PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 9, September 2013, Pages 3093–3105 S 0002-9939(2013)11753-3 Article electronically published on May 2, 2013

CLOSED DENSELY DEFINED OPERATORS COMMUTING WITH MULTIPLICATIONS IN A MULTIPLIER PAIR

DON HADWIN, ZHE LIU, AND ERIC NORDGREN

(Communicated by Richard Rochberg)

Dedicated to the memory of Bill Arveson, an inspiration to us all

ABSTRACT. For a multiplier pair (X,Y) we study the closed densely defined operators T on X that commute with all of the multiplications by right multipliers in X. We apply our general results to special cases involving H^p , completions of L^∞ [0, 1] with respect to certain norms, and the completion of a II_1 factor von Neumann algebra with respect to a unitarily invariant norm, where we show that each such T is a "left multiplication". However, we give an example of a closed densely defined operator on the Bergman space that commutes with all multiplications by H^∞ -functions but is not a multiplication operator.

1. Introduction

In [6], [7] the first and third authors introduced and studied the notion of a multiplier pair (X,Y), where X is a Banach space that is a vector subspace of a Hausdorff topological vector space Y with a separately continuous bilinear map (multiplication) $\cdot: X \times X \to Y$ such that the set $\mathcal{L}_0 = \{x \in X : x \cdot X \subseteq X\}$ of left multipliers and the set $\mathcal{R}_0 = \{x \in X : X \cdot x \subseteq X\}$ of right multipliers are dense in X, and such that there are dense subsets $\mathcal{E} \subseteq \mathcal{L}_0$, $\mathcal{F} \subseteq X$, $\mathcal{G} \subseteq \mathcal{R}_0$ such that

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

whenever $a \in \mathcal{E}$, $b \in \mathcal{F}$, $c \in \mathcal{G}$. Moreover, there is an $e \in X$ such that $e \cdot x = x \cdot e = x$ for every $x \in X$. It was shown that, for each $x \in X$, the linear transformations R_x and L_x defined by

$$L_x a = x \cdot a, \ R_x a = a \cdot x$$

are closed densely defined operators on X. Moreover, L_x is bounded on \mathcal{R}_0 if and only if $x \in \mathcal{L}_0$ and R_x is bounded on \mathcal{L}_0 if and only if $x \in \mathcal{R}_0$. Thus $\mathcal{R} = \{R_x : x \in \mathcal{R}_0\}$ and $\mathcal{L} = \{L_x : x \in \mathcal{L}_0\}$ are unital subalgebras of B(X) (the set of bounded linear operators on X). It was proved in [6] that \mathcal{L} and \mathcal{R} are each other's commutant, which implies that \mathcal{L} and \mathcal{R} are closed in the weak operator topology. In the setting of multiplier pairs a general notion of a composition operator was defined.

 $\odot 2013$ American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors November 11, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B99, 47B47; Secondary 30H10, 30H15, 46L10.

Key words and phrases. Multiplier pair, closed operator, II₁-factor, Hardy space.

Suppose B(W) denotes the Banach algebra of all bounded linear transformations on a Banach space W, and suppose \mathcal{A} , \mathcal{B} are unital Banach subalgebras of B(W) such that $\mathcal{B}' = \mathcal{A}$ and $\mathcal{A}' = \mathcal{B}$, where \mathcal{S}' denotes the *commutant* of a set of operators \mathcal{S} , i.e., the set of operators commuting with every element of \mathcal{S} . Suppose T is a linear transformation whose domain $\mathcal{D}(T)$ and range $\mathcal{R}(T)$ are linear subspaces of W. We say that T commutes with \mathcal{B} (or T is affiliated with \mathcal{A}) if, for every $S \in \mathcal{B}$, we have $S(\mathcal{D}(T)) \subseteq \mathcal{D}(T)$ and, for every $x \in \mathcal{D}(T)$, we have STx = TSx. This is equivalent to saying that, for every invertible $S \in \mathcal{B}$, we have ST = TS. It is also equivalent to saying that, for every $S \in \mathcal{B}$,

$$(S \oplus S) \operatorname{Graph}(T) \subseteq \operatorname{Graph}(T),$$

where Graph $(T) = \{(x, y) \in W \times W : y = Tx\}$ is the graph of T. It easily follows that if Graph (T) is closed, then the set

$$S = \{S \in B(W) : S(\mathcal{D}(T)) \subseteq \mathcal{D}(T), \forall x \in \mathcal{D}(T) \ STx = TSx\}$$

is a unital algebra that is closed in the weak operator topology. In order to show that $\mathcal{B} \subseteq \mathcal{S}$, it is sufficient to show that \mathcal{S} contains a set of operators \mathcal{B}_0 such that the unital weak operator closed algebra generated by \mathcal{B}_0 is \mathcal{B} .

In this paper we study the problem of determining for a multiplier pair (X, Y) the closed densely defined operators T on X that commute with \mathcal{R} (i.e., are affiliated with \mathcal{L}). The symmetry of the situation makes this problem "equivalent" to that of finding the closed densely defined operators on X that commute with \mathcal{L} (i.e., are affiliated with \mathcal{R}).

In [6] it was shown that, for every $x \in X$, L_x commutes with every operator in \mathcal{R} and R_x commutes with every operator in \mathcal{L} . In general, we expect that the closed densely defined operators commuting with \mathcal{R} should be left multiplications of some sort. We will prove general results that affirm this notion in a large number of cases, but, when X is the Bergman space on the unit disk, we construct a closed densely defined operator commuting with $\mathcal{L} = \mathcal{R} = H^{\infty}$ that is not a multiplication by any function.

Examples of this problem have been studied by D. Suárez [18] and S. Seubert [17] in the case of the algebra generated by the unilateral shift operator, by D. Sarason [13] in the case of a restricted shift operator [14], [15], and by H. Bercovici [1] in the case of a C_0 -contraction. A result for von Neumann algebras was proved by Nelson [11]. The problem for L^{∞} [0, 1] acting on L^2 [0, 1] was discussed in [9].

In [6] many examples of multiplier pairs were constructed. Many of them satisfy more conditions than assumed in the definition. We define a multiplier pair (X,Y) to be a *special multiplier pair* if the multiplication $\cdot: Y \times Y \to Y$ is defined and separately continuous and $(Y,+,\cdot)$ is a ring with identity e.

