manipulation with such operators. We study some aspects
of the structure of such families of affiliated operators in this
article, notably, commutativity.

In Section 2, we provide a background discussion of un-
bounded operators, with some of the technical details we shall
need, affiliated operators, and some of their related spectral the-
ory, and some of the algebraic properties of families of affiliated
operators. Some of the technical results on commutativity, max-
imal abelian subalgebras, and central elements in the algebra of
affiliated operators that serve as the basis for our main results, the
commutant theorems in Section 4, appear in Section 3.

2 Murray–von Neumann Algebras
We use Section 2.7 and Section 5.6 in refs. 7–9 as our basic re-
ference for results in the theory of unbounded operators as well
as for much of our notation and terminology.

2.1 Basic Results on Unbounded Operators. Let T be a linear map-
ping of the Hilbert spaceH into the Hilbert spaceK. We denote
by “DðTÞ” the domain of T. Note thatDðTÞ is a linear submani-
fold of H (not necessarily closed). We associate a graph GðTÞ
with T, where GðTÞ ¼ fðx; TxÞ : x ∈ DðTÞg. We say that T is
closed when GðTÞ is closed. The closed graph theorem tells us
that if T is defined on all of H, then GðTÞ is closed if and only
if T is bounded. The unbounded operators T we consider will
usually be densely defined; that is, DðTÞ is dense in H. We say
that T0 extends (or is an extension of) T and write T ⊆ T0 when
DðTÞ ⊆ DðT0Þ and T0x ¼ Tx for each x in DðTÞ. If GðTÞ−, the
closure of the graph of T is the graph of a linear transformation
T̄, clearly T̄ is the “smallest” closed extension of T, we say that T
is preclosed (or closable) and refer to T̄ as the closure of T. From
the point of view of calculations with an unbounded operator T,
it is often much easier to study its restriction TjD0 to a dense
linear manifold D0 in its domain DðTÞ than to study T itself.
If T is closed and GðTjD0Þ− ¼ GðTÞ, we say that D0 is a core
for T. Each dense linear manifold in GðTÞ corresponds to a core
for T.

Definition 1: If T is a linear transformation withDðTÞ dense in the
Hilbert space H and range contained in the Hilbert space K, we
define a mapping T �, the adjoint of T, as follows. Its domain con-
sists of those vectors y in K such that, for some vector z in H,
hx; zi ¼ hTx; yi for all x in DðTÞ. For such y, T �y is z. If T ¼ T �,
we say that T is self-adjoint. (Note that the formal relation
hTx; yi ¼ hx; T �yi, familiar from the case of bounded operators,
remains valid in the present context only when x ∈ DðTÞ and
y ∈ DðT �Þ.)

Remark 2: If T is densely defined, then T � is closed. If T0 is an
extension of T, then T � is an extension of T �

0 .

Theorem 3: If T is a densely defined linear transformation from the
Hilbert space H to the Hilbert space K, then

i. if T is preclosed, ðT̄Þ� ¼ T �;
ii. T is preclosed if and only if DðT �Þ is dense in K;
iii. if T is preclosed, T �� ¼ T̄;
iv. if T is closed, T �T þ I is one-to-one with range H and positive

inverse of bound not exceeding 1.

Definition 4:We say that T is symmetric whenDðTÞ is dense inH
and hTx; yi ¼ hx; Tyi for all x and y in DðTÞ. Equivalently, T is
symmetric when T ⊆ T �. (Since T � is closed and GðTÞ ⊆

GðT �Þ, in this case, T is preclosed if it is symmetric. If T is
self-adjoint, T is both symmetric and closed.)

Remark 5: If A ⊆ T with A self-adjoint and T symmetric, then
A ⊆ T ⊆ T �, so that T � ⊆ A� ¼ A ⊆ T ⊆ T � and A ¼ T. It
follows that A has no proper symmetric extension. That is, a
self-adjoint operator is maximal symmetric.

Proposition 6. If T is a closed symmetric operator on the Hilbert
space H, the following assertions are equivalent:

i. T is self-adjoint;
ii. T � � iI have ð0Þ as null space;
iii. T � iI have H as range;
iv. T � iI have ranges dense in H.

