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CLOSED DENSELY DEFINED OPERATORS COMMUTING

WITH MULTIPLICATIONS IN A MULTIPLIER PAIR
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(Communicated by Richard Rochberg)

Dedicated to the memory of Bill Arveson, an inspiration to us all

Abstract. For a multiplier pair (X,Y ) we study the closed densely defined
operators T on X that commute with all of the multiplications by right mul-
tipliers in X. We apply our general results to special cases involving Hp,
completions of L∞ [0, 1] with respect to certain norms, and the completion of
a II1 factor von Neumann algebra with respect to a unitarily invariant norm,
where we show that each such T is a “left multiplication”. However, we give
an example of a closed densely defined operator on the Bergman space that
commutes with all multiplications by H∞-functions but is not a multiplication
operator.

1. Introduction

In [6], [7] the first and third authors introduced and studied the notion of a
multiplier pair (X,Y ), where X is a Banach space that is a vector subspace of
a Hausdorff topological vector space Y with a separately continuous bilinear map
(multiplication) · : X ×X → Y such that the set L0 = {x ∈ X : x ·X ⊆ X} of left
multipliers and the set R0 = {x ∈ X : X · x ⊆ X} of right multipliers are dense in
X, and such that there are dense subsets E ⊆ L0, F ⊆ X, G ⊆ R0 such that

(a · b) · c = a · (b · c)

whenever a ∈ E , b ∈ F , c ∈ G. Moreover, there is an e ∈ X such that e ·x = x ·e = x
for every x ∈ X. It was shown that, for each x ∈ X, the linear transformations Rx

and Lx defined by

Lxa = x · a, Rxa = a · x
are closed densely defined operators on X. Moreover, Lx is bounded on R0 if
and only if x ∈ L0 and Rx is bounded on L0 if and only if x ∈ R0. Thus R =
{Rx : x ∈ R0} and L = {Lx : x ∈ L0} are unital subalgebras of B (X) (the set of
bounded linear operators on X). It was proved in [6] that L and R are each other’s
commutant, which implies that L and R are closed in the weak operator topology.
In the setting of multiplier pairs a general notion of a composition operator was
defined.
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3094 DON HADWIN, ZHE LIU, AND ERIC NORDGREN

Suppose B (W ) denotes the Banach algebra of all bounded linear transformations
on a Banach space W , and suppose A, B are unital Banach subalgebras of B (W )
such that B′ = A and A′ = B, where S ′ denotes the commutant of a set of operators
S, i.e., the set of operators commuting with every element of S. Suppose T is a
linear transformation whose domain D (T ) and range R (T ) are linear subspaces of
W . We say that T commutes with B (or T is affiliated with A) if, for every S ∈ B,
we have S (D (T )) ⊆ D (T ) and, for every x ∈ D (T ), we have STx = TSx. This is
equivalent to saying that, for every invertible S ∈ B, we have ST = TS. It is also
equivalent to saying that, for every S ∈ B,

(S ⊕ S)Graph (T ) ⊆ Graph(T ),

where Graph (T ) = {(x, y) ∈ W ×W : y = Tx} is the graph of T . It easily follows
that if Graph (T ) is closed, then the set

S = {S ∈ B (W ) : S (D (T )) ⊆ D(T ), ∀x ∈ D (T ) STx = TSx}

is a unital algebra that is closed in the weak operator topology. In order to show
that B ⊆ S, it is sufficient to show that S contains a set of operators B0 such that
the unital weak operator closed algebra generated by B0 is B.

In this paper we study the problem of determining for a multiplier pair (X,Y ) the
closed densely defined operators T on X that commute with R (i.e., are affiliated
with L). The symmetry of the situation makes this problem “equivalent” to that
of finding the closed densely defined operators on X that commute with L (i.e., are
affiliated with R).

In [6] it was shown that, for every x ∈ X, Lx commutes with every operator
in R and Rx commutes with every operator in L. In general, we expect that the
closed densely defined operators commuting with R should be left multiplications
of some sort. We will prove general results that affirm this notion in a large number
of cases, but, when X is the Bergman space on the unit disk, we construct a closed
densely defined operator commuting with L = R = H∞ that is not a multiplication
by any function.