2. General results

We begin with algebraic results that will apply to special multiplier pairs. If \mathcal{R} is a ring and $\mathcal{S} \subseteq \mathcal{R}$, we say that \mathcal{S} is *left-separating* if, for every $x \in \mathcal{R}$, $x \cdot \mathcal{S} = \{0\}$ implies x = 0.

Theorem 1. Suppose $1 \in Y$ is a ring, $1 \in \mathcal{R}$ is a subring of Y and $\mathcal{R} \subset X \subset Y$, where X is a right \mathcal{R} -module. Suppose $G \subset X \times X$ is a graph and a right \mathcal{R} -module

containing an element (g,h) such that

- (1) g has a left-inverse g^{-1} in Y,
- (2) for every $x \in X$, $\{u \in \mathcal{R} : \exists v \in \mathcal{R} \text{ such that } xu = gv\}$ is left-separating for Y.

Then $G \subseteq \text{Graph}(L_{hq^{-1}})$.

Proof. Suppose $(x,y) \in G$, $u,v \in \mathcal{R}$ and xu = gv. Then $(x,y)u - (g,h)v = (0,yu-hv) \in G$. Since $(0,0) \in G$ and G is a graph, we know yu - hv = 0. Thus $yu = hv = hg^{-1}(gv) = hg^{-1}(xu)$. Hence, for every $u \in \mathcal{R}$ for which there is a $v \in \mathcal{R}$ such that xu = gv, we have

$$\left[y - L_{hg^{-1}}x\right]u = 0.$$

It follows from (2) that $y = L_{hq^{-1}}x$ for every $(x, y) \in G$.

If R is an integral domain, the field of fractions \hat{R} of R is the field of formal quotients $\frac{a}{b}$ with $a,b \in R$ and the natural addition and multiplication. We think of $R \subseteq \hat{R}$ by identifying $x \in R$ with $\frac{x}{1} \in \hat{R}$.

Corollary 1. Suppose F is the field of fractions of an integral domain R, and $R \subset X \subset F$ and X is an R-module. Suppose $G \subset X \times X$ is a graph and an R-module. Then there is a $\varphi \in F$ such that G is contained in the graph of $y = \varphi x$ in $F \times F$.

Corollary 2. Suppose (X,Y) is a special multiplier pair such that Y is an integral domain and let \hat{Y} denote the field of quotients over Y. Suppose also that $X \subseteq \hat{\mathcal{R}}_0$. If $G \subseteq X \times X$ is a graph that is an \mathcal{R}_0 -module, then there is a $\varphi \in \hat{\mathcal{R}}_0$ such that $G \subseteq \operatorname{Graph}(L_{\varphi})$. Moreover, if the domain of G is dense in X and $\tau : Y \to \mathbb{C}$ is a unital algebra homomorphism whose restriction to X is continuous, then there are $f, g \in \mathcal{R}_0$ such that $\varphi = g/f$ and $\tau(f) \neq 0$.

Proof. The first part follows immediately from Theorem 1. Next, suppose the domain of G is dense and $\tau: Y \to \mathbb{C}$ is a multiplicative linear functional whose restriction to X is continuous. It follows that the domain of G cannot be contained in $\ker \tau$. Hence there is an $(f,g) \in G$ such that $\tau(f) \neq 0$. Since $g = \varphi f$, we have that $\varphi = g/f$ and $\tau(f) \neq 0$.

Throughout this paper we use (SOT) to denote the strong operator topology.

Theorem 2. Suppose (X,Y) is a multiplier pair and T is a closed densely defined operator on X commuting with every operator in \mathcal{R} and such that $T \subseteq L_y$ for some $y \in Y$. Suppose also that, for some $g \in \mathcal{D}(T)$ and for every $x \in X$, there exist $\{u_n\}, \{v_n\}$ in \mathcal{R}_0 such that

- (1) $xu_n = gv_n \in \mathcal{D}(T) \subseteq \mathcal{D}(L_y),$
- (2) $R_{u_n} \to 1$ (SOT).

Then $T = L_y$.

Proof. Suppose $x \in \mathcal{D}(L_y)$, so $yx \in X$, and choose $\{u_n\}$ and $\{v_n\}$ as above. Then $xu_n \to x$ and $(yx)u_n \to yx$, but $xu_n = gv_n \in D(T)$, so $yxu_n = Txu_n$. Hence $(x, yx) = \lim_{n \to \infty} (xu_n, Txu_n) \in \mathcal{G}(T)^- = \mathcal{G}(T)$. Hence $x \in \mathcal{D}(T)$. Thus $\mathcal{D}(T) = \mathcal{D}(L_y)$, so $T = L_y$.

Theorem 3. Suppose (X,Y) is a special multiplier pair such that, for each $y \in Y$, there is a sequence $\{q_n\}$ in \mathcal{R}_0 such that

- (1) $R_{q_n} \to 1$ in the (SOT) on X,
- (2) $yq_n \in \mathcal{R}_0$ for every n.

If T is a closed densely defined operator on X commuting with \mathcal{R} and there is a $g \in \mathcal{D}(T)$ that is invertible in Y, then $T = L_{T(q)q^{-1}}$.

Proof. It follows from condition (1) that $||e-eq_n|| \to 0$, which, from the separate continuity of multiplication in Y, implies $w-wq_n=w\cdot(e-eq_n)\to 0$ and $w-q_nw=(e-eq_n)\cdot w\to 0$ in Y. Hence $\{q_1,q_2,\ldots\}$ is both left-separating and right-separating in Y. Suppose $x\in X$ and let $y=g^{-1}x\in Y$. Choose $\{q_n\}$ as above and note that

$$xq_n = g(yq_n),$$

so, by Theorem 1, we see that $T \subseteq L_{T(g)g^{-1}}$. If $x \in \mathcal{D}\left(L_{T(g)g^{-1}}\right)$, then $xq_n = R_{yq_n}\left(g\right) \in \mathcal{D}\left(T\right)$ (since T commutes with $R_{T(g)g^{-1}}\right)$, $||xq_n - x|| \to 0$ and $T\left(xq_n\right) = L_{T(g)g^{-1}}\left(xq_n\right) = \left(L_{T(g)g^{-1}}x\right)q_n \to L_{T(g)g^{-1}}x$. Since the operator T is closed, $\left(x, L_{T(g)g^{-1}}x\right)$ is in the graph of T. Hence $T = L_{T(g)g^{-1}}$.