Proposition 7. If T is a closed linear operator with domain dense in a
Hilbert space H and with range in H, then

RðTÞ ¼ I −NðT �Þ; NðTÞ ¼ I −RðT �Þ;
RðT �TÞ ¼ RðT �Þ; NðT �TÞ ¼ NðTÞ;

where NðTÞ and RðTÞ denote the projections whose ranges are, re-
spectively, the null space of T and the closure of the range of T.

Proposition 8. Suppose that A and B are linear operators with
their domains dense in a Hilbert space H and their ranges in H.
Then A� þ B� ⊆ ðAþ BÞ� if Aþ B is densely defined, and
B�A� ⊆ ðABÞ� if AB is densely defined.

Proposition 9. If A and C are densely defined preclosed operators
and B is a bounded (everywhere-defined) operator such that
A ¼ BC, then A� ¼ C�B�.

There is an extension of the polar decomposition for bounded
operators to the case of a closed densely defined linear operator
from one Hilbert space to another.

Theorem 10. If T is a closed densely defined linear transformation
from one Hilbert space to another, there is a partial isometry V with
initial space the closure of the range of ðT �TÞ1∕2 and final space the
closure of the range of T such that T ¼ V ðT �TÞ1∕2 ¼ ðT �TÞ1∕2V .
Restricted to the closures of the ranges of T � and T, respectively,
T �T and TT � are unitarily equivalent (and V implements this
equivalence). If T ¼ WH, where H is a positive operator and W
is a partial isometry with initial space the closure of the range of
H, then H ¼ ðT �TÞ1∕2 and W ¼ V .

2.2 Affiliated Operators and Some Spectral Theory.

Definition 11: We say that a closed densely defined operator T is
affiliated with a von Neumann algebra R and write TηR when
U �TU ¼ T for each unitary operator U commuting with R.
(Note that the equality, U �TU ¼ T, is to be understood in
the strict sense that U �TU and T have the same domain and
formal equality holds for the transforms of vectors in that do-
main. As far as the domains are concerned, the effect is that
U transforms DðTÞ onto itself.)

Remark 12: If T is a closed densely defined operator with core D0

and U �TUx ¼ Tx for each x in D0 and each unitary operator U
commuting with a von Neumann algebra R, then TηR.

If A is a bounded self-adjoint operator acting on a Hilbert
space H and A is an abelian von Neumann algebra containing
A, there is a family fEλg of projections in A (indexed by R),
called the spectral resolution of A, such that
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i. Eλ ¼ 0 if λ < −‖A‖, and Eλ ¼ I if ‖A‖ ≤ λ;
ii. Eλ ≤ Eλ 0 if λ ≤ λ 0;
iii. Eλ ¼ ∧λ 0>λEλ 0 ;
iv. AEλ ≤ λEλ and λðI −EλÞ ≤ AðI −EλÞ for each λ;
v. A ¼ ∫ ∥A∥

−∥A∥λdEλ in the sense of norm convergence of approx-
imating Riemann sums; andA is the norm limit of finite linear
combinations with coefficients in spðAÞ, the spectrum of A, of
orthogonal projections Eλ 0 − Eλ.
fEλg is said to be a resolution of the identity if fEλg satisfies

(ii), (iii), ∧λ∈REλ ¼ 0, and ∨λ∈REλ ¼ I.
With the abelian von Neumann algebraA isomorphic toCðXÞ

and X an extremely disconnected compact Hausdorff space, if f
and eλ in CðXÞ correspond to A and Eλ in A, then eλ is the char-
acteristic function of the largest clopen subset Xλ on which f
takes values not exceeding λ.

The spectral theory described above can be extended to un-
bounded self-adjoint operators. We associate an unbounded
spectral resolution with each of them.

Theorem 13. If A is a self-adjoint operator acting on a Hilbert space
H,A is affiliated with some abelian von Neumann algebraA. There
is a resolution of the identity fEλg in A such that ∪∞

n¼1 FnðHÞ is a
core for A, where Fn ¼ En − E−n, and Ax ¼ ∫ n

−nλdEλx for each x
in FnðHÞ and all n, in the sense of norm convergence of approx-
imating Riemann sums.