Examples of this problem have been studied by D. Suárez [18] and S. Seubert [17]
in the case of the algebra generated by the unilateral shift operator, by D. Sarason
[13] in the case of a restricted shift operator [14], [15], and by H. Bercovici [1] in
the case of a C0-contraction. A result for von Neumann algebras was proved by
Nelson [11]. The problem for L∞ [0, 1] acting on L2 [0, 1] was discussed in [9].

In [6] many examples of multiplier pairs were constructed. Many of them satisfy
more conditions than assumed in the definition. We define a multiplier pair (X,Y )
to be a special multiplier pair if the multiplication · : Y × Y → Y is defined and
separately continuous and (Y,+, ·) is a ring with identity e.

2. General results

We begin with algebraic results that will apply to special multiplier pairs. If R
is a ring and S ⊆ R, we say that S is left-separating if, for every x ∈ R, x · S = {0}
implies x = 0.

Theorem 1. Suppose 1 ∈ Y is a ring, 1 ∈ R is a subring of Y and R ⊂ X ⊂ Y ,
where X is a right R-module. Suppose G ⊂ X×X is a graph and a right R-module
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CLOSED OPERATORS COMMUTING WITH MULTIPLICATIONS 3095

containing an element (g, h) such that

(1) g has a left-inverse g−1 in Y ,
(2) for every x ∈ X, {u ∈ R : ∃v ∈ R such that xu = gv} is left-separating for

Y .

Then G ⊆ Graph
(
Lhg−1

)
.

Proof. Suppose (x, y) ∈ G, u,v ∈ R and xu = gv. Then (x, y)u − (g, h) v =
(0, yu− hv) ∈ G. Since (0, 0) ∈ G and G is a graph, we know yu − hv = 0. Thus
yu = hv = hg−1 (gv) = hg−1 (xu). Hence, for every u ∈ R for which there is a
v ∈ R such that xu = gv, we have[

y − Lhg−1x
]
u = 0.

It follows from (2) that y = Lhg−1x for every (x, y) ∈ G. �

If R is an integral domain, the field of fractions R̂ of R is the field of formal
quotients a

b with a,b ∈ R and the natural addition and multiplication. We think of

R ⊆ R̂ by identifying x ∈ R with x
1 ∈ R̂.

Corollary 1. Suppose F is the field of fractions of an integral domain R, and
R ⊂ X ⊂ F and X is an R-module. Suppose G ⊂ X × X is a graph and an
R-module. Then there is a ϕ ∈ F such that G is contained in the graph of y = ϕx
in F × F .

Corollary 2. Suppose (X,Y ) is a special multiplier pair such that Y is an integral

domain and let Ŷ denote the field of quotients over Y . Suppose also that X ⊆ R̂0.
If G ⊆ X ×X is a graph that is an R0-module, then there is a ϕ ∈ R̂0 such that
G ⊆ Graph (Lϕ). Moreover, if the domain of G is dense in X and τ : Y → C is a
unital algebra homomorphism whose restriction to X is continuous, then there are
f , g ∈ R0 such that ϕ = g/f and τ (f) 	= 0.

Proof. The first part follows immediately from Theorem 1. Next, suppose the
domain of G is dense and τ : Y → C is a multiplicative linear functional whose
restriction to X is continuous. It follows that the domain of G cannot be contained
in ker τ . Hence there is an (f, g) ∈ G such that τ (f) 	= 0. Since g = ϕf , we have
that ϕ = g/f and τ (f) 	= 0. �

Throughout this paper we use (SOT) to denote the strong operator topology.

Theorem 2. Suppose (X,Y ) is a multiplier pair and T is a closed densely defined
operator on X commuting with every operator in R and such that T ⊆ Ly for some
y ∈ Y . Suppose also that, for some g ∈ D (T ) and for every x ∈ X, there exist
{un}, {vn} in R0 such that

(1) xun = gvn ∈ D (T ) ⊆ D (Ly),
(2) Run

→ 1 (SOT).

Then T = Ly.

Proof. Suppose x ∈ D (Ly), so yx ∈ X, and choose {un} and {vn} as above.
Then xun → x and (yx)un → yx, but xun = gvn ∈ D (T ), so yxun = Txun.

Hence (x, yx) = limn→∞ (xun, Txun) ∈ G (T )
−

= G (T ). Hence x ∈ D (T ). Thus
D (T ) = D (Ly), so T = Ly. �
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Theorem 3. Suppose (X,Y ) is a special multiplier pair such that, for each y ∈ Y ,
there is a sequence {qn} in R0 such that

(1) Rqn → 1 in the (SOT) on X,
(2) yqn ∈ R0 for every n.