We now consider a special case in which X is a Hilbert space and $\mathcal L$ and $\mathcal R$ are von Neumann algebras.

Lemma 1. Suppose (X,Y) is a multiplier pair, X is a Hilbert space and \mathcal{L} is a von Neumann algebra. Suppose T is a closed densely defined operator affiliated with \mathcal{L} . Then there are $u,v \in \mathcal{L}$ with $0 \le u$ and $\ker u = 0$ such that $T \subseteq L_{u^{-1}v}$.

Proof. Since Graph (T) is closed and invariant for the von Neumann algebra $\mathcal{M} = \{A \oplus A : A \in \mathcal{R}\}$, the projection P from $X \oplus X$ onto Graph (T) is in the commutant of \mathcal{M} , which is $\mathcal{M}_2(\mathcal{R}') = \mathcal{M}_2(\mathcal{L})$. Hence, we can write $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $A,B,C,D \in \mathcal{L}$. If $\begin{pmatrix} x \\ Tx \end{pmatrix} \in \operatorname{Graph}(T)$, then

$$\left(\begin{array}{c} x \\ Tx \end{array}\right) = P \left(\begin{array}{c} x \\ Tx \end{array}\right) = \left(\begin{array}{c} Ax + BTx \\ Cx + DTx \end{array}\right),$$

which implies

$$Tx = Cx + DTx$$

or

$$(1-D)Tx = Cx.$$

Suppose $x \in X$, ||x|| = 1 and Dx = x.

Then

$$\left\| P \begin{pmatrix} 0 \\ x \end{pmatrix} \right\|^2 = \left(P \begin{pmatrix} 0 \\ x \end{pmatrix}, \begin{pmatrix} 0 \\ x \end{pmatrix} \right) = \left(\begin{pmatrix} Bx \\ Dx \end{pmatrix}, \begin{pmatrix} 0 \\ x \end{pmatrix} \right)$$
$$= (Dx, x) = \left\| \begin{pmatrix} 0 \\ x \end{pmatrix} \right\|^2.$$

Thus $P\begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ x \end{pmatrix}$, which means $\begin{pmatrix} 0 \\ x \end{pmatrix} \in \operatorname{Graph}(T)$, which, in turn, implies x = T0 = 0. Thus $\ker(1 - D) = 0$. We have from (1 - D)Tx = Cx that $Tx = (1 - D)^{-1}Cx$ for every $x \in \mathcal{D}(T)$.

We now look at a case that will apply to operator algebras with a *strictly cyclic separating vector*. Suppose X is a Banach space and A is a norm closed unital subalgebra of B(X) and suppose $0 \neq e \in X$ satisfies

- (1) Ae = X (i.e., e is a strictly cyclic vector for A),
- (2) e is a separating vector for \mathcal{A} , i.e., for every $A \in \mathcal{A}$,

$$Ae = 0 \Longrightarrow A = 0.$$

We can define a multiplication \cdot on X by

$$(Ae) \cdot (Be) = (AB) e.$$

In this case if we let X = Y, we have (X, Y) as a multiplier pair with $\mathcal{L}_0 = \mathcal{R}_0 = X$. Conversely, suppose (X, Y) is a multiplier pair with $\mathcal{L}_0 = \mathcal{R}_0 = X$. Then e is a strictly cyclic separating vector for $\mathcal{L} = \{L_x : x \in \mathcal{L}_0\}$, since $\mathcal{L}e = \mathcal{L}_0 = X$ and since $L_x e = 0$ implies x e = x = 0.

Proposition 1. Suppose (X,Y) is a multiplier pair and $\mathcal{L}_0 = \mathcal{R}_0 = X$. Suppose T is a closed densely defined operator on X affiliated with \mathcal{L} . Then $T \in \mathcal{L}$.

Proof. The map $\gamma: \mathcal{L} \to X$ defined by $\gamma(L_x) = x$ is continuous and bijective. It follows from the open mapping theorem that γ^{-1} is continuous. Since $\mathcal{D}(T)$ is dense in X, there is a $g \in \mathcal{D}(T)$ with $\|e - g\| < 1/\|\gamma^{-1}\|$, which means that $\|1 - L_g\| = \|\gamma^{-1}(e - g)\| < 1$. Hence L_g is invertible in B(X) and in the commutant of \mathcal{R} . Hence there is an $h \in \mathcal{L}_0$ such that $\eta = hg = e$. It follows from the fact that $\mathcal{D}(T) \subseteq \mathcal{R}(\mathcal{D}(T))$ that $\mathcal{D}(T) = X$, which implies $T \in \mathcal{R}' = \mathcal{L}$.

We conclude with some results in a different direction.

Proposition 2. Suppose (X,Y) is a multiplier pair. Then:

- (1) If $a \in X$, then L_a is a closed densely defined operator on X that commutes with every operator in \mathcal{R} .
- (2) If (X, Y) is a special multiplier pair and $y \in Y$, then L_y is a closed operator on X that commutes with every operator in \mathcal{R} .
- (3) If (X,Y) is a special multiplier pair, $y \in Y$ and, for each $x \in \mathcal{R}_0$, there is a sequence $\{e_n\}$ in \mathcal{L}_0 such that
 - (a) $||e_n x x|| \to 0$,
 - (b) $ye_n \in X$ for every $n \ge 1$, then $\mathcal{D}(L_y)$ is dense in X.

Proof. (1) This was proved in [6].

- (2) If $\{(x_n, yx_n)\}$ is a sequence in Graph (L_y) and $\|(x_n, yx_n) (x, w)\| \to 0$, then $\|x_n x\| \to 0$ and $\|yx_n w\| \to 0$. Thus $x_n \to x$ and $yx_n \to w$ in Y. Since (X, Y) is a special multiplier pair, multiplication is separately continuous, so $yx_n \to yx$ in Y. This implies w = yx. Thus L_y is closed. Since $(Y, +, \cdot)$ is a ring, L_y is in the commutant of \mathcal{R} .
- (3) It is clear from conditions (a) and (b) that the closure of $\mathcal{D}(L_y)$ contains \mathcal{R}_0 , so $\mathcal{D}(L_y)$ is dense in X.