Since A is self-adjoint, from Proposition 6, Aþ iI and A − iI
have range H and null space ð0Þ; in addition, they have inverses,
say, Tþ and T−, that are everywhere-defined with bound not ex-
ceeding 1. Let A be an abelian von Neumann algebra containing
I,Tþ andT−. IfU is a unitary operator inA 0, for each x inDðAÞ,
Ux ¼ UTþðAþ iIÞx ¼ TþUðAþ iIÞx so that ðAþ iIÞUx ¼
UðAþ iIÞx; and U −1ðAþ iIÞU ¼ Aþ iI. Thus U −1AU ¼ A
and AηA. In particular, A is affiliated with the abelian von Neu-
mann algebra generated by I, Tþ and T−. Because A is abelian,
A is isomorphic to CðXÞ with X an extremely disconnected
compact Hausdorff space. Let gþ and g− be the functions in
CðXÞ corresponding to Tþ and T−. Let fþ and f− be the func-
tions defined as the reciprocals of gþ and g−, respectively, at those
points where gþ and g− do not vanish. Then, fþ and f− are con-
tinuous where they are defined on X , as is the function f defined
by f ¼ ðfþ þ f−Þ∕2. In a formal sense, f is the function that cor-
responds to A. Let Xλ be the largest clopen set on which f takes
values not exceeding λ. Let eλ be the characteristic function ofXλ
and Eλ be the projection in A corresponding to eλ. In this case,
fEλg satisfies Eλ ≤ Eλ 0 if λ ≤ λ 0, Eλ ¼ ∧λ 0>λEλ 0 , ∨λEλ ¼ I and
∧λEλ ¼ 0. That is, we have constructed a resolution of the iden-
tity fEλg. This resolution is unbounded if f∉CðXÞ. Let
Fn ¼ En −E−n, the spectral projection corresponding to the
interval ½−n; n� for each positive integer n. Then AFn is bounded
and self-adjoint. Moreover, ∪∞

n¼1 FnðHÞ is a core for A. From
the spectral theory of bounded self-adjoint operators, Ax ¼
∫ n
−nλdEλx, for each x in FnðHÞ and all n. If x ∈ DðAÞ,

Z
n

−n
λdEλx ¼

Z
n

−n
λdEλFnx ¼ AFnx ¼ FnAx → Ax:

Interpreted as an improper integral, we write

Ax ¼
Z

∞

−∞
λdEλx ðx ∈ DðAÞÞ:

Remark 14: The abelian von Neumann algebra A0 generated by
Tþ and T− in the above discussion is the smallest von Neumann
algebra with which the self-adjoint operator A is affiliated. We
refer to A0 as the von Neumann algebra generated by A.

Lemma 15. If fEλg is a resolution of the identity on a Hilbert spaceH
andA is an abelian von Neumann algebra containing fEλg, there is
a self-adjoint operator A affiliated with A such that

Ax ¼
Z

n

n
λdEλx;

for each x in FnðHÞ and all n, where Fn ¼ En −E−n; and fEλg is
the spectral resolution of A.

Lemma 16. IfA is a closed operator on the Hilbert spaceH, fEλg is a
resolution of the identity on H, ∪∞

n¼1 FnðHÞ is a core for A, where
Fn ¼ En − E−n, and

Ax ¼
Z

n

n
λdEλx;

for each x in FnðHÞ and all n, then A is self-adjoint and fEλg is the
spectral resolution of A.

Lemma 17. If A is a closed operator acting on the Hilbert space H
and CA ⊆ AC for each C in a self-adjoint subsetF ofBðHÞ, then
TA ⊆ AT for each T in the von Neumann algebra generated byF.

Lemma 18. If BA ⊆ AB and DðAÞ ⊆ DðBÞ, where A is a self-ad-
joint operator and B is a closed operator on the Hilbert space H,
then EλB ⊆ BEλ for each Eλ in the spectral resolution fEλg of A.

Definition 19: We say that a closed densely defined operator A is
normal when the two self-adjoint operators A�A and AA� are
equal.

Theorem 20:An operatorA is normal if and only if it is affiliated with
an abelian von Neumann algebra. If A is normal, there is a smallest
von Neumann algebraA0 with whichA is affiliated. The algebraA0

is abelian.

