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0 Introduction

In a paper [14] published in the 1929–1930 Math Ann, von Neumann defines a class of algebras of

bounded operators on a Hilbert space that have acquired the name “von Neumann algebras” [1] (von

Neumann refers to them as “rings of operators”). Such algebras are self-adjoint , strong-operator closed,

and contain the identity operator. In that article, the celebrated Double Commutant Theorem is proved.

It characterizes von Neumann algebras R as those for which R′′ = R, where R′, the commutant of R,

is the set of bounded operators on the Hilbert space that commute with all operators in R. Since then,

the subject popularly known as “operator algebras” has come upon the mathematical stage. (We use [5]

as our basic reference for results in the theory of operator algebras as well as for much of our notation

and terminology.)

Five to six years after the appearance of [14], von Neumann, together with Murray, resumes the study

of von Neumann algebras. It is one of the most successful mathematical collaborations. The point to

that study was largely to supply a (complex) group algebra crucial for working with infinite groups and

to provide a rigorous framework for the most natural mathematical model of the early formulation of

quantum mechanics (see [2,3,6,9,16]). In their series of papers [10–12] and [15], Murray and von Neumann

focus their attention on those von Neumann algebras that are completely noncommutative, those whose
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centers consist of scalar multiples of the identity operator I. They call such algebras “factors”. In [10],

they construct factors without minimal projections in which I is finite. Such factors are said to be of

“Type II1”, and they are of particular interest to Murray and von Neumann. In [11], they note that the

family of unbounded operators on a Hilbert space H “affiliated” with a type II1 factor M has unusual

properties. We say that a closed densely defined operator T onH is affiliated with M when U ′T = TU ′ for
each unitary operator U ′ in M′, the commutant of M. This definition applies to a general von Neumann

algebra, not just to factors of type II1. However, as Murray and von Neumann show, at the end of [11],

the family of operators A (M) affiliated with a factor M of type II1 (or, more generally, affiliated with

finite von Neumann algebras, those in which the identity operator is finite) admits surprising operations of

addition and multiplication that suit the formal algebraic manipulations used by the founders of quantum

mechanics in their mathematical formulation. This is the case because of very special domain properties

that are valid for finite families of operators affiliated with a factor of type II1. These properties are

not valid for infinite factors; their families of affiliated operators do not admit such algebraic operations.

We review the basic theory of factors in Section 1, and later, in Section 3, we shall show that A (M)

is an associative algebra with unit I and an adjoint operation (“involution”) relative to these algebraic

operations. (This “detail” is largely ignored in the literature. Experience has shown that it is unwise to

ignore “details” when dealing with unbounded operators.)

The development of modern quantum mechanics in the mid-1920s, which studies the physical behavior

of systems at atomic length scales and smaller, was an important motivation for the great interest in the

study of operator algebras in general and von Neumann algebras in particular. In Dirac’s treatment of

physical systems [2], there are two basic constituents: the family of observables and the family of states

in which the system can be found. In classical (Newtonian-Hamiltonian) mechanics, states in a physical

system are described by an assignment of numbers to the observables (the values certain to be found by

measuring the observables in the given state), and the observables are represented as functions, on the

space of states, that form an algebra, necessarily commutative. Contrary to the classical formulation,

in quantum mechanics, each state is described in terms of an assignment of probability measures to

the spectra of the observables (a measurement of the observable with the system in a given state will

produce a value in a given portion of the spectrum with a specific probability). A state that assigns a

definite value to one observable assigns a dispersed measure to the spectrum of some other observable

— the amount of dispersion involving the experimentally reappearing Planck’s constant. So, in quantum

mechanics, it is not possible to describe states in which a particle has both a definite position and a

definite momentum. The more precise the position, the less precise the momentum. This is the celebrated

Heisenberg Uncertainty Principle. It entails the non-commutativity of the algebra of observables.

In the mathematical formulation of quantum mechanics, many “natural” observables are represented

as self-adjoint operators (possibly unbounded) on a Hilbert space. Heisenberg’s encoding of the ad-hoc

quantum rules in his famous commutation relation, QP −PQ = i�I, where Q and P are the observables

corresponding to the position and momentum (say, of a particle in the system) respectively, I is the

identity operator and i� is some complex scalar involving Planck’s constant, embodies the characteristic

indeterminacy and uncertainty of quantum theory. The very essence of the relation is its introduction of

non-commutativity between the particle’s position Q and its corresponding conjugate momentum P . This

is the basis for the view of quantum physics as employing noncommutative mathematics, while classical

(Newtonian-Hamiltonian) physics involves just commutative mathematics. If we look for mathematical

structures that can accommodate this non-commutativity and permit the necessary computations, fami-

lies of matrices come quickly to mind. In the classical case, commutativity leads immediately to algebras

of (complex-valued) functions on a topological space. Of course, we, and the early quantum physicists,

can hope that the finite matrices will suffice for our computational work in quantum physics. Unhappily,

this is not the case, as the trace (functional) on the algebra of complex n × n matrices makes clear to

us. The trace of the left side of the Heisenberg relation is 0 for matrices P and Q, while the trace of

the right side is i� (�= 0). That is to say, the Heisenberg relation cannot be satisfied by finite matri-

ces. Of course, the natural extension of this attempt is to wonder if infinite-dimensional Hilbert spaces

might not “support” such a representation with bounded operators. Even this is not possible as we shall
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show in Section 4; the Heisenberg relation is not representable in terms of elements of complex Banach

algebras with a unit element. Therefore, in our search for ways to represent the Heisenberg relation

in some (algebraic) mathematical structure, we can eliminate finite matrices, bounded operators on an

infinite-dimensional Hilbert space, and even elements of more general complex Banach algebras. Is there

anything left?

We are not only representing the Heisenberg relation in mathematical terms; we are trying to do

so in a way that allows us to calculate with the representing elements. Another possibility, not yet

eliminated, might be to represent the relation by unbounded operators on a Hilbert space. The techniques

of unbounded operators are somewhat familiar. At the same time, we have become aware that the

unbounded operator theory is deep, difficult, and dangerous. Statements we would want to be true, and

that are easily shown to be true for bounded operators, often fail for unbounded operators — sometimes

for subtle reasons — occasionally, noted only after such statements have been used as crucial parts of

a “proof”. The fundamentals of the theory of unbounded operators are presented (without proofs) in

Section 2. As it turns out, there is a representation of the Heisenberg relation in terms of unbounded

operators, and it is just about the best we are going to get. This classic representation is discussed

in Section 4. However, to specify a dense domain on which the representing differentiation operator

(corresponding to the momentum P ) is self-adjoint is not so simple. Some problems, elementary but

subtle, arise on the way. We manage to bypass them, and we present an elegant way to approach the

problem of finding precisely the self-adjoint operator and its domain through the use of “Stone’s theorem”

(from the very beginning of the theory of unitary representations of infinite groups).

In this article, we ask further whether there is a representation of the Heisenberg commutation relation

in terms of unbounded operators affiliated with a factor of type II1. As mentioned earlier, the operators

affiliated with a factor M of type II1 have special properties and they form an algebra A (M). von

Neumann had great respect for his physicist colleagues and the uncanny accuracy of their results in

experiments at the subatomic level. In effect, the physicists worked with unbounded operators, but in

a loose way. If taken at face value, many of their mathematical assertions were demonstrably incorrect.

When the algebra A (M) appeared, von Neumann hoped that it would provide a framework for the formal

computations the physicists made with the unbounded operators. As it turned out, in more advanced

areas of modern physics, factors of type II1 do not suffice, by themselves, for the mathematical framework

needed. It remains a tantalizing question, nonetheless, whether the most fundamental relation of quantum

mechanics, the Heisenberg relation, can be realized with self-adjoint operators in some A (M). It is the

answer to this question that we provide in this article.

The work in this article is substantially the author’s thesis written under the supervision of Professor

Richard Kadison; much of the work is joint with him. The author would like to thank Professor Kadison

for his patient guidance and unwavering support during her work on this project.

1 Factors

There are two main classes of examples of von Neumann algebras introduced by Murray and von Neumann

in their series of papers. One is obtained from the “group-measure space construction”. Let G be a

discrete group with unit e, and A be a maximal abelian self-adjoint subalgebra of B(H). Let K be

the Hilbert space
∑

g∈G ⊕Hg, where each Hg is H, so that K consists of all mappings x : G → H for

which
∑

g∈G ‖x(g)‖2 < ∞. With S in B(H), there is a naturally associated operator Φ(S) in B(K)

defined by (Φ(S)x)(g) = S(x(g)). Let U : g → U(g) be a unitary representation of G on H. We assume

that U(g)A U(g)∗ = A for each g in G (that is, each U(g) implements a ∗ automorphism of A and

U gives rise to a representation of G by automorphisms of A ) and that A ∩ (U(g)A ) = {0} for each

g(�= e) in G (that is, G acts freely, by automorphisms, on A ). We say that G acts ergodically on A

(through the representation U) when the only elements A in A such that U(g)AU(g)∗ = A, for all g in

G, are the scalars. Let (V (g)x)(g′) be U(g)x(g−1g′). It is easily checked that V (g)V (h) = V (gh) and

V (g)Φ(S)V (g)∗ = Φ(U(g)SU(g)∗) when S ∈ B(H) and g, h ∈ G. Thus the representation V gives rise to
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the “same” representation of G by automorphisms of the copy Φ(A ) of A as U does. The von Neumann

algebra R generated by Φ(A ) and the group {V (g)}g∈G is a factor if and only if G acts ergodically on

A . Moreover, Φ(A ) is a maximal abelian ∗ subalgebra of R.

Specific examples of the structures described above are obtained from a measure space (S,S ,m) that

is countably separated (S contains a countable family of E1, E2, . . . of non-null sets of finite measure such

that if s and t are distinct points of S, then t ∈ Ej and s /∈ Ej for some j) and a group G of one-to-one

mappings of S onto S that preserves measurability and measure 0 subsets and acts freely on S (that is,

m({s ∈ S : g(s) = s}) = 0 when g is not the unit element of G). In this case, A is the multiplication

algebra of the measure space (acting on L2(S,S ,m)). The Radon-Nikodým theorem yields, for each g, a

non-negative, real-valued, measurable function ϕg on S such that
∫
x(g(s))dm(s) =

∫
x(s)ϕg(s)dm(s) for

each x in L1(S,S ,m). If Ug is defined by (Ugx)(s) = [ϕg(s)]
1
2 x(g−1(s)), for each x in L2(S,S ,m), then

g → Ug is a unitary representation of G that gives rise to automorphisms of A satisfying A ∩(UgA ) = {0}
for each g(�= e) in G. We say that G acts ergodically on S when m(g(S0)\S0) > 0 for some g in G unless

m(S0) = 0 or m(S\S0) = 0. The representation g → Ug acts ergodically on A if and only if G acts

ergodically on S. With Ug in place of U(g), L2(S,S ,m) for H, and the multiplication algebra of the

measure space (S,S ,m) for A , the conditions for the construction of R described earlier are satisfied.