If T is a closed densely defined operator on X commuting with R and there is a
g ∈ D (T ) that is invertible in Y , then T = LT (g)g−1 .

Proof. It follows from condition (1) that ‖e− eqn‖ → 0, which, from the separate
continuity of multiplication in Y , implies w − wqn = w · (e − eqn) → 0 and w −
qnw = (e− eqn) · w → 0 in Y . Hence {q1, q2, . . .} is both left-separating and right-
separating in Y . Suppose x ∈ X and let y = g−1x ∈ Y . Choose {qn} as above and
note that

xqn = g(yqn),

so, by Theorem 1, we see that T ⊆ LT (g)g−1 . If x ∈ D
(
LT (g)g−1

)
, then xqn =

Ryqn (g) ∈ D (T ) (since T commutes with RT (g)g−1), ‖xqn − x‖ → 0 and T (xqn) =

LT (g)g−1 (xqn) =
(
LT (g)g−1x

)
qn → LT (g)g−1x. Since the operator T is closed,(

x, LT (g)g−1x
)
is in the graph of T . Hence T = LT (g)g−1 . �

We now consider a special case in which X is a Hilbert space and L and R are
von Neumann algebras.

Lemma 1. Suppose (X,Y ) is a multiplier pair, X is a Hilbert space and L is a von
Neumann algebra. Suppose T is a closed densely defined operator affiliated with L.
Then there are u,v ∈ L with 0 ≤ u and keru = 0 such that T ⊆ Lu−1v.

Proof. Since Graph (T ) is closed and invariant for the von Neumann algebra M =
{A⊕A : A ∈ R}, the projection P from X⊕X onto Graph (T ) is in the commutant

of M, which is M2 (R′) = M2 (L). Hence, we can write P =
(

A B
C D

)
with

A,B,C,D ∈ L. If
(

x
Tx

)
∈ Graph (T ), then

(
x
Tx

)
= P

(
x
Tx

)
=

(
Ax+BTx
Cx+DTx

)
,

which implies

Tx = Cx+DTx

or

(1−D)Tx = Cx.

Suppose x ∈ X, ‖x‖ = 1 and Dx = x.
Then ∥∥∥∥P

(
0
x

)∥∥∥∥
2

=

(
P

(
0
x

)
,

(
0
x

))
=

((
Bx
Dx

)
,

(
0
x

))

= (Dx, x) =

∥∥∥∥
(

0
x

)∥∥∥∥
2

.

Thus P
(

0
x

)
=

(
0
x

)
, which means

(
0
x

)
∈ Graph (T ), which, in turn, implies

x = T0 = 0. Thus ker (1−D) = 0. We have from (1−D)Tx = Cx that Tx =

(1−D)−1 Cx for every x ∈ D (T ). �
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CLOSED OPERATORS COMMUTING WITH MULTIPLICATIONS 3097

We now look at a case that will apply to operator algebras with a strictly cyclic
separating vector. Suppose X is a Banach space and A is a norm closed unital
subalgebra of B (X) and suppose 0 	= e ∈ X satisfies

(1) Ae = X (i.e., e is a strictly cyclic vector for A),
(2) e is a separating vector for A, i.e., for every A ∈ A,

Ae = 0 =⇒ A = 0.

We can define a multiplication · on X by

(Ae) · (Be) = (AB) e.

In this case if we let X = Y , we have (X,Y ) as a multiplier pair with L0 = R0 = X.
Conversely, suppose (X,Y ) is a multiplier pair with L0 = R0 = X. Then e is

a strictly cyclic separating vector for L = {Lx : x ∈ L0}, since Le = L0 = X and
since Lxe = 0 implies xe = x = 0.

Proposition 1. Suppose (X,Y ) is a multiplier pair and L0 = R0 = X. Suppose
T is a closed densely defined operator on X affiliated with L. Then T ∈ L.