3. Applications

We now apply the results of the preceding section to some special cases of multiplier pairs.

3.1. Analytic functions. Suppose $1 \leq p < \infty$ and $X = H^p$ (on the unit disk) and that Y = N is the set of meromorphic functions in the Nevanlinna class, i.e., functions of the form f/g with $f,g \in H^{\infty}$ and g not identically 0. Then (X,Y) is a special multiplier pair with $\mathcal{L}_0 = \mathcal{R}_0 = H^{\infty}$. The Smirnov class N^+ consists of all members of N having a denominator that is an outer function. Sarason [13] has observed that the closed densely defined operators that commute with the unilateral shift on H^2 are multiplications induced by members of the Smirnov class, and we prove it here more generally in Theorem 4 as a consequence of Corollary 1. Sarason also observed [14] that members of N^+ have a canonical form related to H^2 , and the following lemma shows that the analogous result related to H^p holds for $1 \leq p < \infty$ and is established by the same proof.

Lemma 2. If $1 \le p < \infty$, $\phi \in N$, and $\phi \ne 0$, then there exist relatively prime inner functions u and v and outer functions a and b satisfying $|a|^p + |b|^p = 1$ a.e. on the unit circle such that

$$\phi = \frac{vb}{ua}$$
.

Proof. Recall that an outer function is positive at zero and is uniquely determined by its absolute boundary values, which are necessarily absolutely log integrable. Suppose ϕ is a nonzero function in N and the inner-outer factorization is applied to each of the numerator and denominator of ϕ , so

$$\phi = \frac{uf_1}{vf_2},$$

where u and v are relatively prime inner functions and f_1 and f_2 are outer functions in H^{∞} .

Observe that on the unit circle \mathbb{T} ,

$$\max\{|f_1|, |f_2|\} \le (|f_1|^p + |f_2|^p)^{1/p} \le |f_1| + |f_2|,$$

and therefore $(|f_1|^p+|f_2|^p)^{1/p}$ is log integrable. Thus there exists an outer function ψ in H^{∞} such that $|\psi|=(|f_1|^p+|f_2|^p)^{1/p}$ a.e. on \mathbb{T} . Put $a=f_2/\psi$ and $b=f_1/\psi$ and observe that the definition of ψ implies that $|a|^p+|b|^p=1$ a.e. on \mathbb{T} . The asserted representation of ϕ follows.

Corollary 3. If $\phi \in N$, where $\phi = (vb)/(ua)$ as in Lemma 2, then the graph $\operatorname{Graph}(M_{\phi})$ of M_{ϕ} is the closed subset $\{(uag) \oplus (vbg) : g \in H^p\}$ of $H^p \oplus H^p$.

Proof. If $g \in H^p$, then $uag \in H^p$ and $M_{\phi}uag = vbg \in H^p$, and it follows that the set asserted to be the graph of M_{ϕ} is a subset of the graph. For the opposite inclusion suppose both f and ϕf belong to H^p . Then both $|f|^p$ and $|\phi|^p |f|^p$ are integrable on \mathbb{T} , and because

$$\frac{|f|^p}{|a|^p} = \frac{|a|^p + |b|^p}{|a|^p} |f|^p = |f|^p + |\phi|^p |f|^p$$

on \mathbb{T} , it follows that if $g_1 = f/a$, then $g_1 \in H^p$. (If $f \in H^p$, a is outer, and $f/a \in L^p$, then $f/a \in H^p$. See Nikolskii [12, Theorem 3.9.6].) Thus $f = ag_1$ and $u\phi f = vbg_1$. Since u and v are relatively prime and b is outer, the last equation

shows that u is a factor of g_1 , and thus $g_1 = ug$ for some $g \in H^p$. We have shown that f = aug and $\phi f = vbg$, and thus the required inclusion is established.

Theorem 4. Suppose $1 \leq p < \infty$ and $\mathcal{G} \subseteq H^p \oplus H^p$ is a graph that is invariant under $M_z \oplus M_z$. Then there is a meromorphic $\phi \in N$ such that $\mathcal{G} \subseteq \operatorname{Graph}(M_\phi)$. If the domain of \mathcal{G} is dense in H^p , then ϕ is in the Smirnov class. If, in addition, \mathcal{G} is closed, then ϕ is in the Smirnov class and $\mathcal{G} = \operatorname{Graph}(M_\phi)$.

Proof. The first assertion follows from Corollary 1. Suppose the domain $\mathcal{D}(\mathcal{G})$ of \mathcal{G} is dense. Then for every z with |z| < 1, there is a $g \in \mathcal{D}(\mathcal{G})$ such that $g(z) \neq 0$, so $\phi g \in H^p$ implies that ϕ has a removable singularity at z. Hence ϕ is analytic on the open unit disk. By Corollary 3, the domain of M_{ϕ} , which includes that of \mathcal{G} , is uaH^p . Thus uaH^p is dense, and it follows that u = 1. Thus ϕ is in N^+ .

Suppose that \mathcal{G} is closed. If $H^p \oplus H^p$ is given the norm defined by $||f \oplus g|| = (||f||_p^p + ||g||_p^p)^{1/p}$, then the proof of Corollary 3 shows that the map $V: H^p \to H^p \oplus H^p$ defined by

$$Vg = uag \oplus vbg$$

is an isometry of H^p onto $\operatorname{Graph}(M_\phi)$. Let \mathcal{M} be the inverse image of \mathcal{G} under V. Then \mathcal{G} is a closed subspace of H^p , and for $g \in \mathcal{M}$ we have

$$VM_zg = uazg \oplus vbzg = M_z \oplus M_zVg \in \mathcal{G}.$$

Hence \mathcal{M} is invariant under M_z , and, by Duren [4, Theorem 7.4] or Helson [10, page 25], $\mathcal{M} = \omega H^p$ for some inner function ω , and thus

$$\mathcal{G} = \{\omega uag \oplus \omega vbg : g \in H^p\} = (M_{\omega} \oplus M_{\omega})\operatorname{Graph}(M_{\phi}).$$

It follows that if the domain of \mathcal{G} is dense, then ω , as well as u, must be 1, and hence the asserted equality holds.