Theorem 1.1. If G acts ergodically on S, then R is a factor and

(i) R is of type I if and only if some point in S has positive measure; in this case, R is of type In where

n is the number of points in S.

(ii) R is of type II when S admits a G-invariant measure m0 such that m0(S0) = 0 if m(S0) = 0. In

this case, R is of type II1 when m0(S) < ∞ and of type II∞ when m0(S) = ∞.

(iii) R is of type III when there is no m0 as described in (ii).

The other class is based on regular representations of (countable) discrete groups. In [12], Murray and

von Neumann provide one of the possible extensions of the notion of group algebra from finite to infinite

discrete groups. Let G be a infinite discrete group with unit e and H be the Hilbert space l2(G) (the

family of complex-valued functions x on G such that
∑

g∈G |x(g)|2 < ∞, provided with the inner product

〈x, y〉 = ∑
g∈G x(g)y(g)). Let (Lg0x)(g) be x(g−1

0 g) for each g in G. Then Lg is a unitary operator on

the Hilbert space H (for Lg−1 is its inverse and 〈Lgx, Lgy〉 = 〈x, y〉 for all x and y in H). Moreover,

LgLg′ = Lgg′ ; the mapping g → Lg is a (group) isomorphism of G into the group of unitary operators

on H. In the same way, we can define the unitary operators Rg0 by (Rg0x)(g) = x(gg0). Let LG and

RG be the weak-operator closures of the algebras of finite, complex linear combinations of the operators

{Lg : g ∈ G} and {Rg : g ∈ G}, respectively. Then LG and RG are von Neumann algebras. In addition,

each of LG and RG is the commutant of the other.

Theorem 1.2. The von Neumann algebra LG is a factor if and only if the conjugacy class of each

group element (other than the group identity) is infinite. In this case, LG is a factor of type II1.

The groups satisfying the infinite conjugacy class condition are called i.c.c. groups. Some examples

of such groups are Fn, the free (nonabelian) groups on n (� 2) generators, and Π, the group of those

permutations of the integers that move at most a finite number of integers.

Theorem 1.3. LΠ is not isomorphic to LFn .

It is still not known whether LFn and LFm are isomorphic when n �= m.

A factor M of type In, with n finite, is isomorphic to the algebra Mn(C) of n × n matrices over the

complex numbers. A key element of structure for Mn(C) (and M) is the linear functional τ with the

properties

τ(AB) = τ(BA), A,B ∈ M,

τ(I) = 1.

We refer to τ as the normalized trace on M. With the properties noted, τ is unique. In addition, τ takes

on non-negative real values at positive matrices. If we denote by [ajk] a matrix in Mn(C), where ajk is

the entry in row j and column k, then τ([ajk]) is n
−1(

∑n
j=1 ajj).
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A discovery that intrigued Murray and von Neumann greatly was the existence of a functional on a

factor M of type II1 with the main properties exhibited by the trace on Mn(C). They referred to this

functional on M as the (normalized) trace. To define such a trace, Murray and von Neumann proceeded

in a measure-theoretic manner. With M a factor of type II1, it can be shown that, for each positive

integer n and each projection E in M, there are n equivalent mutually orthogonal projections in M
with sum E. If we assign to I the measure (or “normalized dimension”) 1 and use I in place of E,

then each of the n equivalent projections should be assigned measure n−1. Each projection in M is a

(possibly infinite) sum of such (rational) projections, which provides it with a measure. Murray and von

Neumann arrived at a dimension function d that assigns to each projection E in M a number in [0, 1].

They noted that the range of d is precisely [0, 1], and recognized that they were dealing with “continuous

dimensionality”. By virtue of the spectral theorem, it was not difficult to determine the value that the

trace τ must assume at each element of M. If A is a self-adjoint operator in B(H), there is a family {Eλ}
of projections in each von Neumann algebra containing A such that

A =

∫ ‖A‖

−‖A‖
λdEλ

in the sense of norm convergence of approximating Riemann sums; and A is the norm limit of finite linear

combinations with coefficients in sp(A), the spectrum of A, of orthogonal projections Eλ′ − Eλ. The

family {Eλ} is referred to as the resolution of the identity for A or the spectral resolution of A. The value

of τ at each self-adjoint operator in M is defined by

τ(A) =

∫ ‖A‖

−‖A‖
λdd(Eλ).

Finally, each operator T in M is a sum H + iK where H (= (T + T ∗)/2) and K (= (T − T ∗)/2i) are

self-adjoint. If τ is to be linear, we must define τ(T ) as τ(H) + iτ(K). This construction of τ was

carried out in [10]. It was relatively easy to prove that τ , so determined, is unique. But proving that

τ is additive (τ(A + B) = τ(A) + τ(B)) was a considerable challenge; it was not established until [11].

The trace has many interesting and important properties. As constructed, it restricts to the dimension

function on projections. In addition, τ(AB) = τ(BA) for all A and B in M, τ(A) � 0 when A � 0, and

τ(An) → τ(A) when Anx → Ax for each x in H (that is, τ is strong-operator continuous on M). It is

the unique tracial state of M (positive linear functional taking value 1 at I such that τ(AB) = τ(BA)

for all A and B in M).

2 Unbounded operators

2.1 Definitions and facts

Let T be a linear mapping, with domain D(T ) a linear submanifold (not necessarily closed), of the Hilbert

spaceH into the Hilbert space K. We associate a graph G (T ) with T , where G (T ) = {(x, Tx) : x ∈ D(T )}.
We say that T is closed when G (T ) is closed. The closed graph theorem tells us that if T is defined on

all of H, then G (T ) is closed if and only if T is bounded. The unbounded operators T we consider will

usually be densely defined, that is, D(T ) is dense in H. Whatever T we consider, it has a graph G (T ),

and the closure G (T )− of G (T ) will be a linear subspace of H⊕K. It may be the case that G (T )− is the

graph of a linear transformation T̄ , but it need not be. If it is, T̄ “extends” T and is closed. We say that

T0 extends (or is an extension of ) T , and write T ⊆ T0, when D(T ) ⊆ D(T0) and T0x = Tx for each x

in D(T ). If G (T )− is the graph of a linear transformation T̄ , clearly T̄ is the “smallest” closed extension

of T , we say that T is preclosed (or closable) and refer to T̄ as the closure of T .

From the point of view of calculations with an unbounded operator T , it is often much easier to study

its restriction T |D0 to a dense linear manifold D0 in its domain D(T ) than to study T itself. If T is closed

and G (T |D0)
− = G (T ), the information obtained in this way is much more applicable to T . In this case,

we say that D0 is a core for T . Each dense linear manifold in G (T ) corresponds to a core for T .
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We define the operations of addition and multiplication for unbounded operators so that the domains

of the resulting operators consist precisely of those vectors on which the indicated operations can be

performed. Thus D(A + B) = D(A) ∩ D(B) and (A + B)x = Ax + Bx for x in D(A + B). Assuming

that D(B) ⊆ H and D(A) ⊆ K, where B has its range in K, AB is defined as the linear transformation,

with {x : x ∈ D(B) and Bx ∈ D(A)} as its domain, assigning A(Bx) to x. Of course D(aA) = D(A)

and (aA)x = a(Ax) for a complex scalar a.

Definition 2.1. If T is a linear transformation with D(T ) dense in the Hilbert space H and range

contained in the Hilbert space K, we define a mapping T ∗, the adjoint of T , as follows. Its domain

consists of those vectors y in K such that, for some vector z in H, 〈x, z〉 = 〈Tx, y〉 for all x in D(T ).

For such y, T ∗y is z. If T = T ∗, we say that T is self-adjoint.

The formal relation 〈Tx, y〉 = 〈x, T ∗y〉, familiar from the case of bounded operators, remains valid in

the present context only when x ∈ D(T ) and y ∈ D(T ∗).

Remark 2.2. If T0 is densely defined and T is an extension of T0, then T ∗
0 is an extension of T ∗.

Remark 2.3. If T is densely defined, then T ∗ is a closed linear operator.

Theorem 2.4. If T is a densely defined transformation from the Hilbert space H to the Hilbert space

K, then

(i) if T is preclosed, (T̄ )∗ = T ∗;
(ii) T is preclosed if and only if D(T ∗) is dense in K;

(iii) if T is preclosed, T ∗∗ = T̄ ;

(iv) if T is closed, T ∗T + I is one-to-one with range H and positive inverse of bound not exceeding 1;

(v) T ∗T is self-adjoint when T is closed, and D(T ∗T ) is a core for T .

The statement that T is self-adjoint (T = T ∗) contains information about the domain of T as well as

the formal information that 〈Tx, y〉 = 〈x, T y〉 for all x and y in D(T ). When D(T ) is dense in H and

〈Tx, y〉 = 〈x, T y〉 for all x and y in D(T ), we say that T is symmetric. Equivalently, T is symmetric when

T ⊆ T ∗. Since T ∗ is closed and G (T ) ⊆ G (T ∗), in this case, T is preclosed if it is symmetric. If T is

self-adjoint, T is both symmetric and closed. The operation of differentiation on an appropriate domain

provides an example of a closed symmetric operator that is not self-adjoint (see Example 4.2).

Remark 2.5. If A ⊆ T with A self-adjoint and T symmetric, then A ⊆ T ⊆ T ∗, so that T ∗ ⊆ A∗ =

A ⊆ T ⊆ T ∗ and A = T . It follows that A has no proper symmetric extension. That is, a self-adjoint

operator is maximal symmetric.

Proposition 2.6. If T is a closed symmetric operator on the Hilbert space H, the following assertions

are equivalent :

(i) T is self-adjoint ;

(ii) T ∗ ± iI have (0) as null space;

(iii) T ± iI have H as range;

(iv) T ± iI have ranges dense in H.

Proposition 2.7. If T is a closed linear operator with domain dense in a Hilbert space H and with

range in H, then

R(T ) = I −N(T ∗), N(T ) = I −R(T ∗), R(T ∗T ) = R(T ∗), N(T ∗T ) = N(T ),

where N(T ) and R(T ) denote the projections whose ranges are, respectively, the null space of T and the

closure of the range of T .