Proof. The map γ : L → X defined by γ (Lx) = x is continuous and bijective. It
follows from the open mapping theorem that γ−1 is continuous. Since D (T ) is dense
in X, there is a g ∈ D (T ) with ‖e− g‖ < 1/

∥∥γ−1
∥∥, which means that ‖1− Lg‖ =∥∥γ−1 (e− g)

∥∥ < 1. Hence Lg is invertible in B (X) and in the commutant of R.
Hence there is an h ∈ L0 such that η = hg = e. It follows from the fact that
D (T ) ⊆ R (D (T )) that D (T ) = X, which implies T ∈ R′ = L. �

We conclude with some results in a different direction.

Proposition 2. Suppose (X,Y ) is a multiplier pair. Then:

(1) If a ∈ X, then La is a closed densely defined operator on X that commutes
with every operator in R.

(2) If (X,Y ) is a special multiplier pair and y ∈ Y , then Ly is a closed operator
on X that commutes with every operator in R.

(3) If (X,Y ) is a special multiplier pair, y ∈ Y and, for each x ∈ R0, there is
a sequence {en} in L0 such that
(a) ‖enx− x‖ → 0,
(b) yen ∈ X for every n ≥ 1,
then D (Ly) is dense in X.

Proof. (1) This was proved in [6].
(2) If {(xn, yxn)} is a sequence in Graph (Ly) and ‖(xn, yxn)− (x,w)‖ → 0, then

‖xn − x‖ → 0 and ‖yxn − w‖ → 0. Thus xn → x and yxn → w in Y . Since (X,Y )
is a special multiplier pair, multiplication is separately continuous, so yxn → yx in
Y . This implies w = yx. Thus Ly is closed. Since (Y,+, ·) is a ring, Ly is in the
commutant of R.

(3) It is clear from conditions (a) and (b) that the closure of D (Ly) contains R0,
so D (Ly) is dense in X. �
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3. Applications

We now apply the results of the preceding section to some special cases of mul-
tiplier pairs.

3.1. Analytic functions. Suppose 1 ≤ p < ∞ and X = Hp (on the unit disk)
and that Y = N is the set of meromorphic functions in the Nevanlinna class, i.e.,
functions of the form f/g with f ,g ∈ H∞ and g not identically 0. Then (X,Y )
is a special multiplier pair with L0 = R0 = H∞. The Smirnov class N+ consists
of all members of N having a denominator that is an outer function. Sarason
[13] has observed that the closed densely defined operators that commute with the
unilateral shift on H2 are multiplications induced by members of the Smirnov class,
and we prove it here more generally in Theorem 4 as a consequence of Corollary 1.
Sarason also observed [14] that members of N+ have a canonical form related to
H2, and the following lemma shows that the analogous result related to Hp holds
for 1 ≤ p < ∞ and is established by the same proof.

Lemma 2. If 1 ≤ p < ∞, φ ∈ N , and φ 	= 0, then there exist relatively prime
inner functions u and v and outer functions a and b satisfying |a|p + |b|p = 1 a.e.
on the unit circle such that

φ =
vb

ua
.

Proof. Recall that an outer function is positive at zero and is uniquely determined
by its absolute boundary values, which are necessarily absolutely log integrable.
Suppose φ is a nonzero function in N and the inner-outer factorization is applied
to each of the numerator and denominator of φ, so

φ =
uf1
vf2

,

where u and v are relatively prime inner functions and f1 and f2 are outer functions
in H∞.

Observe that on the unit circle T,

max{|f1|, |f2|} ≤ (|f1|p + |f2|p)1/p ≤ |f1|+ |f2|,
and therefore (|f1|p+ |f2|p)1/p is log integrable. Thus there exists an outer function
ψ in H∞ such that |ψ| = (|f1|p + |f2|p)1/p a.e. on T. Put a = f2/ψ and b = f1/ψ
and observe that the definition of ψ implies that |a|p + |b|p = 1 a.e. on T. The
asserted representation of φ follows. �

Corollary 3. If φ ∈ N , where φ = (vb)/(ua) as in Lemma 2, then the graph
Graph(Mφ) of Mφ is the closed subset {(uag)⊕ (vbg) : g ∈ Hp} of Hp ⊕Hp.