2.3 The Algebra of Affiliated Operators. Let H be a Hilbert space.
Two projections E and F acting onH are said to be orthogonal if
EF ¼ 0. If the range of F is contained in the range of E (equiva-
lently, EF ¼ F), we say that F is a subprojection of E and write
F ≤ E. Let R be a von Neumann algebra acting on H. Suppose
that E and F are nonzero projections in R. We say that E is a
minimal projection in R if F ≤ E implies F ¼ E. Murray and
von Neumann conceived the idea of comparing the “sizes” of pro-
jections in a von Neumann algebra in the following way: E and F
are said to be equivalent (modulo or relative to R), written
E ∼ F, when V �V ¼ E and VV � ¼ F for some V in R. (Such
an operator V is called a partial isometry with initial projection
E and final projection F.) We write E≾F when E ∼ F0 and
F0 ≤ F and E≺F when E is, in addition, not equivalent to F.
It is apparent that ∼ is an equivalence relation on the projections
in R. In addition, ≾ is a partial ordering of the equivalence
classes of projections in R, and it is a nontrivial and crucially
important fact that this partial ordering is a total ordering when
R is a factor. (Factors are von Neumann algebras whose centers
consist of scalar multiples of the identity operator.) Murray and
von Neumann also define infinite and finite projections in this
framework modeled on the set-theoretic approach. The projec-
tion E inR is infinite (relative toR) when E ∼ F < E, and finite
otherwise. We say that the von Neumann algebraR is finite when
the identity operator I is finite.

Throughout the rest of this subsection, R denotes a finite von
Neumann algebra acting on a Hilbert space H, and AðRÞ de-
notes the family of operators affiliated with R.
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In ref. 10, the following are proved.

Proposition 21. Suppose that operators S and T are affiliated with
R, then:

i. Sþ T is densely defined, preclosed and its closure, denoted by
Sþ̂T, is affiliated with R;

ii. ST is densely defined, preclosed and its closure, denoted by S·̂T,
is affiliated with R.

Proposition 22. Suppose that operatorsA, B andC are affiliated with
R, then

ðA·̂BÞ·̂C ¼ A·̂ðB·̂CÞ;

that is, the associative law holds for the multiplication ·̂.

Proposition 23. Suppose that operatorsA, B andC are affiliated with
R, then

ðAþ̂BÞ·̂C ¼ ðA·̂CÞþ̂ðB·̂CÞ and C·̂ðAþ̂BÞ ¼ ðC·̂AÞþ̂ðC·̂BÞ;

that is, the distributive laws hold for the multiplication ·̂ relative to the
addition þ̂.

Proposition 24. Suppose that operatorsA andB are affiliated withR,
then

ðaAþ̂bBÞ� ¼ āA�þ̂ b̄ B� and ðA·̂BÞ� ¼ B� ·̂A�;

ða; b ∈ CÞ

where * is the usual adjoint operation on operators (possibly un-
bounded).

Therefore, AðRÞ, provided with the operations þ̂ (addition)
and ·̂ (multiplication), is a * algebra (with unit I). Recall, R is
finite (and must be) as a von Neumann algebra for this to be valid.

Definition 25: We use “AfðRÞ” to denote the * algebra
(AðRÞ; þ̂; ·̂). We call AfðRÞ the Murray–von Neumann algebra
associated with R.

3 Commutativity and Affiliation

Proposition 26. If R is a finite von Neumann algebra acting on a
Hilbert space H, H and K are self-adjoint operators in AfðRÞ,
and fEλgλ∈R, fFλgλ∈R are the spectral resolutions of H, K, respec-
tively, thenH ·̂K ¼ K ·̂H if and only ifK ·̂Eλ ¼ Eλ ·̂K for each λ inR,
and if and only if EλFλ 0 ¼ Fλ 0Eλ for all λ and λ 0 in R.

Proof: Suppose, first, that H ·̂K ¼ K ·̂H. We show that H and K
are affiliated with some abelian von Neumann subalgebra A
of R. For this, we prove that Hþ̂iK is a normal operator af-
filiated with R. To see this, we observe that

ðHþ̂iKÞðHþ̂iKÞ� ¼ ðHþ̂iKÞðH−̂iKÞ ¼ H ·̂Hþ̂K ·̂K

¼ ðH−̂iKÞ·̂ðHþ̂iKÞ ¼ ðHþ̂iKÞ�ðHþ̂iKÞ;

from the properties of AfðRÞ as an associative * algebra. (See
Section 3.2 in ref. 10.) From Theorem 20, Hþ̂iK “generates”
an abelian von Neumann algebra A with which it is affiliated
as is H−̂iKð¼ ðHþ̂iKÞ�Þ. Thus H and K are affiliated with A.
The spectral resolutions fEλgλ∈R and fFλgλ∈R lie in A. Since
A is abelian, EλFλ 0 ¼ Fλ 0Eλ, H ·̂Fλ ¼ Fλ ·̂H, and K ·̂Eλ ¼ Eλ ·̂K,
for all λ and λ 0 in R.