2.2 Spectral theory

If A is a bounded self-adjoint operator acting on a Hilbert space H and A is an abelian von Neumann

algebra containing A, there is a family {Eλ} of projections in A (indexed by R), called the spectral

resolution of A, such that

(i) Eλ = 0 if λ < −‖A‖, and Eλ = I if ‖A‖ � λ;
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(ii) Eλ � Eλ′ if λ � λ′;
(iii) Eλ = ∧λ′>λEλ′ ;

(iv) AEλ � λEλ and λ(I − Eλ) � A(I − Eλ) for each λ;

(v) A =
∫ ‖A‖
−‖A‖ λdEλ in the sense of norm convergence of approximating Riemann sums; and A is

the norm limit of finite linear combinations with coefficients in sp(A), the spectrum of A, of orthogonal

projections Eλ′ − Eλ.

With the abelian von Neumann algebra A isomorphic to C(X) and X an extremely disconnected

compact Hausdorff space, if f and eλ in C(X) correspond to A and Eλ in A , then eλ is the characteristic

function of the largest clopen subset Xλ on which f takes values not exceeding λ.

The spectral theory described above can be extended to unbounded self-adjoint operators. (We asso-

ciate an unbounded spectral resolution with each of them.) We begin with a discussion that details the

relation between unbounded self-adjoint operators and the multiplication algebra of a measure space.

If g is a complex measurable function (finite almost everywhere) on a measure space (S,S ,m), without

the restriction that it be essentially bounded — multiplication by g will not yield an everywhere-defined

operator on L2(S), for many of the products will not lie in L2(S). Enough functions f will have product

gf in L2(S), however, to form a dense linear submanifold D of L2(S) and constitute a (dense) domain

for an (unbounded) multiplication operator Mg. To see this, let En be the (bounded) multiplication

operator corresponding to the characteristic function of the (measurable) set on which |g| � n. Since g

is finite almost everywhere, {En} is an increasing sequence of projections with union I. The union D0 of

the ranges of the En is a dense linear manifold of L2(S) contained in D . A measure-theoretic argument

shows that Mg is closed with D0 as a core. In fact, if {fn} is a sequence in D converging in L2(S) to f

and {gfn} converges in L2(S) to h, then, passing to subsequences, we may assume that {fn} and {gfn}
converge almost everywhere to f and h, respectively. But, then, {gfn} converges almost everywhere to

gf , so that gf and h are equal almost everywhere. Thus gf ∈ L2(S), f ∈ D , h = Mg(f), and Mg

is closed. With f0 in D , Enf0 converges to f0 and {MgEnf0} = {EnMgf0} converges to Mgf0. Now

Enf0 ∈ D0, so that D0 is a core for Mg. Note that MgEn is bounded with norm not exceeding n. One

can show that Mg is an (unbounded) self-adjoint operator when g is real-valued. If Mg is unbounded, we

cannot expect it to belong to the multiplication algebra A of the measure space (S,S ,m). Nonetheless,

there are various ways in which Mg behaves as if it were in A — for example, Mg is unchanged when

it is “transformed” by a unitary operator U commuting with A . In this case, U ∈ A , so that U = Mu

where u is a bounded measurable function on S with modulus 1 almost everywhere. With f in D(Mg),

guf ∈ L2(S); while, if guh ∈ L2(S), then gh ∈ L2(S) and h ∈ D(Mg). Thus U transforms D(Mg) onto

itself. Moreover

(U∗MgU)(f) = uguf = |u|2gf = gf.

Thus U∗MgU = Mg. The fact that Mg “commutes” with all unitary operators commuting with A in

conjunction with the fact that each element of a C*-algebra is a finite linear combination of unitary

elements in the algebra and the double commutant theorem (from which it follows that a bounded

operator that commutes with all unitary operators commuting with A lies in A ) provides us with an

indication of the extent to which Mg “belongs” to A . We formalize this property in the definition that

follows.

Definition 2.8. We say that a closed densely defined operator T is affiliated with a von Neumann

algebra R and write TηR when U∗TU = T for each unitary operator U commuting with R.

Note that the equality, U∗TU = T , of the preceding definition is to be understood in the strict sense

that U∗TU and T have the same domain and (formal) equality holds for the transforms of vectors in that

domain. As far as the domains are concerned, the effect is that U transforms D(T ) onto itself.

Remark 2.9. If T is a closed densely defined operator with core D0 and U∗TUx = Tx for each x in

D0 and each unitary operator U commuting with a von Neumann algebra R, then TηR.

To see this, note that, with y in D(T ), there is a sequence {yn} in D0 such that yn → y and Tyn → Ty

(since D0 is a core for T ). Now, Uyn → Uy and TUyn = UTyn → UTy. Since T is closed, Uy ∈ D(T )
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and TUy = UTy. Thus D(T ) ⊆ U∗(D(T )). Applied to U∗, we have D(T ) ⊆ U(D(T )), so that

U(D(T )) = D(T ). Hence D(U∗TU) = D(T ) and U∗TUy = Ty for each y in D(T ).

Theorem 2.10. If A is a self-adjoint operator acting on a Hilbert space H, A is affiliated with some

abelian von Neumann algebra A . There is a resolution of the identity {Eλ} in A such that
⋃∞

n=1 Fn(H)

is a core for A, where Fn = En −E−n, and Ax =
∫ n

−n λdEλx for each x in Fn(H) and all n, in the sense

of norm convergence of approximating Riemann sums.

Since A is self-adjoint, from Proposition 2.6, A + iI and A − iI have range H and null space (0); in

addition, they have inverses, say, T+ and T−, that are everywhere defined with bound not exceeding

1. Let A be an abelian von Neumann algebra containing I, T+ and T−. If U is a unitary operator in

A ′, for each x in D(A), Ux = UT+(A + iI)x = T+U(A + iI)x so that (A + iI)Ux = U(A + iI)x; and

U−1(A+ iI)U = A+ iI. Thus U−1AU = A and AηA . In particular, A is affiliated with the abelian von

Neumann algebra generated by I, T+ and T−. Since A is abelian, A is isomorphic to C(X) with X an

extremely disconnected compact Hausdorff space. Let g+ and g− be the functions in C(X) corresponding

to T+ and T−. Let f+ and f− be the functions defined as the reciprocals of g+ and g−, respectively, at
those points where g+ and g− do not vanish. Then, f+ and f− are continuous where they are defined on

X , as is the function f defined by

f = (f+ + f−)/2.

In a formal sense, f is the function that corresponds to A. Let Xλ be the largest clopen set on which f

takes values not exceeding λ. Let eλ be the characteristic function of Xλ and Eλ be the projection in

A corresponding to eλ. In this case, {Eλ} satisfies Eλ � Eλ′ if λ � λ′, Eλ = ∧λ′>λEλ′ , ∨λEλ = I and

∧λEλ = 0. That is, we have constructed a resolution of the identity {Eλ}. This resolution is unbounded

if f /∈ C(X). Let Fn = En − E−n, the spectral projection corresponding to the interval [−n, n] for each

positive integer n. AFn is bounded and self-adjoint. Moreover,
⋃∞

n=1 Fn(H) is a core for A. From the

spectral theory of bounded self-adjoint operators, Ax =
∫ n

−n λdEλx, for each x in Fn(H) and all n. If

x ∈ D(A),
∫ n

−n

λdEλx =

∫ n

−n

λdEλFnx = AFnx → Ax.

Interpreted as an improper integral, we write

Ax =

∫ ∞

−∞
λdEλx, x ∈ D(A).

2.3 Polar decomposition

Each T in B(H) has a unique decomposition as V H , the polar decomposition of T , where H = (TT ∗)1/2

and V maps the closure of the range of H , denoted by r(H), isometrically onto r(T ) and maps the

orthogonal complement of r(H) to 0. We say that V is a partial isometry with initial space r(H)

and final space r(T ). If R(H) is the projection with range r(H) (the range projection of H), then

V ∗V = R(H) and V V ∗ = R(T ). We note that the components V and H of this polar decomposition

lie in the von Neumann algebra R when T does, from which we conclude that R(H) ∼ R(T ). In fact,

R(T ∗) = R(T ∗T ) = R((T ∗T )1/2) for any T ∈ B(H).

There is an extension of the polar decomposition to the case of a closed densely defined linear operator

from one Hilbert space to another.

Lemma 2.11. If A and C are densely defined preclosed operators and B is a bounded operator such

that A = BC, then A∗ = C∗B∗.

Proof. If y ∈ D(A∗), then, for each x in D(A) (=D(C)),

〈x,A∗y〉 = 〈Ax, y〉 = 〈BCx, y〉 = 〈Cx,B∗y〉;

so that B∗y ∈ D(C∗) and C∗B∗y = A∗y.
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If y ∈ D(C∗B∗), then B∗y ∈ D(C∗) and, for each x in D(C) (=D(A)),

〈x,C∗B∗y〉 = 〈Cx,B∗y〉 = 〈BCx, y〉 = 〈Ax, y〉;
so that y ∈ D(A∗) and A∗y = C∗B∗y.

Theorem 2.12. If T is a closed densely defined linear transformation from one Hilbert space to

another, there is a partial isometry V with initial space the closure of the range of (T ∗T )1/2 and final

space the closure of the range of T such that T = V (T ∗T )1/2 = (T ∗T )1/2V . Restricted to the closures

of the ranges of T ∗ and T , respectively, T ∗T and TT ∗ are unitarily equivalent (and V implements this

equivalence). If T = WH, where H is a positive operator and W is a partial isometry with initial space

the closure of the range of H, then H = (T ∗T )1/2 and W = V . If R is a von Neumann algebra, TηR if

and only if V ∈ R and (T ∗T )1/2ηR.

Proof. From Theorem 2.4, T ∗T is self-adjoint. If x ∈ D(T ∗T ), then x ∈ D(T ), Tx ∈ D(T ∗), and

0 � 〈Tx, Tx〉 = 〈T ∗Tx, x〉.
Thus T ∗T is positive and has a unique positive square root (T ∗T )1/2. Again, from Theorem 2.4, D(T ∗T )
is a core for (T ∗T )1/2 and for T . Thus (T ∗T )1/2 and T map D(T ∗T ) onto dense subsets of their ranges.

Defining V0(T
∗T )1/2x to be Tx, for x in D(T ∗T ), V0 extends to a partial isometry V with initial space

the closure of the range of (T ∗T )1/2 and final space the closure of the range of T , since

〈(T ∗T )1/2x, (T ∗T )1/2x〉 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉.
Moreover, Tx = V (T ∗T )1/2x for each x in D(T ∗T ).

With x in D(V (T ∗T )1/2), choose xn in D(T ∗T ) such that xn → x and (T ∗T )1/2xn → (T ∗T )1/2x.
Then Txn = V (T ∗T )1/2xn → V (T ∗T )1/2x. Since T is closed, x ∈ D(T ) and Tx = V (T ∗T )1/2x. Thus

V (T ∗T )1/2 ⊆ T .