Proof. If g ∈ Hp, then uag ∈ Hp and Mφuag = vbg ∈ Hp, and it follows that
the set asserted to be the graph of Mφ is a subset of the graph. For the opposite
inclusion suppose both f and φf belong to Hp. Then both |f |p and |φ|p |f |p are
integrable on T, and because

|f |p
|a|p =

|a|p + |b|p
|a|p |f |p = |f |p + |φ|p|f |p

on T, it follows that if g1 = f/a, then g1 ∈ Hp. (If f ∈ Hp, a is outer, and
f/a ∈ Lp, then f/a ∈ Hp. See Nikolskii [12, Theorem 3.9.6].) Thus f = ag1 and
uφf = vbg1. Since u and v are relatively prime and b is outer, the last equation
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CLOSED OPERATORS COMMUTING WITH MULTIPLICATIONS 3099

shows that u is a factor of g1, and thus g1 = ug for some g ∈ Hp. We have shown
that f = aug and φf = vbg, and thus the required inclusion is established. �

Theorem 4. Suppose 1 ≤ p < ∞ and G ⊆ Hp ⊕Hp is a graph that is invariant
under Mz ⊕Mz. Then there is a meromorphic φ ∈ N such that G ⊆ Graph(Mφ).
If the domain of G is dense in Hp, then φ is in the Smirnov class. If, in addition,
G is closed, then φ is in the Smirnov class and G = Graph (Mφ).

Proof. The first assertion follows from Corollary 1. Suppose the domain D (G) of
G is dense. Then for every z with |z| < 1, there is a g ∈ D (G) such that g (z) 	= 0,
so φg ∈ Hp implies that φ has a removable singularity at z. Hence φ is analytic on
the open unit disk. By Corollary 3, the domain of Mφ, which includes that of G, is
uaHp. Thus uaHp is dense, and it follows that u = 1. Thus φ is in N+.

Suppose that G is closed. If Hp ⊕ Hp is given the norm defined by ‖f ⊕ g‖ =
(‖f‖pp + ‖g‖pp)1/p, then the proof of Corollary 3 shows that the map V : Hp →
Hp ⊕Hp defined by

V g = uag ⊕ vbg

is an isometry of Hp onto Graph(Mφ). Let M be the inverse image of G under V .
Then G is a closed subspace of Hp, and for g ∈ M we have

VMzg = uazg ⊕ vbzg = Mz ⊕MzV g ∈ G.

Hence M is invariant under Mz, and, by Duren [4, Theorem 7.4] or Helson [10,
page 25], M = ωHp for some inner function ω, and thus

G = {ωuag ⊕ ωvbg : g ∈ Hp} = (Mω ⊕Mω)Graph(Mφ).

It follows that if the domain of G is dense, then ω, as well as u, must be 1, and
hence the asserted equality holds. �

As a corollary to the proof we have the following.

Corollary 4. If 1 ≤ p < ∞ and G ⊆ Hp ⊕Hp is a closed graph that is invariant
under Mz ⊕ Mz, then there is a meromorphic function φ in the Nevanlinna class
and an inner function ω such that

G = (Mω ⊕Mω)Graph(Mφ).

The following is a direct consequence of the preceding corollary (i.e., ω is con-
stant).

Corollary 5. Suppose 1 ≤ p < ∞ and G ⊆ Hp ⊕ Hp is a closed graph that is
invariant under Mz ⊕ Mz and the sum of its domain and range is dense in Hp.
Then it is the graph of some meromorphic function in the Nevanlinna class.

3.2. Measure theory. A symmetric norm on L∞ [0, 1], with respect to Lebesgue
measure μ, is a norm α such that

(1) α (f) = α (|f |) for every f ∈ L∞ [0, 1],
(2) α (1) = 1,
(3) α (f ◦ τ ) = α (f) for every f ∈ L∞ [0, 1] and every invertible measure-

preserving τ : [0, 1] → [0, 1].
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We say that a symmetric norm α on L∞ [0, 1] is continuous if

lim
t→0+

α
(
χ[0,t]

)
= 0.

We define Lα [0, 1] to be the completion of L∞ [0, 1] with respect to the norm α. We
can realize the elements of Lα [0, 1] as (equivalence classes of) measurable functions
in L1 [0, 1]. Moreover, if X = Lα [0, 1] and Y is the set of all measurable functions
on [0, 1] with the topology of convergence in measure, then (X,Y ) is a special
multiplier pair with pointwise multiplication, and R0 = L0 = L∞ [0, 1] (see [7]).
Moreover, if α is continuous, we have

lim
μ(F )→0

α (χFh) = 0

for every h ∈ Lα [0, 1].