Suppose, now, that EλFλ 0 ¼ Fλ 0Eλ for all λ and λ 0 in R. Then
fEλ; Fλgλ∈R generates an abelian von Neumann algebra A with
which each of H and K are affiliated (Theorem 13, Lemma
15, Lemma 16). From Theorem 5.6.12 and Theorem 5.6.15 in
refs. 7–9, AfðAÞ is abelian. Hence H ·̂Fλ ¼ Fλ ·̂H, K ·̂Eλ ¼
Eλ ·̂K, and H ·̂K ¼ K ·̂H.

Finally, if K ·̂Eλ ¼ Eλ ·̂K for all λ in R, then EλFλ 0 ¼ Fλ 0Eλ for
all λ and λ 0 in R, from what we have just proved, with Eλ in place
of H. Thus, again from what we have just proved, H ·̂K ¼ K ·̂H.

Remark 27:The first part of the preceding proof requires us to find
a way to move from a family of commuting elements in AfðRÞ
to a closely associated family of operators in R. The natural as-
sociated family is the set of projections in the various spectral
resolutions. However, our problem is precisely that of showing
that the spectral resolutions, for self-adjoint elements of
AfðRÞ that happen to commute (algebraically), commute with
one another. Of course, the process for connecting a self-adjoint
operator to its spectral projections is a vital part of what we must
use. That process is “analytic” in nature and calls for a certain
amount of “backing and filling” if conclusions are to be drawn
from it. We have seemingly avoided that process—but we haven’t
really done that. What we have done is to take advantage of
Theorem 20, which gives us special information about a normal
operator, that we have constructed from two commuting, self-
adjoint operators H and K in AfðRÞ with the well-functioning
algebraic equipment Murray and von Neumann have left us.
(See Section 3 in ref. 10.) At the same time, Theorem 20 makes
use of the special circumstances a normal operator provides to
apply Lemma 18, which moves us from H and K to their respec-
tive resolutions, but all in an abelian framework (supplied by The-
orem 20). Still, the “analysis,” effecting the shift fromH andK to
their resolutions, is hidden. It has been shifted in Lemma 18 to
Remark 14 and from there to Theorem 13 where it appears in full
force through the introduction of the operators Tþ and T−,
bounded, everywhere-defined, and inverse to H þ iI and
H − iI, respectively. Once again, the analysis is partially hidden,
because we pass to the von Neumann algebra generated by Tþ
and T−, with which H is affiliated (on simple set-theoretic and
mapping grounds). Now, that algebra contains the spectral reso-
lution fEλgλ∈R of H, essentially by virtue of von Neumann’s
double commutant theorem, a large and very powerful approxi-
mation theorem, the guiding theorem of this article.

From this discussion of the pieces of our proof of Proposi-
tion 26, we can see a direct route to the proof that K ·̂Eλ ¼
Eλ ·̂K if we are willing to enter the proof of Theorem 13 and
use Tþ and T−, now inverses to H þ iI and H − iI, respectively.
In AfðRÞ, we have ðH þ iIÞ·̂K ¼ K ·̂ðH þ iIÞ from our assump-
tion that H ·̂K ¼ K ·̂H. Thus K ¼ Tþ ·̂ðH þ iIÞ·̂K ¼
ðTþ ·̂KÞ·̂ðH þ iIÞ, and K ·̂Tþ ¼ ðTþ ·̂KÞ·̂ðH þ iIÞ·̂Tþ ¼ Tþ ·̂K.
Similarly, K ·̂T− ¼ T− ·̂K and K commutes with each element of
the von Neumann algebra generated by Tþ and T− (Lemma 17).
In particular, K ·̂Eλ ¼ Eλ ·̂K, for each λ inR. From this same con-
clusion, with Eλ in place of H, we have that EλFλ 0 ¼ Fλ 0Eλ, for
all λ and λ 0 in R.