Conversely, if x ∈ D(T ) and xn is chosen in D(T ∗T ) such that xn → x and Txn → Tx, then

(T ∗T )1/2xn = V ∗V (T ∗T )1/2xn = V ∗Txn → V ∗Tx. Since (T ∗T )1/2 is closed, x ∈ D((T ∗T )1/2). It

follows that T = V (T ∗T )1/2.
From Lemma 2.11, T ∗ = (T ∗T )1/2V ∗, so that TT ∗ = V T ∗TV ∗. Thus the restriction of TT ∗ to the

closure of the range of T is unitarily equivalent to the restriction of T ∗T to the closure of the range of

T ∗, and V implements this equivalence. It follows that (TT ∗)1/2 = V (T ∗T )1/2V ∗; so that

T = V (T ∗T )1/2 = V (T ∗T )1/2V ∗V = (TT ∗)1/2V.

If T = WH with H positive and W a partial isometry with initial space the closure of the range of H ,

then, from Lemma 2.11, T ∗ = HW ∗ and T ∗T = H2. Thus H = (T ∗T )1/2, so that W = V .

Let R be a von Neumann algebra and U be a unitary operator in R′. Then UV U∗U(T ∗T )1/2U∗ is

the polar decomposition of UTU∗. From uniqueness of the polar decomposition, T = UTU∗ if and only

if V = UV U∗ and (T ∗T )1/2 = U(T ∗T )1/2U∗. Thus TηR if and only if V ∈ R and (T ∗T )1/2ηR.

Proposition 2.13. If T is affiliated with a von Neumann algebra R, then

(i) R(T ) and N(T ) are in R;

(ii) R(T ∗) = R(T ∗T ) = R((T ∗T )1/2);
(iii) R(T ) ∼ R(T ∗) relative to R.

Proof. (i) Note that x ∈ N(T )(H) if and only if x ∈ D(T ) and Tx = 0. If U ′ is a unitary operator

in R′, then U ′x ∈ D(T ) when x ∈ D(T ) and TU ′x = U ′Tx. Thus TU ′x = 0 when x ∈ N(T )(H),

and N(T )(H) is stable under each unitary operator in R′. Hence, N(T ) ∈ R. From Proposition 2.7,

R(T ) ∈ R.

(ii) We show that N((T ∗T )1/2) = N(T ∗T ). If x ∈ N((T ∗T )1/2)(H), then x ∈ D((T ∗T )1/2) and

(T ∗T )1/2x = 0. Thus x ∈ D(T ∗T ),

T ∗Tx = (T ∗T )1/2(T ∗T )1/2x = 0,
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and x ∈ N(T ∗T )(H).

If x ∈ N(T ∗T )(H), then x ∈ D(T ∗T ) and T ∗Tx = 0. Thus x ∈ D((T ∗T )1/2),

0 = 〈T ∗Tx, x〉 = 〈(T ∗T )1/2(T ∗T )1/2x, x〉 = ‖(T ∗T )1/2x‖2,

and x ∈ N((T ∗T )1/2)(H). It follows that N((T ∗T )1/2) = N(T ∗T ). From Proposition 2.7, R(T ∗) =

R(T ∗T ) = R((T ∗T )1/2).
(iii) From Theorem 2.12, T = V (T ∗T )1/2, where V is a partial isometry in R with initial projection

R((T ∗T )1/2) and final projection R(T ). From (ii), R(T ∗) = R((T ∗T )1/2). Thus R(T ) and R(T ∗) are

equivalent in R.

3 Operators affiliated with finite von Neumann algebras

3.1 Finite von Neumann algebras

We say that a von Neumann algebra R is finite when the identity operator I is finite (that is, I is not

equivalent, relative to R, to any proper subprojection). Note that factors of type In (n finite) and type

II1 are finite von Neumann algebras. We first review some properties of finite von Neumann algebras.

They are useful to us in the proof of the main theorem of the section.

Proposition 3.1. Suppose that E and F are projections in a finite von Neumann algebra R. If

E ∼ F , then I − E ∼ I − F .

Proof. Suppose I − E and I − F are not equivalent. Then there is a central projection P such that

either

P (I − E) ≺ P (I − F ) or P (I − F ) ≺ P (I − E).

Suppose P (I − E) ∼ G < P (I − F ). Then, since PE ∼ PF ,

P = P (I − E) + PE ∼ G+ PF < P (I − F ) + PF = P,

contrary to the assumption that R is finite. The symmetric argument applies if P (I − F ) ≺ P (I − E).

Thus I − E ∼ I − F .

Proposition 3.2. For any projections E and F in a finite von Neumann algebra R,

Δ(E ∨ F ) + Δ(E ∧ F ) = Δ(E) + Δ(F ),

where Δ is the center-valued dimension function on R.

Proof. Since E ∨ F − F ∼ E − E ∧ F (Kaplansky formula), we have

Δ(E ∨ F )−Δ(F ) = Δ(E ∨ F − F ) = Δ(E − E ∧ F ) = Δ(E)−Δ(E ∧ F ).

Thus Δ(E ∨ F ) + Δ(E ∧ F ) = Δ(E) + Δ(F ).

Proposition 3.3. Suppose that E, F , and G are projections in a finite von Neumann algebra R, and

E and F are the (strong-operator) limits of increasing nets {Ea} and {Fa}, respectively, of projections in
R (the index set being the same). Then

(i) {Ea ∨G} is strong-operator convergent to E ∨G;

(ii) {Ea ∧G} is strong-operator convergent to E ∧G;

(iii) {Ea ∧ Fa} is strong-operator convergent to E ∧ F .

Proof. (i) Since the net {Ea∨G} is increasing and bounded above by E∨G, it converges to a projection

P in R, and P � E ∨ G. For each index a, Ea � Ea ∨ G � P , so
∨
Ea � P ; that is E � P . Also,

G � Ea ∨G � P ; so E ∨G � P . Thus P = E ∨G.
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(ii) Since the net {Ea ∧ G} is increasing and bounded above by E ∧ G, it converges to a projection

P in R, and P � E ∧ G. Recall that the center-valued dimension function Δ on R is weak-operator

continuous on the set of all projections on R; together with Proposition 3.2,

Δ(P ) = limΔ(Ea ∧G)

= lim[Δ(Ea) + Δ(G) −Δ(Ea ∨G)]

= Δ(E) + Δ(G)−Δ(E ∨G) = Δ(E ∧G).

Since E ∧G− P is a projection in R and Δ(E ∧G− P ) = 0, it follows that P = E ∧G.

(iii) The net {Ea ∧ Fa} is increasing and therefore has a projection P as a strong-operator limit and

least upper bound. Since Ea ∧ Fa � E ∧ F for each a, P � E ∧ F . With a′ fixed the net {Ea ∧ Fa′} has

strong-operator limit E ∧ Fa′ from (ii). Since Ea ∧ Fa′ � Ea ∧ Fa when a′ � a, E ∧ Fa′ � P for each a′.
Again, from (ii), {E∧Fa} has E∧F as its strong-operator limit. Thus E∧F � P . Hence P = E∧F .

Proposition 3.4. Let E be a projection in a finite von Neumann algebra R acting on a Hilbert space

H. With T in R, let F be the projection with range {x : Tx ∈ E(H)}. Then F ∈ R and E � F .

Proof. With A′ in R′ and Tx in E(H), TA′x = A′Tx ∈ E(H) since A′E = EA′. Thus F (H) is stable

under R′, and F ∈ R′′(= R).

Note that Tx ∈ E(H) if and only if (I −E)Tx = 0. Thus F (H) is the null space of (I −E)T (that is,

F = N [(I − E)T ]). Then

I − F = I −N [(I − E)T ] = R[T ∗(I − E)] ∼ R[(I − E)T ] � I − E. (3.1)

If E � F , then there is a central projection P in R such that PF ≺ PE. Now P (I − F ) � P (I − E)

from (3.1) so that P (I − F ) ∼ E0 � P (I − E). Thus

P = PF + P (I − F ) ≺ PE + E0 � PE + P (I − E) = P

since P (I − F ) and E0 are finite. This is contrary to the assumption that R is finite. It follows that

E � F .

3.2 The algebra of affiliated operators

Throughout this subsection, R denotes a finite von Neumann algebra acting on a Hilbert space H, and

A (R) denotes the family of operators affiliated with R.

Proposition 3.5. If S is a symmetric operator affiliated with R, then S is self-adjoint.

Proof. Since SηR, (S + iI)ηR. It follows that

R(S + iI) ∼ R((S + iI)∗) (Proposition 2.13),

I −R(S + iI) ∼ I −R((S + iI)∗) (Proposition 3.1),

I −R(S + iI) = N((S + iI)∗) ∼ N(S + iI) = I −R((S + iI)∗) (Proposition 2.7).

If x is in the range of N(S+ iI), then x ∈ D(S+ iI)(= D(S)) and Sx+ ix = 0. Since S ⊆ S∗, x ∈ D(S∗)
and Sx = S∗x, so that

〈Sx, x〉 = 〈x, S∗x〉 = 〈x, Sx〉 = 〈Sx, x〉
and

0 = 〈Sx+ ix, x〉 = 〈Sx, x〉 + i〈x, x〉.
Thus 〈x, x〉 = 0 and x = 0. Hence N(S + iI) = 0 and N((S + iI)∗) = 0. Similarly, N((S − iI)∗) = 0.

From Proposition 2.6, S is self-adjoint (for (S ± iI)∗ = S∗ ∓ iI).

Proposition 3.6. Suppose that operators A and B are affiliated with R and A ⊆ B, then A = B.
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Proof. Let V H be the polar decomposition of B. Since A ⊆ B,

V ∗A ⊆ V ∗B = V ∗V H = H = H∗ ⊆ (V ∗A)∗.

Thus V ∗A is symmetric. If fact, V ∗A is affiliated with R. To see this, first, V ∗A is densely defined

since D(V ∗A) = D(A). Now, suppose {xn} is a sequence of vectors in D(V ∗A) such that xn → x and

V ∗Axn → y. As V ∗ is isometric on the range of A,

‖Axn −Axm‖ = ‖V ∗Axn − V ∗Axm‖ → 0 as m,n → 0,

so that {Axn} converges to some vector z and V ∗Axn → V ∗z = y. But since A is closed, x ∈ D(A) and

Ax = z. Thus y = V ∗z = V ∗Ax, and V ∗A is closed. If U ′ is a unitary operator in R′, then U ′∗AU ′ = A

so that

U ′∗V ∗AU ′ = V ∗U ′∗AU ′ = V ∗A

since V ∗ ∈ R. Thus V ∗A η R.

From Proposition 3.5, V ∗A is self-adjoint. Since V ∗A is contained in H and note, from Remark 2.5,

that self-adjoint operators are maximal symmetric, V ∗A = H . Hence

A = R(B)A = V V ∗A = V H = B.