As a corollary to the proof we have the following.

Corollary 4. If $1 \leq p < \infty$ and $\mathcal{G} \subseteq H^p \oplus H^p$ is a closed graph that is invariant under $M_z \oplus M_z$, then there is a meromorphic function ϕ in the Nevanlinna class and an inner function ω such that

$$\mathcal{G} = (M_{\omega} \oplus M_{\omega}) \operatorname{Graph}(M_{\phi}).$$

The following is a direct consequence of the preceding corollary (i.e., ω is constant).

Corollary 5. Suppose $1 \leq p < \infty$ and $\mathcal{G} \subseteq H^p \oplus H^p$ is a closed graph that is invariant under $M_z \oplus M_z$ and the sum of its domain and range is dense in H^p . Then it is the graph of some meromorphic function in the Nevanlinna class.

- 3.2. **Measure theory.** A symmetric norm on $L^{\infty}[0,1]$, with respect to Lebesgue measure μ , is a norm α such that
 - (1) $\alpha(f) = \alpha(|f|)$ for every $f \in L^{\infty}[0,1]$,
 - (2) $\alpha(1) = 1$,
 - (3) $\alpha(f \circ \tau) = \alpha(f)$ for every $f \in L^{\infty}[0,1]$ and every invertible measure-preserving $\tau: [0,1] \to [0,1]$.

We say that a symmetric norm α on $L^{\infty}[0,1]$ is continuous if

$$\lim_{t \to 0^+} \alpha \left(\chi_{[0,t]} \right) = 0.$$

We define $L^{\alpha}[0,1]$ to be the completion of $L^{\infty}[0,1]$ with respect to the norm α . We can realize the elements of L^{α} [0, 1] as (equivalence classes of) measurable functions in $L^1[0,1]$. Moreover, if $X=L^{\alpha}[0,1]$ and Y is the set of all measurable functions on [0,1] with the topology of convergence in measure, then (X,Y) is a special multiplier pair with pointwise multiplication, and $\mathcal{R}_0 = \mathcal{L}_0 = L^{\infty}[0,1]$ (see [7]). Moreover, if α is continuous, we have

$$\lim_{\mu(F)\to 0} \alpha\left(\chi_F h\right) = 0$$

for every $h \in L^{\alpha}[0,1]$.

Proposition 3. Suppose α is a continuous symmetric norm on $L^{\infty}[0,1]$ and $\mathcal{G}\subseteq$ $L^{\alpha}[0,1] \oplus L^{\alpha}[0,1]$ is a closed linear subspace and a graph that is invariant under $M_f \oplus M_f$ for every $f \in L^{\infty}[0,1]$. Then there is a measurable function φ (with possibly infinite values) such that $\mathcal{G} \subseteq \mathcal{G}(M_{\varphi})$.

Proof. Since $\mathcal{D}(\mathcal{G})$ is an $L^{\infty}[0,1]$ -module, we have $|g| \in \mathcal{D}(\mathcal{G})$ whenever $g \in \mathcal{D}(\mathcal{G})$. Moreover, if $\{g_n\}$ is a sequence in $\mathcal{D}(\mathcal{G})$ and $(|g_n|, h_n) \in \mathcal{G}$ for $n \geq 1$, then $g = \sum_{n=1}^{\infty} t_n |g_n| \in \mathcal{D}(\mathcal{G}), \text{ where } 0 < t_n < \frac{1}{2^n [\alpha(g_n) + \alpha(h_n) + 1]} \text{ for } n \geq 1.$ Since $\{x : g(x) > 0\} = \bigcup_{n \geq 1} \{x : |g_n(x)| > 0\}, \text{ if we choose } g_n \text{ so that}$

$$\mu\left(\left\{x:g_{n}\left(x\right)\neq0\right\}\right)>\sup\left\{\mu\left(\left\{x:h\left(x\right)\neq0\right\}\right):h\in\mathcal{D}\left(\mathcal{G}\right)\right\}-\frac{1}{n},$$

then we see that

$$\mu\left(\left\{x:g\left(x\right)\neq0\right\}\right)=\sup\{\mu\left(\left\{x:h\left(x\right)\neq0\right\}\right):h\in\mathcal{D}\left(\mathcal{G}\right)\right\}.$$

If $E = \{x : g(x) \neq 0\}$, then $\chi_E h = h$ a.e. (μ) for every $h \in \mathcal{D}(\mathcal{G})$, and, since \mathcal{G} is a graph and an L^{∞} [0, 1]-module, we see that $\chi_E h = h$ a.e. (μ) for every h in the range of \mathcal{G} . We can now replace $L^{\alpha}[0,1]$ with $\chi_E L^{\alpha}[0,1] = X$ and let Y be the set of measurable functions that vanish on $[0,1]\setminus E$. Now g has a multiplicative inverse, and, for each $h \in X$ and each positive integer $n \ge 1$, we have $h\chi_{E_n} = g(\chi_{E_n}h/g)$, where $E_n = \{x : g(x) \ge 1/n \text{ and } |f(x)| \le n\}$. Since $\bigcup_{n \ge 1} E_n = E$ (a.e.), the set $\{\chi_{E_n} : n \ge 1\}$ is left separating for Y. Applying Theorem 1 to $\chi_E \mathcal{G}$, we see that

$$\mathcal{G} = \chi_E \mathcal{G} \subseteq L_{f/a}$$

where $(g, f) \in \mathcal{G}$. Moreover, the fact that $\mu(E \setminus E_n) \to 0$ and α is continuous implies

$$R_{\chi_{E_n}} \to 1$$

in the strong operator topology. It follows from Theorem 2 that $\chi_E \mathcal{G}$ is the graph of $L_{f/g}$ on $\chi_E L^{\alpha}[0,1]$. If we let $\varphi = \frac{f}{g}\chi_E + \infty \chi_{([0,1]\setminus E)}$, we see that $\mathcal{G} = \mathcal{G}(L_{\varphi})$. \square

Corollary 6. Suppose α is a continuous symmetric norm on $L^{\infty}[0,1]$ and T is a closed densely defined linear transformation on $L^{\alpha}[0,1]$ that commutes with L_f for every $f \in L^{\infty}[0,1]$. Then there is a measurable function $\varphi:[0,1] \to \mathbb{C}$ such that $T = L_{\varphi}$.