Corollary 28: Let R be a finite von Neumann algebra acting on a
Hilbert space H. Suppose that F is a self-adjoint, abelian subset
of AfðRÞ. Then there is an abelian von Neumann subalgebra of
R with which every element in F is affiliated.

Proof: Since F is a self-adjoint family, it will suffice to show that
the “real” and “imaginary” parts of each element in F are af-
filiated with some one abelian algebra. This follows immediately
from the preceding proposition because that proposition assures
us that all the spectral resolutions of this family of self-adjoint
operators commute with one another. Thus the family of projec-
tions in all the spectral resolutions is a commuting self-adjoint
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family inR and generates an abelian subalgebra ofR with which
all the operators in F are affiliated.

Proposition 29. Let R be a finite von Neumann algebra acting on a
Hilbert space H and A be a maximal abelian self-adjoint (masa)
subalgebra of AfðRÞ. Let A0 be A ∩ R. Then A0 is a maximal
abelian self-adjoint subalgebra of R. In addition, A ¼ AfðA0Þ.

Proof: Suppose H is a self-adjoint operator in A with spectral re-
solution fEλg. If K is a self-adjoint operator in A, K commutes
with H. From Proposition 26, K commutes with fEλg. Since A is
a masa, Eλ ∈ A for every λ. Hence all spectral resolutions of self-
adjoint operators in A lie in A0. Suppose A is a self-adjoint op-
erator in R commuting with A0. Then, again, from Proposi-
tion 26, A commutes with each self-adjoint operator H in A
(since A commutes with the spectral resolution of H). By max-
imality (and self-adjointness),A is inA, hence inA0. HenceA0 is
a masa in R. [To see that A0 is a strong-operator-closed algebra,
letA be an operator inR that is a strong-operator limit of a net of
operators fAjg in A0. Then any B in A0 commutes with the
operators in the net. Since Aj → A in the strong-operator topol-
ogy, AjBx → ABx for every x ∈ H. At the same time, AjBx ¼
BAjx → BAx, from the continuity (boundedness) of B. Thus A
commutes with every B in A0 and hence A commutes with
A0. From maximality of A0, A is in A0. Hence, A0 is a strong-
operator-closed subalgebra of R.]

We show, next, that A is AfðA0Þ. Suppose H is a self-adjoint
operator in AfðA0Þ. Then the spectral resolution of H lies in A0

hence inA. Thus every self-adjoint operator inA commutes with
this spectral resolution, hence with H (Proposition 26). By max-
imality of A, H is in A. Thus AfðA0Þ ⊆ A.

Suppose H is a self-adjoint operator in A. Its spectral resolu-
tion is inA0, and henceH ∈ AfðA0Þ sinceH is affiliated with the
von Neumann algebra generated by its spectral resolution.
Thus A ⊆ AfðA0Þ.

Proposition 30. If R is a finite von Neumann algebra acting
on a Hilbert space H with center C, then AfðCÞ is the center, C,
of AfðRÞ.

Proof: If C is in C, then C commutes with every projection in R,
hence, with every spectral resolution in R, and therefore, with
every self-adjoint element inAfðRÞ. Thus C lies in C and C ⊆ C.

From the properties of the adjoint operation, withC, now, inC
and A in AfðRÞ,

C� ·̂A� ¼ ðA·̂CÞ� ¼ ðC·̂AÞ� ¼ A� ·̂C�:

SinceAfðRÞ is a self-adjoint algebra, C� is in C. Thus C is a self-
adjoint algebra. Hence it suffices to show that each self-adjoint
element in C is in AfðCÞ in order to show C ⊆ AfðCÞ. For this, if
A is a self-adjoint operator inC, it commutes with all elements of
AfðRÞ. From Proposition 26, the spectral resolution of A com-
mutes with all elements of AfðRÞ. Therefore, the spectral reso-
lution of A lies in C and A is in AfðCÞ. Thus C ⊆ AfðCÞ.

To show that AfðCÞ ⊆ C, note first, that AfðCÞ is a self-adjoint
family. Hence it suffices to show that each self-adjointA inAfðCÞ
is inC. In this case, the spectral resolution ofA lies in C, hence in
C. Since the spectral resolution of A commutes with every self-
adjoint operator in AfðRÞ, A commutes with every self-adjoint
operator in AfðRÞ and hence A ∈ C. Thus AfðCÞ ¼ C.