Proposition 3.7. Suppose that operators S and T are affiliated with R, then

(i) S + T is densely defined, preclosed and has a unique closed extension S +̂ T affiliated with R;

(ii) ST is densely defined, preclosed and has a unique closed extension S ·̂ T affiliated with R.

Proof. Let V H and WK be the polar decompositions of S and T , respectively, and let En and Fn be

the spectral projections for H and K, respectively, corresponding to the interval [−n, n] for each positive

integer n.

(i) From the spectral theorem, {En} and {Fn} are increasing sequences of projections with strong-

operator limit I. From Proposition 3.3, {En∧Fn} is an increasing sequence with strong-operator limit I.

Thus
⋃∞

n=1(En∧Fn)(H) is dense in H. If x ∈ (En∧Fn)(H), then x ∈ D(H)∩D(K). Hence x ∈ D(S+T ).

It follows that S + T is densely defined.

Since S and T are affiliated with R, S∗ and T ∗ are affiliated with R. From the preceding conclusion,

D(S∗ + T ∗) is dense in H. Since S∗ + T ∗ ⊆ (S + T )∗, D((S + T )∗) is dense in H. From Theorem 2.4,

S + T is preclosed. The closure S +̂ T of S + T is the smallest closed extension of S + T . If U ′ is a

unitary operator in R′ and x ∈ D(S + T ), then x ∈ D(S), x ∈ D(T ), U ′x ∈ D(S), U ′x ∈ D(T ) (Recall

that a unitary operator transforms the domain of each affiliated operator onto the domain itself.), and

(S + T )U ′x = SU ′x+ TU ′x = U ′Sx+ U ′Tx = U ′(S + T )x.

From Remark 2.9, S +̂ T η R since D(S + T ) is a core for S +̂ T . If A is a closed extension of (S + T )

and A η R, then S +̂ T ⊆ A. From Proposition 3.6, S +̂ T = A. Therefore, S +̂ T is the only closed

extension of S + T affiliated with R.

(ii) By choice of Fn, KFn is a bounded, everywhere-defined, self-adjoint operator in R. Let Tn = TFn.

Then Tn(= TFn = WKFn) is a bounded, everywhere-defined, operator in R. Let Gn be the projection on

the range Fn(H)∩T−1
n (En(H)). From Proposition 3.4, the projection Mn with range {x : Tnx ∈ En(H)}

is in R and En � Mn. Since {En} is an increasing sequence of projections with strong-operator limit

I, Δ(En) = τ(En) ↑ τ(I) = I in the strong-operator topology, where Δ is the center-valued dimension

function and τ is the center-valued trace onR. Since {Mn} is an increasing sequence and τ(En) � τ(Mn),

τ(Mn) ↑ I. Hence {Mn} has strong-operator limit I. From Proposition 3.3, {Gn} = {Fn ∧ Mn} is an

increasing sequence with strong-operator limit I. It follows that
⋃∞

n=1 Gn(H) is dense inH. If x ∈ Gn(H),

then Tnx ∈ En(H) so that Tnx ∈ D(H) = D(S). At the same time, x ∈ Fn(H) so that x ∈ D(K) = D(T )

and Tx = TFnx = Tnx. Thus x ∈ D(ST ). It follows that ST is densely defined.

Now, T ∗S∗ is densely defined since S∗ η R and T ∗ η R. Note that T ∗S∗ ⊆ (ST )∗, thus (ST )∗ is densely
defined. From Theorem 2.4, ST is preclosed. The closure S ·̂ T of ST is the smallest closed extension
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of ST . If U ′ is a unitary operator in R′ and x ∈ D(ST ), then x ∈ D(T ), Tx ∈ D(S), U ′x ∈ D(T ),

TU ′x = U ′Tx ∈ D(S), and

STU ′x = SU ′Tx = U ′STx.

As with S +̂ T in (i), S ·̂ T η R and S ·̂ T is the only closed extension of ST affiliated with R.

Proposition 3.8. Suppose that operators A, B and C are affiliated with R, then

(A ·̂ B) ·̂ C = A ·̂ (B ·̂ C),

that is, the associative law holds under the multiplication ·̂ described in Proposition 3.7.

Proof. First, we note that (A ·̂ B) ·̂ C is a closed extension of (A · B) · C and A ·̂ (B ·̂ C) is a closed

extension of A · (B · C), that is,

(A · B) · C ⊆ (A ·̂ B) ·̂ C and A · (B · C) ⊆ A ·̂ (B ·̂ C),

where “ · ” is the usual multiplication of operators. As a matter of fact,

(A · B) · C = A · (B · C)

since D((A ·B) · C) = D(A · (B · C)) and (A ·B) · Cx = A · (B · C)x. Now we let

(A ·B) · C(= A · (B · C)) = A ·B · C.

If we can show that the operator A · B · C is densely defined, preclosed and its closure, say, A · B · C, is

affiliated with R, then from Proposition 3.6,

A · B · C ⊆ (A ·̂ B) ·̂ C and A · B · C ⊆ A ·̂ (B ·̂ C)

will imply that A · B · C = (A ·̂ B) ·̂ C = A ·̂ (B ·̂ C).

Let V1H1, V2H2 and V3H3 be the polar decompositions of A, B and C, respectively. Let En, Fn and Gn

be the spectral projections for H1, H2 and H3, respectively, corresponding to the interval [−n, n] for each

positive integer n. By choice of Gn, H3Gn is a bounded, everywhere-defined, self-adjoint operator in R.

It follows that the operator CGn(= V3H3Gn), denoted by Cn, is a bounded, everywhere-defined operator.

Let Jn be the projection with range Gn(H) ∩ C−1
n (Fn(H)). As in the preceding proposition, {Jn} is an

increasing sequence with strong-operator limit I. Thus
⋃∞

n=1 Jn(H) is dense in H. If x ∈ Jn(H), then

Cnx ∈ Fn(H) so that Cnx ∈ D(H2) = D(B). At the same time, x ∈ Gn(H) so that x ∈ D(H3) = D(C)

and Cx = CGnx = Cnx. Thus x ∈ D(BC). Let Bn = (BC)Jn. By our definition of Jn (the projection

on the range Gn(H)∩C−1
n (Fn(H))), Jn � Gn so that CJn is a bounded, everywhere-defined operator in

R and

CJn(H) = (CGn)Jn(H) = CnJn(H) ⊆ Fn(H).

It follows that Bn = (BC)Jn = B(CJn) is a bounded, everywhere-defined operator in R. Let Kn be the

projection with range Jn(H) ∩B−1
n (En). Similarly, {Kn} is an increasing sequence with strong-operator

limit I. Thus
⋃∞

n=1 Kn(H) is dense in H. If x ∈ Kn(H), that is

x ∈ Jn(H) ∩B−1
n (En) = Gn(H) ∩ C−1

n (Fn(H)) ∩B−1
n (En),

then Bnx ∈ En(H) so that Bnx ∈ D(H1) = D(A). At the same time, x ∈ Jn(H) so that x ∈ D(BC) and

BCx = BCJnx = Bnx. Thus x ∈ D(A · B · C). It follows that A · B · C has a dense domain.

Since A, B and C are affiliated with R, A∗, B∗ and C∗ are affiliated with R. From the preceding

conclusion, C∗ · B∗ · A∗ is densely defined. Since B∗ · A∗ ⊆ (A · B)∗, C∗ · B∗ · A∗ = C∗ · (B∗ · A∗) ⊆
C∗ · (A · B)∗ ⊆ (A · B · C)∗ so that (A · B · C)∗ is densely defined. It follows that A · B · C is preclosed.

Next, we shall show that the closure A · B · C of A ·B · C is affiliated with R.

If U ′ is a unitary operator in R′ and x ∈ D(A ·B · C), then

A · B · C · U ′x = A · B · U ′ · Cx (x, U ′x ∈ D(C); Cx, U ′Cx ∈ D(B))
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= A · U ′ · B · Cx (BCx, U ′BCx ∈ D(A))

= U ′ ·A · B · Cx.

From Remark 2.9, A · B · C η R since D(A · B · C) is a core for A · B · C.

Proposition 3.9. Suppose that operators A, B and C are affiliated with R, then

(A +̂ B) ·̂ C = A ·̂ C +̂ (B ·̂ C) and C ·̂ (A +̂ B) = C ·̂ A +̂ (C ·̂ B),

that is, the distributive laws hold under the addition +̂ and multiplication ·̂ described in Proposition 3.7.

Proof. First, we note the following

(A+B)C ⊆ (A +̂ B) ·̂ C, AC +BC ⊆ A ·̂ C +̂ (B ·̂ C),

C(A+B) ⊆ C ·̂ (A +̂ B), CA+ AB ⊆ C ·̂ A +̂ (C ·̂ B),

and

(A+B)C = AC +BC, CA+ CB ⊆ C(A+B).

As in the proof of Proposition 3.7, we shall show that (A + B)C and CA + CB are densely defined,

preclosed and their closures (A+B)C and CA+ CB are affiliated with the finite von Neumann algebra

R, respectively. Then from Proposition 3.6,

(A+B)C = (A +̂ B) ·̂ C = A ·̂ C +̂ (B ·̂ C)

and

CA+ CB = C ·̂ A +̂ (C ·̂ B) = C ·̂ (A +̂ B).

As in the proof of Proposition 3.8, we let V1H1, V2H2 and V3H3 be the polar decompositions of A,

B and C, respectively. Let En, Fn and Gn be the spectral projections for H1, H2 and H3, respectively,

corresponding to the interval [−n, n] for each positive integer n. Define Cn = CGn = V3H3Gn. By

choice of Gn, Cn is a bounded, everywhere-defined operator. Let Jn be the projection on the range

Gn(H) ∩C−1
n ((En ∧Fn)(H)). Then

⋃∞
n=1 Jn(H) is dense in H since {Jn} is an increasing sequence with

strong-operator limit I. If x ∈ Jn(H), then Cnx ∈ (En ∧ Fn)(H) so that Cnx ∈ D(A +B). At the same

time, x ∈ Gn(H) so that x ∈ D(H3) = D(C) and Cx = CGnx = Cnx. Thus x ∈ D((A+B)C). It follows

that (A+B)C is densely defined.

Let An = AEn and Bn = BFn. Then An and Bn are bounded, everywhere-defined operators in R.

Let Kn be the projection on the range

(En(H) ∩A−1
n (Gn(H))) ∩ (Fn(H) ∩B−1

n (Gn(H))).

Again, {Kn} is an increasing sequence with strong-operator limit I so that
⋃∞

n=1 Kn(H) is dense in H.