Theorem 5. Suppose α is a symmetric norm on $L^{\infty}[0,1]$ and T is a closed densely defined operator on $L^{\alpha}[0,1]$ that commutes with M_x . Then there is a measurable function $\varphi:[0,1]\to\mathbb{C}$ such that $T=M_{\varphi}$.

Proof. If α is continuous, the desired conclusion follows from Corollary 6. If α is not continuous, then α is equivalent to $\|\cdot\|_{\infty}$ on $L^{\infty}[0,1]$ (see [7]), so $L^{\alpha}[0,1] = L^{\infty}[0,1]$, and the desired conclusion follows from Proposition 1.

- 3.3. Finite von Neumann algebras. Suppose \mathcal{M} is a II_1 factor von Neumann algebra with a faithful normal tracial state τ . A unitarily invariant norm on \mathcal{M} is a norm β such that
 - (1) $\beta(UTV) = \beta(T)$ for all $U,T,V \in \mathcal{M}$ with U,V unitary,
 - (2) $\beta(1) = 1$.

Since \mathcal{M} is a II_1 factor, there is a chain $\{P_t : t \in [0,1]\}$ of projections in \mathcal{M} such that $\tau(P_t) = t$ for every $t \in [0,1]$. The map $\chi_{[0,t]} \mapsto P_t$ extends to a unital *-homomorphism $\pi: L^{\infty}[0,1] \to \mathcal{M}$ such that

$$\tau\left(\pi\left(f\right)\right) = \int_{0}^{1} f\left(x\right) dx$$

for every $f \in L^{\infty}[0,1]$. If we define $\alpha: L^{\infty}[0,1] \to [0,\infty)$ by

$$\alpha(f) = \beta(\pi(f)),$$

we obtain a symmetric norm α . It turns out that α is independent of the chain $\{P_t: t \in [0,1]\}$. Moreover, every element $A \in \mathcal{M}$ has a polar decomposition $A = U(A^*A)^{1/2}$ and $\beta(A) = \beta\left((A^*A)^{1/2}\right)$. There is a chain $\{P_t: t \in [0,1]\}$ whose generated von Neumann algebra contains $(A^*A)^{1/2}$, and there is a $\varphi \in L^{\infty}[0,1]$ such that $\pi(\varphi) = (A^*A)^{1/2}$, and we get $\beta(A) = \alpha(\varphi)$. In this way we can recapture β from α . It is shown in [5] that every symmetric norm α on $L^{\infty}[0,1]$ determines a unitarily invariant norm β on \mathcal{M} , and we will call this norm $\|\cdot\|_{\alpha}$. We let $L^{\alpha}(\mathcal{M}, \tau)$ denote the completion of \mathcal{M} with respect to the norm $\|\cdot\|_{\alpha}$. If the symmetric norm α is continuous, then

$$\lim_{\tau(P) \rightarrow 0, P = P^* = P^2 \in \mathcal{M}} \|P\|_{\alpha} = 0.$$

If α is not continuous, then α is equivalent to $\|\cdot\|_{\infty}$ on $L^{\infty}[0,1]$ and $\|\cdot\|_{\alpha}$ is equivalent to the operator norm on \mathcal{M} , so $L^{\beta}(\mathcal{M},\tau)=\mathcal{M}$.

There is a topology of convergence in measure on \mathcal{M} (see [11]), and $L^{\alpha}(\mathcal{M}, \tau)$ can be viewed as a subset of the completion \mathcal{Y} of \mathcal{M} with respect to this topology. It was shown in [7] that $(L^{\alpha}(\mathcal{M}, \tau), \mathcal{Y})$ is a multiplier pair and $\mathcal{L}_0 = \mathcal{R}_0 = \mathcal{M}$, and it follows from [11, Theorem 1] that $(L^{\alpha}(\mathcal{M}, \tau), \mathcal{Y})$ is a special multiplier pair.

Theorem 6. Suppose \mathcal{M} is a II_1 factor von Neumann algebra with faithful normal tracial state τ , and suppose α is a unitarily invariant norm on \mathcal{M} . Suppose T is a closed densely defined operator on $L^{\alpha}(\mathcal{M}, \tau)$ that commutes with R_S for every $S \in \mathcal{M}$. Then:

- (1) If α is not continuous, then $T \in \mathcal{L}$.
- (2) If α is continuous, then $T = L_y$ for some $y \in \mathcal{Y}$.
- (3) If α is continuous and $y \in \mathcal{Y}$, then L_y is a closed densely defined operator on $L^{\alpha}(\mathcal{M}, \tau)$ that commutes with R_S for every $S \in \mathcal{M}$.

Proof. (1) If α is not continuous, then α is equivalent to the operator norm on \mathcal{M} , so $L^{\alpha}(\mathcal{M},\tau) = \mathcal{M}$, which implies $\mathcal{L}_0 = \mathcal{R}_0 = \mathcal{M}$. The desired conclusion now follows from Proposition 1.

(2) Suppose $x \in \mathcal{D}(T)$. It follows from [11, Theorem 2] that there is a sequence $\{p_n\}$ of projections in \mathcal{M} such that $\tau(p_n) \to 0$ and $x(1-p_n) \in \mathcal{M}$ for each $n \geq 1$, and, since $\mathcal{D}(T)(1-p_n) \subseteq \mathcal{D}(T)$, we have $x(1-p_n) \in \mathcal{M} \cap \mathcal{D}(T)$ for each $n \geq 1$. However, α is continuous, so

$$\alpha (x - (1 - p_n) x) = \alpha (p_n x) \le \alpha (p_n) ||x|| \to 0.$$

Thus the closure of $\mathcal{M} \cap \mathcal{D}(T)$ contains $\mathcal{D}(T)$, and since $\mathcal{D}(T)$ is dense in $L^{\alpha}(\mathcal{M}, \tau)$, it follows that $\mathcal{M} \cap \mathcal{D}(T)$ is dense in $L^{\alpha}(\mathcal{M}, \tau)$. For each $x \in \mathcal{M} \cap \mathcal{D}(T)$, let P_x denote the projection onto the weak operator topology closure of the range of x, and choose a sequence $\{x_n\}$ in $\mathcal{M} \cap \mathcal{D}(T)$ such that

$$\lim \tau \left(P_{x_n} \right) = \sup \{ \tau \left(P_x \right) : x \in \mathcal{M} \cap \mathcal{D} \left(T \right) \}.$$