Proposition 3. Suppose α is a continuous symmetric norm on L∞ [0, 1] and G ⊆
Lα [0, 1] ⊕ Lα [0, 1] is a closed linear subspace and a graph that is invariant under
Mf ⊕ Mf for every f ∈ L∞ [0, 1]. Then there is a measurable function ϕ (with
possibly infinite values) such that G ⊆ G (Mϕ).

Proof. Since D (G) is an L∞ [0, 1]-module, we have |g| ∈ D (G) whenever g ∈ D (G).
Moreover, if {gn} is a sequence in D (G) and (|gn| , hn) ∈ G for n ≥ 1, then

g =
∞∑
n=1

tn |gn| ∈ D (G), where 0 < tn < 1
2n[α(gn)+α(hn)+1] for n ≥ 1. Since

{x : g (x) > 0} =
⋃

n≥1 {x : |gn (x)| > 0}, if we choose gn so that

μ ({x : gn (x) 	= 0}) > sup {μ ({x : h (x) 	= 0}) : h ∈ D (G)} − 1

n
,

then we see that

μ ({x : g (x) 	= 0}) = sup{μ ({x : h (x) 	= 0}) : h ∈ D (G)}.

If E = {x : g (x) 	= 0}, then χEh = h a.e. (μ) for every h ∈ D (G), and, since G is
a graph and an L∞ [0, 1]-module, we see that χEh = h a.e. (μ) for every h in the
range of G. We can now replace Lα [0, 1] with χEL

α [0, 1] = X and let Y be the set
of measurable functions that vanish on [0, 1] \E. Now g has a multiplicative inverse,
and, for each h ∈ X and each positive integer n ≥ 1, we have hχEn

= g (χEn
h/g),

where En = {x : g (x) ≥ 1/n and |f (x)| ≤ n}. Since
⋃

n≥1 En = E (a.e.), the set

{χEn
: n ≥ 1} is left separating for Y . Applying Theorem 1 to χEG, we see that

G = χEG ⊆ Lf/g,

where (g, f) ∈ G. Moreover, the fact that μ (E\En) → 0 and α is continuous implies

RχEn
→ 1

in the strong operator topology. It follows from Theorem 2 that χEG is the graph of
Lf/g on χEL

α [0, 1]. If we let ϕ = f
gχE +∞χ([0,1]\E), we see that G = G (Lϕ). �

Corollary 6. Suppose α is a continuous symmetric norm on L∞ [0, 1] and T is a
closed densely defined linear transformation on Lα [0, 1] that commutes with Lf for
every f ∈ L∞ [0, 1]. Then there is a measurable function ϕ : [0, 1] → C such that
T = Lϕ.
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CLOSED OPERATORS COMMUTING WITH MULTIPLICATIONS 3101

Theorem 5. Suppose α is a symmetric norm on L∞ [0, 1] and T is a closed densely
defined operator on Lα [0, 1] that commutes with Mx. Then there is a measurable
function ϕ : [0, 1] → C such that T = Mϕ.

Proof. If α is continuous, the desired conclusion follows from Corollary 6. If α is
not continuous, then α is equivalent to ‖·‖∞ on L∞ [0, 1] (see [7]), so Lα [0, 1] =
L∞ [0, 1], and the desired conclusion follows from Proposition 1. �

3.3. Finite von Neumann algebras. Suppose M is a II1 factor von Neumann
algebra with a faithful normal tracial state τ . A unitarily invariant norm on M is
a norm β such that

(1) β (UTV ) = β (T ) for all U ,T ,V ∈ M with U ,V unitary,
(2) β (1) = 1.

Since M is a II1 factor, there is a chain {Pt : t ∈ [0, 1]} of projections in M
such that τ (Pt) = t for every t ∈ [0, 1]. The map χ[0,t] �→ Pt extends to a unital
∗-homomorphism π : L∞ [0, 1] → M such that

τ (π (f)) =

∫ 1

0

f (x) dx

for every f ∈ L∞ [0, 1]. If we define α : L∞ [0, 1] → [0,∞) by

α (f) = β(π (f)),

we obtain a symmetric norm α. It turns out that α is independent of the chain
{Pt : t ∈ [0, 1]}. Moreover, every element A ∈ M has a polar decomposition A =

U (A∗A)1/2 and β (A) = β
(
(A∗A)1/2

)
. There is a chain {Pt : t ∈ [0, 1]} whose

generated von Neumann algebra contains (A∗A)
1/2

, and there is a ϕ ∈ L∞ [0, 1]

such that π (ϕ) = (A∗A)1/2, and we get β (A) = α (ϕ). In this way we can recapture
β from α. It is shown in [5] that every symmetric norm α on L∞ [0, 1] determines a
unitarily invariant norm β on M, and we will call this norm ‖·‖α. We let Lα (M, τ )
denote the completion of M with respect to the norm ‖·‖α. If the symmetric norm
α is continuous, then

lim
τ(P )→0,P=P ∗=P 2∈M

‖P‖α = 0.