If x ∈ Kn(H), then Anx ∈ Gn(H) and Bnx ∈ Gn(H) so that Anx ∈ D(C) and Bnx ∈ D(C). At

the same time, x ∈ En(H) and x ∈ Fn(H) so that x ∈ D(A), x ∈ D(B) and Ax = AEnx = Anx,

Bx = BFnx = Bnx. Thus x ∈ D(CA+ CB). It follows that CA+ CB has a dense domain.

Now, we proceed to show that (A + B)C and CA + CB are preclosed by showing that ((A + B)C)∗

and (CA + CB)∗ are densely defined. Note, again, that if A, B, C η R, then A∗, B∗, C∗ η R. From

the preceding, C∗A∗ + C∗B∗ and (A∗ +B∗)C∗ are densely defined. Since

C∗A∗ + C∗B∗ ⊆ C∗(A∗ +B∗) ⊆ C∗(A+B)∗ ⊆ ((A +B)C)∗

and

(A∗ +B∗)C∗ = A∗C∗ +B∗C∗ ⊆ (CA)∗ + (CB)∗ ⊆ (CA + CB)∗,

D(((A +B)C)∗) and D((CA + CB)∗) are dense in H.
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It remains to show that the closures (A+B)C and CA+ CB are affiliated with R. If U ′ is a unitary

operator in R′, for x ∈ D((A+B)C),

(A+B)CU ′x = (A+B)U ′Cx

= AU ′Cx+BU ′Cx = U ′ACx + U ′BCx

= U ′(ACx +BCx) = U ′(A+B)Cx

and for x ∈ D(CA + CB),

(CA + CB)U ′x = CAU ′x+ CBU ′x = CU ′Ax+ CU ′Bx

= U ′CAx+ U ′CBx = U ′(CA+ CB)x.

From Remark 2.9, (A+B)C η R and CA+ CB η R.

Proposition 3.10. Suppose that operators A and B are affiliated with R, then

(aA +̂ bB)∗ = āA∗ +̂ b̄B∗ and (A ·̂ B)∗ = B∗ ·̂ A∗, a, b ∈ C,

where ∗ is the usual adjoint operation on operators (possibly unbounded).

Proof. From Proposition 3.7, aA+bB and AB are densely defined and preclosed with closures aA +̂ bB

and A ·̂ B (affiliated with R), respectively. Then from Theorem 2.4,

(aA+ bB)∗ = (aA +̂ bB)∗, (AB)∗ = (A ·̂ B)∗. (3.2)

At the same time,

āA∗ + b̄B∗ ⊆ (aA+ bB)∗, B∗A∗ ⊆ (AB)∗; (3.3)

and both (aA+ bB)∗ and (AB)∗ are closed (Remark 2.3). We also have āA∗ +̂ b̄B∗ and B∗ ·̂ A∗ as the

closures (smallest closed extensions) of āA∗ + b̄B∗ and B∗A∗, respectively. It follows that

āA∗ + b̄B∗ ⊆ āA∗ +̂ b̄B∗ ⊆ (aA+ bB)∗, B∗A∗ ⊆ B∗ ·̂ A∗ ⊆ (AB)∗. (3.4)

Now, (3.2) together with (3.4),

āA∗ +̂ b̄B∗ ⊆ (aA +̂ bB)∗, B∗ ·̂ A∗ ⊆ (A ·̂ B)∗.

Since āA∗ +̂ b̄B∗, (aA +̂ bB)∗, B∗ ·̂ A∗ and (A ·̂ B)∗ are all affiliated with R, from Proposition 3.6,

āA∗ +̂ b̄B∗ = (aA +̂ bB)∗ and B∗ ·̂ A∗ = (A ·̂ B)∗.

Theorem 3.11. A (R) is a * algebra (with unit I) under the operations of addition +̂ and multipli-

cation ·̂.

4 Representations of the Heisenberg relation

4.1 In B(H)

We are convinced that the relation QP − PQ = i�I cannot be realized in terms of finite matrices. The

natural extension of this attempt is to wonder if infinite-dimensional Hilbert spaces might not “support”

such a representation with bounded operators. Even this is not possible as we shall now show:

Proposition 4.1. If A and B are elements of a Banach algebra A with unit I, then sp(AB) ∪ {0} =

sp(BA) ∪ {0}.
Proof. If λ �= 0 and λ ∈ sp(AB), then AB − λI and, hence (λ−1A)B − I are not invertible. On the

other hand, if λ �∈ sp(BA), then BA − λI and, hence, B(λ−1A)− I are invertible. Our task, then, is to
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show that I −AB is invertible in A if and only if I −BA is invertible in A, for arbitrary elements A and

B of A.

Let us argue informally for the moment. The following argument leads us to the correct formula for

the inverse of I −BA, and gives us a proof that holds in any ring with a unit.

(I −AB)−1 =

∞∑

n=0

(AB)n = I +AB +ABAB + · · ·

and

B(I −AB)−1A = BA+BABA+BABABA + · · · = (I −BA)−1 − I.

Thus if I−AB has an inverse, we may hope that B(I−AB)−1A+I is an inverse to I−BA. Multiplying,

we have

(I −BA)[B(I −AB)−1A+ I]

= B(I −AB)−1A+ I −BAB(I −AB)−1A−BA

= B[(I −AB)−1 −AB(I −AB)−1]A+ I −BA = I,

and similarly for right multiplication by I −BA.

Finally, sp(A + I) = {1 + a : a ∈ sp(A)}, together with the proposition, yields the fact that the

unit element I of a Banach algebra is not the commutator AB − BA of two elements A and B. (If

I = AB −BA, then sp(AB) = 1 + sp(BA), which is not consistent with sp(AB) ∪ {0} = sp(BA) ∪ {0}.)
Therefore, in quantum theory, the commutation relations (in particular, the Heisenberg relation) are not

representable in terms of bounded operators.

In our search for ways to “represent” the Heisenberg relation in some (algebraic) mathematical struc-

ture, we have, thus far, eliminated finite matrices, bounded operators on an infinite-dimensional Hilbert

space, and even elements of more general complex Banach algebras with a unit element. It becomes clear

that unbounded operators would be essential for dealing with the non-commutativity that the Heisen-

berg relation carries. The following example gives a specific representation of the relation with one of the

representing operators bounded and the other unbounded.

Example 4.2. Let H be the Hilbert space L2, corresponding to Lebesgue measure on the unit interval

[0, 1], and let D0 be the subspace consisting of all complex-valued functions f that have a continuous

derivative f ′ on [0, 1] and satisfy f(0) = f(1) = 0. Let D0 be the operator with domain D0 and with

range in H defined by D0f = f ′. We shall show that iD0 is a densely defined symmetric operator and

that

(iD0)M −M(iD0) = iI|D0,

where M is the bounded linear operator defined by (Mf)(s) = sf(s) (f ∈ L2; 0 � s � 1).

Proof. Each element f of H can be approximated (in L2 norm) by a continuous function f1. In turn,

f1 can be approximated (in the uniform norm, hence in the L2 norm) by a polynomial f2. Finally, f2
can be approximated (in L2 norm) by an element f3 of D0; indeed, it suffices to take f3 = gf2, where

g : [0, 1] → [0, 1] is continuously differentiable, vanishes at the endpoint 0 and 1, and takes the value 1

except at points very close to 0, 1.

The preceding argument shows that D0 is dense in H, so D0 is a densely defined linear operator. When

f, g ∈ D0, the function ḡ has a continuous derivative ḡ′, and we have

〈D0f, g〉 =
∫ 1

0

f ′(s)g(s) ds =

[

f(s)g(s)

]1

0

−
∫ 1

0

f(s)g′(s) ds

= −
∫ 1

0

f(s)g′(s) ds = −〈f,D0g〉.

Thus 〈iD0f, g〉 = 〈f, iD0g〉, for all f and g in D0; and iD0 is symmetric.
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When f ∈ D0, Mf ∈ D0 and

(D0Mf)(s) =
d

ds
(sf(s)) = f(s) + sf ′(s) = f(s) + (MD0f)(s).

Thus D0Mf −MD0f = f (f ∈ D0).

One can press this example further to show that iD0 has a self-adjoint extension.

4.2 The classic representation

Given the discussion and results to this point, what are we to understand by a “representation of the

Heisenberg relation”, QP −PQ = i�I ? Having proved that this representation cannot be achieved with

finite matrices in place ofQ and P and I, nor even with bounded operators on a Hilbert space, nor elements

Q,P, I in a complex Banach algebra, we begin to examine the possibility that this representation can be

effected with unbounded operators for Q and P . It is “rumored”, loosely, that Q, which is associated with

the physical observable “position” on R, and P , which is associated with the (conjugate) “momentum”

observable, will provide such a representation. The observable Q is modeled, nicely, by the self-adjoint

operator, multiplication by x on L2(R), with domain those f in L2(R) such that xf is in L2(R). The

observable P is modeled by i d
dt , differentiation on some appropriate domain of differentiable functions

with derivatives in L2(R). But QP − PQ certainly cannot equal i�I, since its domain is contained in

D(Q)∩D(P ), which is not H. The domain of P must be chosen so that P is self-adjoint and D(QP−PQ)

is dense in H and QP −PQ agrees with i�I on this dense domain. In particular, QP −PQ ⊆ i�I. Since

i�I is bounded, it is closed, and QP − PQ is closable with closure i�I. We cannot insist that, with the

chosen domains for Q and P , QP−PQ be skew-adjoint, for then it would be closed, bounded, and densely

defined, hence, everywhere defined. In the end, we shall mean by “a representation of the Heisenberg

relation QP − PQ = i�I on the Hilbert space H” a choice of self-adjoint operators Q and P on H such

that QP − PQ has closure i�I.