Definition 31: If A is a closed, densely defined operator on a Hil-
bert space H and B is a bounded, everywhere-defined operator
on H, we say that A and B commute when BA ⊆ AB.

Toward understanding what we should mean by “the commu-
tant of AfðRÞ,” we prove the proposition that follows.

Proposition 32. SupposeH and K are self-adjoint operators (possibly
unbounded) acting on a Hilbert space H with spectral resolutions
fEλgλ∈R and fFλgλ∈R, respectively. Then the following conditions
are equivalent:

i. EλK ⊆ KEλ, for all λ in R; that is Eλ and K commute;
ii. EλFλ 0 ¼ Fλ 0Eλ, for all λ and λ 0 in R;
iii. H and K are affiliated with the (abelian) von Neumann algebra

generated by fEλgλ∈R and fFλgλ∈R;
iv. FλH ⊆ HFλ, for all λ in R.

Proof: ðiÞ → ðiiÞ From Lemma 18, with Eλ in place of B and K
in place of A in that lemma. Since Fλ 0Eλ is defined on all of H,
Fλ 0Eλ ¼ EλFλ 0 , for all λ and λ 0 in R.

ðiiÞ → ðiiiÞ Since EλFλ 0 ¼ Fλ 0Eλ for all λ and λ 0 in R,
fEλ; Fλgλ∈R generates an abelian von Neumann algebra A on
H with which H and K are affiliated.

ðiiiÞ → ðivÞ Since A is abelian, AfðAÞ is abelian from Theo-
rem 5.6.12 and Theorem 5.6.15 in refs. 7–9. As H and Fλ are
in AfðAÞ, Fλ ·̂H ¼ H ·̂Fλ. Now,

FλH ⊆ Fλ ·̂H ¼ H ·̂Fλ ¼ HFλ;

since H is self-adjoint (hence, closed) and Fλ is bounded.
By symmetry, (i) and (iv) are the same condition, so that we

have proved the equivalence of (i), (ii), (iii) and (iv).

Proposition 33: Suppose T is a self-adjoint operator acting on a Hil-
bert space H and B is a self-adjoint, everywhere-defined and
bounded operator acting on H with spectral resolution fEλgλ∈R.
Then the following conditions are equivalent:

i. EλT ⊆ TEλ for all λ in R;
ii. BT ⊆ TB.

Proof: ðiÞ → ðiiÞ It follows from Lemma 17 withA,C, T andF
of that lemma replaced by T, Eλ, B and fEλgλ∈R, respectively.

ðiiÞ → ðiÞ From Lemma 18, FλB ⊆ BFλ for all λ in R, where
fFλgλ∈R is the spectral resolution of T. From the preceding pro-
position, EλT ⊆ TEλ.

Definition 34: Suppose S and T are self-adjoint operators (possibly
unbounded) acting on a Hilbert space H. We say that S commu-
tes with T if S commutes with the spectral resolution of T.

Remark 35: From Proposition 32, S commutes with T if and only if
T commutes with S (if and only if their spectral resolutions com-
mute), in which case we also say that S and T commute.

4 Main Theorem

Definition 36: If F is a family of self-adjoint operators (possibly
unbounded) acting on a Hilbert space H, we call the set Fsa 0
of all self-adjoint operators that commute with all the operators
in F the self-adjoint commutant of F (written, “sa-commutant”).

Theorem 37. Let R be a von Neumann algebra. Suppose S is the
family of all self-adjoint operators affiliated withR. Then the double
sa-commutant of S coincides with S.