For each $n \ge 1$ we can write $x_n = (x_n x_n^*)^{\frac{1}{2}} u_n$ with u_n unitary, and so $(x_n x_n^*)^{\frac{1}{2}} = R_{u_n^*} x_n \in \mathcal{M} \cap \mathcal{D}(T)$. If we choose t_n so that

$$t_n \left[\alpha \left(\left(x_n x_n^* \right)^{\frac{1}{2}} \right) + \alpha \left(T \left(x_n x_n^* \right)^{\frac{1}{2}} \right) \right] < \frac{1}{2^n},$$

then $g = \sum_{n=1}^{\infty} t_n \left(x_n x_n^* \right)^{\frac{1}{2}} \in \mathcal{M} \cap \mathcal{D} \left(T \right)$. Moreover, it follows that $P_g \geq P_{\left(x_n x_n^* \right)^{\frac{1}{2}}}$ for each n. Hence

$$\tau\left(P_{g}\right)=\sup\{\tau\left(P_{x}\right):x\in\mathcal{M}\cap\mathcal{D}\left(T\right)\}.$$

If $x \in \mathcal{D}(T)$, then $(xx^*)^{\frac{1}{2}}$, $g + (xx^*)^{\frac{1}{2}} \in \mathcal{D}(T)$, which means the weak operator topology closure of the range of x (which equals the range of $(xx^*)^{\frac{1}{2}}$) is contained in P_g . Hence,

$$\mathcal{M} \cap \mathcal{D}(T) \subseteq P_q \mathcal{M} \subseteq P_q L^{\alpha}(\mathcal{M}, \tau).$$

Since $\mathcal{M} \cap \mathcal{D}(T)$ is dense in $L^{\alpha}(\mathcal{M}, \tau)$, we must have $P_g = 1$, which implies g is invertible in \mathcal{Y} .

Now it follows from [11, Theorem 2] that for each $y \in \mathcal{Y}$ there is a sequence $\{q_n\}$ of projections in \mathcal{M} such that $\tau(q_n) \to 1$ and $yq_n \in \mathcal{M}$ for every $n \geq 1$. Since α is continuous, we know from [5] that $R_{q_n} \to 1$ (SOT) on $L^{\alpha}(\mathcal{M}, \tau)$. Hence, Theorem 3 implies that $T = L_{T(g)g^{-1}}$.

(3) It follows from [6] that L_y is a closed operator on $L^{\alpha}(\mathcal{M}, \tau)$. It follows from [11, Theorem 2] that there is a sequence $\{p_n\}$ of projections in \mathcal{M} such that $\tau(p_n) \to 0$ and $y(1-p_n) \in \mathcal{M} \subseteq L^{\alpha}(\mathcal{M}, \tau)$, which implies

$$\bigcup_{n=1}^{\infty} (1 - p_n) \mathcal{M} \subseteq \mathcal{D}(L_y).$$

Moreover, since α is continuous,

$$\alpha (x - (1 - p_n) x) = \alpha (p_n x) \le \alpha (p_n) ||x|| \to 0.$$

Hence, $\mathcal{D}(L_u)$ is dense in $L^{\alpha}(\mathcal{M}, \tau)$.

4. An example on the Bergman space

The closed densely defined operators commuting with the unilateral shift, M_z on H^2 , are multiplications by functions in the Smirnov class. Is there a similar result for the Bergman shift, multiplication by z on the Bergman space A^2 ? What follows is a counterexample.

Theorem 7. There exists a closed densely defined operator that commutes with the Bergman shift but is not a multiplication operator.

Proof. By a result of Seip (see [16], [3, Theorem 9, p. 186], [8]) there exist two disjoint interpolation sets Γ_1, Γ_2 for A^2 whose union Γ is a sampling set. A sampling set for A^2 is defined as a subset Γ of $\mathbb D$ with the property that there exist positive constants c and C such that, for each $f \in A^2$,

$$c||f||^2 \le \sum_{z \in \Gamma} |f(z)|^2 (1 - |z|^2)^2 \le C||f||^2.$$

Thus, with μ the discrete measure having mass $(1-|z|^2)^2$ at each point z of Γ , the restriction map $\Phi: f \mapsto f \mid \Gamma$ is an invertible map of A^2 onto a subspace $A^2 \mid \Gamma$ of $L^2(\mu)$. An interpolation set for A^2 is a subset Γ of $\mathbb D$ with the property that for each element w in $L^2(\mu)$ there exists $f \in A^2$ such that $w = \Phi(f)$, i.e., the restriction map $f \mapsto f \mid \Gamma$ on A^2 is onto $L^2(\mu)$.

Since interpolation sets are also zero sets for A^2 , we can let f_1 be a function in A^2 having Γ_1 as its zero set. Define \mathcal{G}_1 , \mathcal{G}_2 by

$$\mathcal{G}_1 = \{(u, uf_1) : u, uf_1 \in A^2\}$$

and

$$\mathcal{G}_2 = \{(g,g) : g \in A^2, \ g \mid \Gamma_2 = 0\}.$$

Then $\mathcal{G}_1 = \mathcal{G}(M_{f_1})$ and $\mathcal{G}_2 \subseteq \mathcal{G}(I)$ are graphs of closed operators that commute with the Bergman shift M_z . Moreover, $\mathcal{G} = \mathcal{G}_1 + \mathcal{G}_2$ is also a graph. To see that \mathcal{G} is a graph, we need only check that if $(0,h) \in \mathcal{G}$, then h = 0. Suppose $(u,uf_1) \in \mathcal{G}_1$, $(g,g) \in \mathcal{G}_2$ and $(0,h) = (u,uf_1) + (g,g)$. Then u = -g vanishes on Γ_2 , so uf_1 vanishes on the sampling set $\Gamma = \Gamma_1 \cup \Gamma_2$, which implies $uf_1 = 0$. But $f_1 \neq 0$, so 0 = u = -g, whence h = 0.