As mentioned above, the classic way to represent the Heisenberg relation QP − PQ = i�I with un-

bounded self-adjoint operators Q and P on a Hilbert space H is to realize H as L2(R), the space of

square-integrable, complex-valued functions on R and Q and P as, respectively, the operator Q corre-

sponding to multiplication by x, the identity transform on R, and the operator P corresponding to i d
dt ,

where d
dt denotes differentiation, each of Q and P with a suitable domain in L2(R). The domain of

Q consists of those f in L2(R) such that xf is in L2(R). The operator d
dt is intended to be differen-

tiation on L2(R), where that differentiation makes sense — certainly, on every differentiable functions

with derivative in L2(R). However, specifying a dense domain, precisely, including such functions, on

which “differentiation” is a self-adjoint operator is not so simple. A step function, a function on R that

is constant on each connected component of an open dense subset of R (those components being open

intervals) has a derivative almost everywhere (at all but the set of endpoints of the intervals — a count-

able set), and that derivative is 0. The set of such step functions in L2(R) is dense in L2(R), as is their

linear span. To include that linear span in a proposed domain for our differentiation operator condemns

any closed operator extending our differentiation operator to be the everywhere-defined operator 0. Of

course, that is not what we are aiming for. Another problem that we face in this discussion is that of

“mixing” measure theory with differentiation. We speak, loosely, of elements of our Hilbert space L2(R)

as “functions”. We have learned to work quickly and accurately with the mathematical convenience that

this looseness provides us avoiding such pitfalls as taking the union of “too many” sets of measure 0 in the

process. The elements of L2(R) are, in fact, equivalence classes of functions differing from one another

on sets of measure 0. On the other hand, differentiation is a process that focuses on points, each point

being a set of Lebesgue measure zero. When we speak of the L2-norm of a function in L2(R) it does

not matter which function in the class in question we work with; they all have the same norm. It is not

the same with differentiability. Not each function in the class of an everywhere differentiable function

is everywhere differentiable. There are functions in such classes that are nowhere differentiable, indeed,

nowhere continuous (at each point of differentiability a function is continuous). The measure class of each

function on R contains a function that is nowhere continuous. To see this, choose two disjoint, countable,
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everywhere-dense subsets, for example, the rationals Q in R and Q+
√
2. With f a given function on R,

the function g that agrees with f , except on Q where it takes the value 0 and on Q+
√
2 where it takes

the value 1 is in the measure class of f and is continuous nowhere (since each non-null open set in R

contains a point at which g takes the value 0 and a point at which it takes the value 1). These are some

of the problems that arise in dealing with an appropriate domain for d
dt .

There is an elegant way to approach the problem of finding precisely the self-adjoint operator and

its domain that we are seeking. That approach is through the use of “Stone’s theorem” (from the very

beginning of the theory of unitary representations of infinite groups). We start with a clear statement of

the theorem. Particular attention should be paid to the description of the domain of the generator iH

in this statement.

Theorem 4.3. (Stone’s theorem) If H is a (possibly unbounded) self-adjoint operator on the Hilbert

space H, then t → exp itH is a one-parameter unitary group on H. Conversely, if t → Ut is a one-

parameter unitary group on H, there is a (possibly unbounded) self-adjoint operator H on H such that

Ut = exp itH for each real t. The domain of H consists of precisely those vectors x in H for which

t−1(Utx− x) tends to a limit as t tends to 0, in which case this limit is iHx.

The relevance of Stone’s theorem emerges from the basic case of the one-parameter unitary group

t → Ut on L2(R), where (Utf)(s) = f(s− t). That is, Ut is “translation by t”. In this case, Ut = exp itH ,

with H a self-adjoint operator acting on L2(R). The domain of H consists of those f in L2(R) such that

t−1(Utf − f) tends to a limit g in L2(R), as t tends to 0, in which case, iHf = g. We treat d
dt as the

infinitesimal generator of this one-parameter unitary group. An easy measure-theoretic argument shows

that this one-parameter unitary group is strong-operator continuous on H. That is, Utf → Ut′f , in the

norm topology of H, as t → t′, for each f in H, or what amounts to the same thing, since t → Ut is a

one-parameter group, if Ut′′f = Ut−t′f → f , when (t − t′) = t′′ → 0 for each f in L2(R). From Stone’s

theorem, there is a skew-adjoint (unbounded) operator (iH) we denote by d
dt on H such that Ut = exp t d

dt

for each real t. The domain of d
dt consists of those f in L2(R) such that t−1(Utf − f) tends to some g in

L2(R) as t tends to 0, in which case g = d
dtf .

Now, let us make some observations to see how Stone’s theorem works in our situation. Our aim, at

this point, is to study just which functions are and are not in the domain of d
dt . (This study will make

clear how apt the notation d
dt is for the infinitesimal generator of the group of real translations of R.) To

begin with, Stone’s theorem requires us to study the convergence behavior of t−1(Utf − f) as t tends to

0. This requirement is to study the convergence behavior in the Hilbert space metric (in the “mean of

order 2”, in the terminology of classical analysis), but there is no harm in examining how t−1(Utf − f)

varies pointwise with t at points s in R. For this, note that

(t−1(Utf − f))(s) =
f(s− t)− f(s)

t
→ f ′(s) as t → 0,

which suggests f ′ as the limit of t−1(Utf − f) when f is differentiable with f ′ in L2(R) (and motivates

the use of the notation “ d
dt” for the infinitesimal generator of t → Ut). However, the “instructions” of

Stone’s theorem tell us to find g in L2(R) such that

∫ ∣
∣
∣
∣
f(s− t)− f(s)

t
− g(s)

∣
∣
∣
∣

2

dμ(s) → 0

as t → 0, where μ is Lebesgue measure on R. Our first observation is that if f fails to have a derivative at

some point s0 in R in an essential way, then f is not in the domain of d
dt . This may be surprising, at first,

for the behavior of a function at a point rarely has (Lebesgue) measure-theoretic consequences. In the

present circumstances, we shall see that the “local” nature of differentiation can result in exclusion from

the domain of an unbounded differentiation operator because of non-differentiability at a single point.

We begin with a definition of “jump in a function” that is suitable for our measure-theoretic situation.

Definition 4.4. We say that f has jump a (� 0) for width δ (> 0) at s0 in R when inf{f(s)} with s

in one of the intervals [s0 − δ, s0) or (s0, s0 + δ] is a+ sup{f(s)} with s in the other of those intervals.
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Typically, one speaks of a “jump discontinuity” when lims→s−0
f(s) and lims→s+0

f(s) exist and are

distinct. In the strictly measure-theoretic situation with which we are concerned, the concept of “jump”,

as just defined, seems more appropriate.

Remark 4.5. If f has a jump a for width δ at some point s0 in R, then Us0f has a jump a for width

δ at 0, and bUs0f has jump ba for width δ at 0 when 0 < b. Letting fr be the function whose value at

s is f(rs), one has that fr has a jump a at r−1s0 for width r−1δ. Thus a−1(Us0f)δ has jump 1 at 0 for

width 1.

Theorem 4.6. If f has a positive jump, then f /∈ D( d
dt ).

Proof. We shall show that ‖t−1(Utf − f)‖ is unbounded for t in each open interval in R containing

0. Of course, this is so if and only if ‖t−1bUs(Utf − f)‖ is unbounded for each given positive b and Us.

Thus, from Remark 4.5, it will suffice to show that ‖t−1(Utf −f)‖ is unbounded when f has jump 1 at 0.

Noting that ‖gr‖ = r−1‖g‖ for g in L2(R), that (g + h)r = gr + hr, and that (Utf)r = Ur−1tfr = Ut′fr,

where t′ = r−1t → 0 as t → 0, we have

r−1t−1‖Utf − f‖ = t−1‖(Utf − f)r‖ = t−1‖(Utf)r − fr‖
= t−1‖Ur−1tfr − fr‖ = r−1t′−1‖Ut′fr − fr‖.

Thus ‖t−1(Utf − f)‖ = ‖t′−1(Ut′fr − fr)‖. It follows that ‖t−1(Utf − f)‖ is bounded for t near 0 if and

only if ‖t′−1(Ut′fr − fr)‖ is. This holds for each positive r, in particular, when r is δ, where f has jump 1

at 0 for width δ. Since fδ has jump 1 at 0 for width 1 (= δ−1δ), from Remark 4.5, it will suffice to show

that ‖t−1(Utf − f)‖ is unbounded for t near 0, when f has jump 1 at 0 for width 1. We shall do this

by finding a sequence t2, t3, . . . of positive numbers tj tending to 0 such that ‖t−1
j (Utjf − f)‖ → ∞ as

j → ∞. We assume that f has jump 1 at 0 for width 1. In this case, |f(s′)− f(s′′)| � 1 when s′ ∈ [−1, 0)

and s′′ ∈ (0, 1]. Thus, when tn = 1
n−1 ,

‖t−1
n (Utnf − f)‖2 =

∫

R

|t−1
n (Utnf − f)|2 dμ(s)

�
∫

(0, 1
n ]

|(n− 1)(f(s− tn)− f(s))|2 dμ(s)

� 1

n
(n− 1)2 = n− 2 +

1

n
.

It follows that ‖(n− 1)(U(n−1)−1f − f)‖ → ∞ as n → ∞. Hence t−1(Utf − f) has no limit in L2(R) as

t → 0 and f /∈ D( d
dt ).

Theorem 4.7. If f1 is a continuously differentiable function on R such that f1 and f ′
1 are in L2(R),

then f1 ∈ D( d
dt ); and

d
dt (f1) = f ′

1.

Proof. We prove, first, that if f , in L2(R), vanishes outside some interval [−n, n], with n a positive

integer, and f is continuously differentiable on R with derivative f ′ in L2(R), then f ∈ D( d
dt ) and

d
dt (f) = f ′.
From Stone’s theorem, we must show that ‖t−1(Utf − f)− f ′‖2 → 0 as t → 0. Now,

‖t−1(Utf − f)− f ′‖22 =

∫

[−n,n]

|[t−1(Utf − f)− f ′](s)|2 dμ(s)

=

∫

[−n,n]

∣
∣
∣
∣
f(s− t)− f(s)

t
− f ′(s)

∣
∣
∣
∣

2

dμ(s).

Note that t−1(Utf−f)−f ′ tends to 0 (pointwise) everywhere on R as t tends to 0. Of course, t−1(Utf−f)

and f ′ vanish outside of [−(n + 1), n + 1] when |t| < 1. Since f is differentiable, it is continuous and

bounded on [−(n+ 1), n+ 1]. By assumption, f ′ is continuous, hence bounded on [−(n+ 1), n+ 1] (on

R). Say, |f ′(s)| � M , for each s. From the Mean Value theorem, for s in [−n, n],

|t−1(Utf − f)(s)| =
∣
∣
∣
∣
f(s− t)− f(s)

t

∣
∣
∣
∣ = |f ′(s′)| � M,
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for some s′ in the interval with endpoints s and s− t. Thus |t−1(Utf − f)| is bounded by M , on [−n, n]

for all t in (−1, 1). At the same time, t−1(Utf − f) tends to f ′ everywhere (that is, pointwise) on [−n, n].

From Egoroff’s theorem, t−1(Utf − f) tends almost uniformly to f ′ on [−n, n] as t tends to 0. Hence,

given a positive ε, there is a subset S of [−n, n] of measure less than ε/8M2 such that t−1(Utf − f)

converges uniformly to f ′ on [−n, n] \ S.
We show, now, that t−1(Utf − f) converges to f ′ in L2(R). With ε and S chosen as in the preceding

paragraph, by uniform convergence on [n,−n] \ S, we find a positive δ such that for 0 < |t| < δ, and s in

[−n, n] \ S,
|t−1(f(s− t)− f(s))− f ′(s)|2 <

ε

4n
.