If α is not continuous, then α is equivalent to ‖·‖∞ on L∞ [0, 1] and ‖·‖α is equivalent

to the operator norm on M, so Lβ (M, τ ) = M.
There is a topology of convergence in measure on M (see [11]), and Lα (M, τ )

can be viewed as a subset of the completion Y of M with respect to this topology.
It was shown in [7] that (Lα (M, τ ) ,Y) is a multiplier pair and L0 = R0 = M, and
it follows from [11, Theorem 1] that (Lα (M, τ ) ,Y) is a special multiplier pair.

Theorem 6. Suppose M is a II1 factor von Neumann algebra with faithful normal
tracial state τ , and suppose α is a unitarily invariant norm on M. Suppose T is
a closed densely defined operator on Lα (M, τ ) that commutes with RS for every
S ∈ M. Then:

(1) If α is not continuous, then T ∈ L.
(2) If α is continuous, then T = Ly for some y ∈ Y.
(3) If α is continuous and y ∈ Y, then Ly is a closed densely defined operator

on Lα (M, τ ) that commutes with RS for every S ∈ M.
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Proof. (1) If α is not continuous, then α is equivalent to the operator norm on M,
so Lα (M, τ ) = M, which implies L0 = R0 = M. The desired conclusion now
follows from Proposition 1.

(2) Suppose x ∈ D (T ). It follows from [11, Theorem 2] that there is a sequence
{pn} of projections in M such that τ (pn) → 0 and x (1− pn) ∈ M for each n ≥ 1,
and, since D (T ) (1− pn) ⊆ D (T ), we have x (1− pn) ∈ M∩D (T ) for each n ≥ 1.
However, α is continuous, so

α (x− (1− pn)x) = α (pnx) ≤ α (pn) ‖x‖ → 0.

Thus the closure ofM∩D (T ) contains D (T ), and since D (T ) is dense in Lα (M, τ ),
it follows that M∩D (T ) is dense in Lα (M, τ ). For each x ∈ M ∩ D (T ), let Px

denote the projection onto the weak operator topology closure of the range of x,
and choose a sequence {xn} in M∩D (T ) such that

lim τ (Pxn
) = sup{τ (Px) : x ∈ M∩D (T )}.

For each n ≥ 1 we can write xn = (xnx
∗
n)

1
2 un with un unitary, and so (xnx

∗
n)

1
2 =

Ru∗
n
xn ∈ M∩D (T ). If we choose tn so that

tn

[
α

(
(xnx

∗
n)

1
2

)
+ α

(
T (xnx

∗
n)

1
2

)]
<

1

2n
,

then g =

∞∑
n=1

tn (xnx
∗
n)

1
2 ∈ M∩D (T ). Moreover, it follows that Pg ≥ P

(xnx∗
n)

1
2
for

each n. Hence

τ (Pg) = sup{τ (Px) : x ∈ M∩D (T )}.

If x ∈ D (T ), then (xx∗)
1
2 , g + (xx∗)

1
2 ∈ D (T ), which means the weak operator

topology closure of the range of x (which equals the range of (xx∗)
1
2 ) is contained

in Pg. Hence,

M∩D (T ) ⊆ PgM ⊆ PgL
α(M, τ ).

Since M ∩D (T ) is dense in Lα (M, τ ), we must have Pg = 1, which implies g is
invertible in Y .

Now it follows from [11, Theorem 2] that for each y ∈ Y there is a sequence
{qn} of projections in M such that τ (qn) → 1 and yqn ∈ M for every n ≥ 1.
Since α is continuous, we know from [5] that Rqn → 1 (SOT) on Lα (M, τ ). Hence,
Theorem 3 implies that T = LT (g)g−1 .