Proof: We prove first that Ssa 0 , the sa-commutant of S, is the set
of all self-adjoint operators affiliated with R 0. (So, Ssa 0 is the set
of self-adjoint elements inAfðR 0Þ whenR 0 is finite.) To see this,
choose a self-adjoint operator H 0 affiliated with R 0. Then the
spectral resolution of H 0 is in R 0. If H is in S, its spectral re-
solution is in R, and hence, commutes with the spectral resolu-
tion of H 0. By denition, H 0 commutes with H. Since H is an
arbitrary element of S, H 0 is in Ssa 0 .
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If K 0 is in Ssa 0 , then K 0 commutes, in particular, with each
self-adjoint operator in R and hence with every operator in
R. To see this, with B in R, B ¼ B1 þ iB2 where B1 and B2

are self-adjoint operators in R. Since B1K 0 ⊆ K 0B1, and
B2K 0 ⊆ K 0B2,

ðB1 þ iB2ÞK 0 ¼ B1K 0 þ iB2K 0 ⊆ K 0B1 þ iK 0B2

⊆ K 0ðB1 þ iB2Þ

Since R is a von Neumann algebra, from von Neumann’s
double commutant theorem, R ¼ R 0 ¼ ðR 0Þ 0. It follow that
K 0 commutes with every operator in the commutant of R 0 and
hence, by denition, K 0 is affiliated with R 0.

We, now, apply what we have just proved to Ssa 0 (the family of
all self-adjoint operators affiliated with R 0). The sa-commutant
of Ssa 0 is the set of all self-adjoint operators affiliated with
ðR 0Þ 0ð¼ RÞ. Therefore, the double sa-commutant ofS coincides
with S.

Definition 38: With R a finite von Neumann algebra acting on a
Hilbert space H, the commutant AfðRÞ 0 of AfðRÞ is the set of
closed, densely defined operators C 0 on H that commute with
each self-adjoint operatorH inR, that is,EλC 0 ⊆ C 0Eλ, for each
Eλ in the spectral resolution of H.

Proposition 39. With R a finite von Neumann algebra acting on a
Hilbert space H, C 0 ∈ AfðRÞ 0 if and only if BC 0 ⊆ C 0B for each
B in R.

Proof: Suppose, first, that C 0 ∈ AfðRÞ 0. Then EC 0 ⊆ C 0E for
each projection E in R. Since the set of projections in R is a
self-adjoint family that generates the von Neumann algebra R,
BC 0 ⊆ C 0B for each B in R from Lemma 17.

If BC 0 ⊆ C 0B for each B in R, then EC 0 ⊆ C 0E for each
projection E in the spectral resolution of a self-adjoint operator.
Thus C 0 ∈ AfðRÞ 0 in this case.

Theorem 40: IfR is a finite von Neumann algebra acting on a Hilbert
spaceH andR 0, the commutant ofR, is also finite (as a von Neu-
mann algebra), then AfðRÞ 0 ¼ AfðR 0Þ, and

AfðRÞ 0 0 ¼ AfðR 0Þ 0 ¼ AfðR 0 0Þ ¼ AfðRÞ:

Proof: Suppose C 0 ∈ AfðRÞ 0. From Proposition 39, BC 0 ⊆ C 0B,
for each B in R. In particular, then, UC 0 ⊆ C 0U, for each uni-
tary operator U in R. From 5.6(13) in refs. 7–9, C 0 ¼
U −1UC 0 ⊆ U −1C 0U, and UC 0U −1 ⊆ C 0UU −1 ¼ C 0. As this
is true for each unitary operator U in R, replacing U by U −1

in the second inclusion, we have that U −1C 0U ⊆ C 0, as well
as, C 0 ⊆ U −1C 0U. Thus C 0 ¼ U −1C 0U for each unitary opera-
tor U in R. Hence C 0ηR 0 (since R ¼ R 0 0, from the von Neu-
mann double commutant theorem). It follows that C 0 ∈ AfðR 0Þ
and that AfðRÞ 0 ⊆ AfðR 0Þ.

Suppose, next, that C 0 ∈ AfðR 0Þ. Then C 0U ¼ UC 0 for each
unitary operator U in R 0 0ð¼ RÞ. Let E be a projection in R.
Then Eþ iðI − EÞ (¼Uþ) and E − iðI −EÞ (¼U−) are unitary
operators in R (¼R 0 0). Thus

2EC 0 ¼ ðUþ þU−ÞC 0 ¼ UþC 0 þU−C 0

¼ C 0Uþ þC 0U− ⊆ C 0ðUþ þU−Þ ¼ 2C 0E:

Hence EC 0 ⊆ C 0E, for each projection E in R, and C 0 ∈
AfðRÞ 0. Therefore AfðR 0Þ ⊆ AfðRÞ 0 and AfðRÞ 0 ¼ AfðRÞ 0.
The last line of the statement of this theorem now becomes
the completion of this proof.
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