Finally, it will be shown that the angle between \mathcal{G}_1 and \mathcal{G}_2 is greater than zero, and thus the graph $\mathcal{G} = \mathcal{G}_1 + \mathcal{G}_2$ is itself a closed direct sum. It is to be shown that there is a γ , $0 \le \gamma < 1$, such that, if $F_k \in \mathcal{G}_k$ for k = 1, 2, then

$$|\langle F_1, F_2 \rangle| \le \gamma ||F_1|| ||F_2||.$$

Let $\Phi^{(2)}(f,g) = (\Phi(f),\Phi(g))$. Since Φ is an isomorphism between A^2 and its image \mathcal{A} in $L^2(\mu)$, it suffices to show that the preceding inequality holds for the images of F_1 and F_2 under $\Phi^{(2)}$. Since an element of $L^2(\mu)$ in the image \mathcal{A} of Φ is just the restriction of an element of A^2 , we will simply write $f = \Phi(f)$ and indicate the norm and inner product in $L^2(\mu)$ with a subscript μ . We have $F_1 = (u, uf_1)$ and $F_2 = (g,g)$ with $g, u, uf_1 \in A^2$ and $g \mid \Gamma_2 = 0$. Thus

$$\langle F_1, F_2 \rangle_{\mu} = \langle u, g \rangle_{\mu} + \langle u f_1, g \rangle_{\mu} = \langle u, g \rangle_{\mu},$$

where the second equality follows from the fact that $f_1 \mid \Gamma_1 = 0$ as well as $g \mid \Gamma_2 = 0$, so $uf_1\bar{g}$ vanishes a.e.- μ . Also,

$$||F_1||_{\mu}^2 = ||u||_{\mu}^2 + ||uf_1||_{\mu}^2$$

and

$$||F_2||_{\mu}^2 = 2||g||_{\mu}^2.$$

We have

$$|\langle F_1, F_2 \rangle_{\mu}| = |\langle u, g \rangle_{\mu}|^2 \leqslant ||u||_{\mu} ||g||_{\mu} \leq ||F_1||_{\mu} \left(\sqrt{2}/2\right) ||F_2||_{\mu},$$

as required with $\gamma = \sqrt{2}/2$. It follows that the subspaces are at a positive angle and the sum of their closures is closed. The operator whose graph is \mathcal{G} has the required properties.

References

- [1] Bercovici, Hari, The unbounded commutant of an operator of class C_0 , Oper. Matrices 3 (2009), no. 4, 599–605. MR2603336 (2011d:47032)
- [2] Bercovici, H.; Douglas, R. G.; Foias, C.; Pearcy, C., Confluent operator algebras and the closability property, J. Funct. Anal. 258 (2010), no. 12, 4122–4153. MR2609540 (2012b:47015)
- [3] Duren, Peter; Schuster, Alexander, Bergman spaces, Mathematical Surveys and Monographs, no. 100, American Mathematical Society, 2000. MR2033762 (2005c:30053)
- [4] Duren, Peter, Theory of H^p spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York and London, 1970. MR0268655 (42:3552)
- [5] Fang, Junsheng; Hadwin, Don; Nordgren, Eric; Shen, Junhao, Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property, J. Funct. Anal. 255 (2008), no. 1, 142–183. MR2417813 (2010a:46151)
- [6] Hadwin, Don and Nordgren, Eric, A general view of multipliers and composition operators, Linear Algebra Appl. 383 (2004), 187–211. MR2073904 (2005g:47123)
- [7] Hadwin, Don and Nordgren, Eric, A general view of multipliers and composition operators II, Banach spaces of analytic functions, 63–73, Contemp. Math., 454, Amer. Math. Soc., Providence, RI, 2008. MR2408235 (2009m:47186)
- [8] Hedenmalm, Håkan; Richter, Stefan; Seip, Kristian, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math. 477 (1996), 13–30. MR1405310 (97i:46044)
- [9] Kadison, Richard V.; Ringrose, John R., Fundamentals of the theory of operator algebras. Vol. I: Elementary theory. Reprint of the 1983 original. Graduate Studies in Mathematics, 15. American Mathematical Society, Providence, RI, 1997. MR1468229 (98f:46001a)
- [10] Helson, Henry, Lectures on invariant subspaces, Academic Press, New York and London, 1964. MR0171178 (30:1409)
- [11] Nelson, Edward, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR0355628 (50:8102)
- [12] Nikolski, Nikolai K., Operators, functions and systems: an easy reading, Vol. 1, Hardy, Hankel, and Toeplitz, translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence, RI, 2002. MR1864396 (2003i:47001a)
- [13] Sarason, Donald, Unbounded Toeplitz operators, Integral Equations Operator Theory 61 (2008), no. 2, 281-298. MR2418122 (2010c:47073)
- [14] Sarason, Donald, Unbounded operators commuting with restricted backward shifts, Oper. Matrices 2 (2008), no. 4, 583-601. MR2468883 (2009k:47083)
- [15] Sarason, Donald, Unbounded operators commuting with the commutant of a restricted backward shift, Oper. Matrices 4 (2010), no. 2, 293–300. MR2667340 (2011d:47054)
- [16] Seip, Kristian, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), 21–39. MR1223222 (94g:30033)

- [17] Seubert, Steven M., Unbounded dissipative compressed Toeplitz operators, J. Math. Anal. Appl. 290 (2004), 132-146. MR2032231 (2004i:47053)
- [18] Suárez, Daniel, Closed commutants of the backward shift operator, Pacific J. Math. 179 (1997), no. 2, 371–396. MR1452540 (99a:47050)

Department of Mathematics, Kingsbury Hall, University of New Hampshire, Durham, New Hampshire 03824-3591

E-mail address: don@math.unh.edu

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, Pennsylvania 19104

 $E ext{-}mail\ address: zheliu@sas.upenn.edu}$

Department of Mathematics, Kingsbury Hall, University of New Hampshire, Durham, New Hampshire 03824-3591

E-mail address: ean@math.unh.edu