(3) It follows from [6] that Ly is a closed operator on Lα (M, τ ). It follows
from [11, Theorem 2] that there is a sequence {pn} of projections in M such that
τ (pn) → 0 and y (1− pn) ∈ M ⊆ Lα (M, τ ), which implies

∞⋃
n=1

(1− pn)M ⊆ D(Ly).

Moreover, since α is continuous,

α (x− (1− pn)x) = α (pnx) ≤ α (pn) ‖x‖ → 0.

Hence, D (Ly) is dense in Lα (M, τ ). �
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4. An example on the Bergman space

The closed densely defined operators commuting with the unilateral shift, Mz on
H2, are multiplications by functions in the Smirnov class. Is there a similar result
for the Bergman shift, multiplication by z on the Bergman space A2? What follows
is a counterexample.

Theorem 7. There exists a closed densely defined operator that commutes with the
Bergman shift but is not a multiplication operator.

Proof. By a result of Seip (see [16], [3, Theorem 9, p. 186], [8]) there exist two
disjoint interpolation sets Γ1,Γ2 for A

2 whose union Γ is a sampling set. A sampling
set for A2 is defined as a subset Γ of D with the property that there exist positive
constants c and C such that, for each f ∈ A2,

c‖f‖2 �
∑
z∈Γ

|f(z)|2(1− |z|2)2 � C‖f‖2.

Thus, with μ the discrete measure having mass (1− |z|2)2 at each point z of Γ, the
restriction map Φ : f �→ f | Γ is an invertible map of A2 onto a subspace A2|Γ of
L2(μ). An interpolation set for A2 is a subset Γ of D with the property that for each
element w in L2(μ) there exists f ∈ A2 such that w = Φ(f), i.e., the restriction
map f �→ f | Γ on A2 is onto L2(μ).

Since interpolation sets are also zero sets for A2, we can let f1 be a function in
A2 having Γ1 as its zero set. Define G1, G2 by

G1 = {(u, uf1) : u, uf1 ∈ A2}

and

G2 = {(g, g) : g ∈ A2, g | Γ2 = 0}.
Then G1 = G (Mf1) and G2 ⊆ G (I) are graphs of closed operators that commute
with the Bergman shift Mz. Moreover, G = G1 + G2 is also a graph. To see that G
is a graph, we need only check that if (0,h) ∈ G, then h = 0. Suppose (u, uf1) ∈ G1,
(g, g) ∈ G2 and (0, h) = (u, uf1) + (g, g). Then u = −g vanishes on Γ2, so uf1
vanishes on the sampling set Γ = Γ1 ∪ Γ2, which implies uf1 = 0. But f1 	= 0, so
0 = u = −g, whence h = 0.

Finally, it will be shown that the angle between G1 and G2 is greater than zero,
and thus the graph G = G1 + G2 is itself a closed direct sum. It is to be shown that
there is a γ, 0 ≤ γ < 1, such that, if Fk ∈ Gk for k = 1,2, then

|〈F1, F2〉| ≤ γ ‖F1‖ ‖F2‖.

Let Φ(2)(f ,g) = (Φ(f),Φ(g)). Since Φ is an isomorphism between A2 and its
image A in L2 (μ), it suffices to show that the preceding inequality holds for the
images of F1 and F2 under Φ(2). Since an element of L2(μ) in the image A of Φ is
just the restriction of an element of A2, we will simply write f = Φ(f) and indicate
the norm and inner product in L2(μ) with a subscript μ. We have F1 = (u,uf1)
and F2 = (g,g) with g,u,uf1 ∈ A2 and g | Γ2 = 0. Thus

〈F1, F2〉μ = 〈u, g〉μ + 〈uf1, g〉μ = 〈u, g〉μ,
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where the second equality follows from the fact that f1 | Γ1 = 0 as well as g | Γ2 = 0,
so uf1ḡ vanishes a.e.-μ. Also,

‖F1‖2μ = ‖u‖2μ + ‖uf1‖2μ
and

‖F2‖2μ = 2‖g‖2μ.

We have

|〈F1, F2〉μ| = |〈u, g〉μ|2 � ‖u‖μ‖g‖μ ≤ ‖F1‖μ
(√

2/2
)
‖F2‖μ,

as required with γ =
√
2/2. It follows that the subspaces are at a positive angle

and the sum of their closures is closed. The operator whose graph is G has the
required properties. �
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