Hence, when 0 < |t| < δ,

‖t−1(Utf − f)− f ′‖22 =
∫

[−n,n]\S

∣
∣
∣
∣
f(s− t)− f(s)

t
− f ′(s)

∣
∣
∣
∣

2

dμ(s) +

∫

S

∣
∣
∣
∣
f(s− t)− f(s)

t
− f ′(s)

∣
∣
∣
∣

2

dμ(s)

� 2n
ε

4n
+ 4M2 ε

8M2
= ε.

The desired convergence of t−1(Utf − f) to f ′ in L2(R) follows from this.

With f1 as in the statement of this theorem, suppose that we can find f as in the preceding discussion

(that is, vanishing outside a finite interval) such that ‖f1−f‖2 and ‖f ′
1−f ′‖2 are less than a preassigned

positive ε. Then (f1, f
′
1) is in the closure of the graph of d

dt , since each (f, f ′) is in that closure from what

we have proved. But d
dt is skew-adjoint (from Stone’s theorem); hence, d

dt is closed. Thus, if we can effect

the described approximation of f1 and f ′
1 by f and f ′, it will follow that f1 ∈ D( d

dt ) and
d
dt (f1) = f ′

1.

Since f1 and f ′
1 are continuous and in L2(R), the same is true for |f1| + |f−

1 | + |f ′
1| + |f ′−

1 |, where
g−(s) = g(−s) for each s in R and each complex-valued function g on R. (Note, for this, that s → −s is

a Lebesgue-measure-preserving homeomorphism of R onto R.) It follows that, for each positive integer

n, there is a real sn such that n < sn and

|f1(sn)|+ |f1(−sn)|+ |f ′
1(sn)|+ |f ′

1(−sn)| < 1

n
.

(Otherwise, |f1(s)| + |f1(−s)| + |f ′
1(s)| + |f ′

1(−s)| � 1
n , for each s outside of [−n, n], contradicting the

fact that |f1| + |f−
1 | + |f ′

1| + |f ′−
1 | ∈ L2(R).) We can choose sn such that sn−1 < sn. Since n < sn, we

have that sn → ∞ as n → ∞, and
∫

[−sn,sn]

|h(s)|2 dμ(s) → ‖h‖22 n → ∞,

for each h in L2(R). Thus ‖h − h(n)‖2 → 0 as n → ∞, where h(n) is the function that agrees with h

on [−sn, sn] and is 0 outside this interval. With ε (< 1) positive, there is an n0 such that, if n > n0,

then each of ‖f1 − f
(n)
1 ‖2, ‖f−

1 − f
−(n)
1 ‖2, ‖f ′

1 − f ′(n)
1 ‖2, and ‖f ′−

1 − f ′−(n)
1 ‖2 is less than ε

2 . At the same

time, we may choose n0 large enough so that 1
n < ε

4 when n > n0. For such an n, a “suitably modified”

f
(n)
1 will serve as the desired f for our approximation. In the paragraphs that follow, we describe that

modification.

Our aim is to extend f
(n)
1 to R from [−sn, sn] so that the extension f remains continuously differentiable

with f and f ′ vanishing outside some finite interval and so that the projected approximations ‖f1−f‖2 < ε

and ‖f ′
1−f ′‖2 < ε are realized. In effect, we want ‖f (n)

1 −f‖2 and ‖f ′(n)
1 −f ′‖2 to be less than ε

2 . Combined,

then, with our earlier choice of n0 such that, for n > n0, ‖f1− f
(n)
1 ‖2 < ε

2 and ‖f ′
1− f ′(n)

1 ‖2 < ε
2 , we have

the desired approximation.

To construct f , we add to f
(n)
1 a function g continuous and continuously differentiable on (−∞,−sn]∪

[sn,∞) such that g(sn) = f1(sn), g
′(sn) = f ′

1(sn), g(−sn) = f1(−sn), g
′(−sn) = f ′

1(−sn), g vanishes on

(−∞,−sn − 1] ∪ [sn + 1,∞), and ‖g‖2 < ε
2 , ‖g′‖2 < ε

2 . With f so defined, ‖f (n)
1 − f‖2 = ‖g‖2 < ε

2 and

‖f ′(n)
1 −f ′‖2 = ‖g′‖2 < ε

2 , as desired. We describe the construction of g on [sn,∞). The construction of g

on (−∞,−sn] follows the same pattern. We present the construction of g geometrically — with reference
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to the graphs of the functions involved. The graphs are described in an XY plane, where R is identified

with the X-axis. By choice of sn and n (> n0), |f1(sn))| < ε
4 , and |f ′

1(sn)| < ε
4 .

Translating sn to the origin, we see that our task is to construct a function h on [0, 1] continuously

differentiable, 0 on [12 , 1], with given initial data h(0), h′(0) satisfying |h(0)| < ε
4 , |h′(0)| < ε

4 such that

‖h‖2 < ε
2 and ‖h′‖2 < ε

2 . If h(0) = h′(0) = 0, then h, with h(x) = 0, for each x in [0, 1], will serve as our

h. If h′(0) �= 0, we define h, first, on [0, x0], where x0 = 1
2h(0)h

′(0) and

(y0 =)h(x0) =
1

2
h(0)[1 + (1 + h′(0)2)

1
2 ].

The restriction of h to [0, x0] has as its graph the (“upper, smaller”) arch of the circle with center

(x0,
1
2h(0) and radius 1

2h(0)(1 + h′(0)2)
1
2 (tangent to the line with slope h′(0) at (0, h(0))). Note that

h(0) < y0 < 2h(0) < ε
2 and that the circle described has a horizontal tangent at (x0, y0); that is,

h′(x0) = 0, as h has been defined.

We complete the definition of h by adjoining to the graph of h over [0, x0] the graph of 1
2y0[cos((

1
2 −

x−1
0 )π(x − x0)) + 1] over [x0,

1
2 ]. Note that this graph passes through (x0, y0) and (12 , 0). Finally, we

define h(x) to be 0 when x ∈ [ 12 , 1]. As constructed, h is continuously differentiable on [0, 1]. Since

|h(x)| � 2|h((0)| < ε
2 for x in [0, 12 ] and h vanishes on [ 12 , 1], ‖h‖2 < ε

2 .

We may ask whether the converse statement to the preceding theorem holds as well. Does a function

class in D( d
dt) necessarily contain a continuously differentiable function with derivative in L2(R)? As it

turns out, there are more functions, not as well behaved as continuously differentiable functions, in the

domain of d
dt . We shall give a complete description of that domain in Theorem 4.8. However, the proof

of the theorem requires a good deal of analytic-measure theoretic preparation. We shall indicate some of

the main lines of the argument, but not include details.

Our notation and terminology has a somewhat “schizophrenic” character to it — much in the style

of the way mathematics treats certain topics. In the present instance, we use the notation ‘L2(R)’ to

denote, both, the collection (linear space) of measurable functions f such that |f |2 is Lebesgue integrable

on R and the Hilbert space of (measure-theoretic) equivalence classes of such functions equipped with

the usual Hilbert space structure associated with L2 spaces. In most circumstances, there is no danger

of serious confusion or misinterpretation. In our present discussion of the domain of d
dt , these dangers

loom large. We note, earlier in this section, that each measure-theoretic equivalence class of functions

contains a function that is continuous at no point of R. It can make no sense to attempt to characterize

special elements x of L2(R) by the “smoothness” properties of all the functions in the equivalence class

denoted by ‘x’ (their continuity, differentiability, and so forth). Despite this, our next theorem describes

the domain given to us by the generator, which we are denoting by ‘ ddt ’, of the one-parameter unitary

group t → Ut of translations of the equivalence classes of functions in L2(R) (to other such classes) in

terms of smoothness properties. However, these smoothness properties will be those of a single element

in the class as we shall see. We note, first, that if an equivalence class contains a continuous function f

on R, then f is the unique such function in the class. This is immediate from the fact that f − g vanishes

nowhere on some non-null, open interval when f and g are distinct continuous functions, whence f and

g differ on a set of positive Lebesgue measure and lie in different measure classes.

The unique continuous function in each measure class of some family of measure classes allows us to

distinguish subsets of this family by smoothness properties of that continuous function in the class. In

the case of the one-parameter unitary group induced by translations on R, corresponding to an element

x in the domain of the Stone generator d
dt , the measure class x contains a continuous function (hence,

as noted, a unique such function), and this function must be absolutely continuous, in L2(R), of course,

with derivative almost everywhere on R in L2(R). Moreover, an absolutely continuous function in L2(R)

with derivative almost everywhere on R in L2(R) has measure class an element of the Hilbert space on

which the unitary group (corresponding to the translations of R) acts that lies in the domain of d
dt . So,

this absolute-continuity smoothness, together with the noted L2 restrictions, characterizes the domain

of d
dt . It is dangerously misleading to speak of the domain of d

dt as “consisting of absolutely continuous

functions in L2 with almost everywhere derivatives in L2”; it consists of the measure classes of such
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functions and each such class contains, as noted, a function which is nowhere continuous.

The preceding discussion raises an associated problem. Is there a measure class containing no continu-

ous function? Our concept of (measure-theoretic) jumps of a function f at a point t0 (see Definition 4.4)

provides us with an answer to this. If f has jump a(> 0) at t0 for width δ (> 0) and g is continuous at

t0, then inf{f(t)} either with t in (t0 − δ, t0) or t in (t0, t0 + δ), but not both, exceeds sup{f(t)}, for t in
the other of those two intervals, by a. At the same time, from continuity of g at t0, values of g at points

t close to t0 both in (t0 − δ, t0) and in (t0, t0 + δ) are close to g(t0), hence, closer to each other than a,

whereas, the absolute value of the difference of the values of f at such points exceeds a. Thus f and g

differ at at least one of each pair of points on either side of t0 and close to t0 and, hence, on a set of

positive measure. It follows that no function continuous at t0 lies in the measure class of f ; the measure

class of a function with a positive jump contains no everywhere continuous function.

Theorem 4.8. The domain of d
dt is the linear subspace of measure classes in H(= L2(R)) corresponding

to absolutely continuous functions on R whose almost-everywhere derivatives lie in L2(R).

Stone’s theorem (Theorem 4.3) provides us with the precise description of the domain of the generator

of each (strong-operator-continuous) one-parameter, unitary group on a Hilbert space H. In the case

of the group arising from the translations of R, we can give a more specific description of that domain

(Theorem 4.8). An element x of H is in that domain if and only if the class of L2-functions it desig-

nates contains a (necessarily, unique) continuous function, and that function is an absolutely continuous

function with its (almost everywhere) derivative a function in L2(R). If x is in the domain and x′ is
the measure class of the norm limit of t−1(Utx − x) as |t| → 0+, we choose some g in the class of x′.
By assumption, g ∈ L2(R). An “indefinite integral” of g should have the same “derivative” as Utx, and

thus, differ from a function in the class of x by a constant function. Since the indefinite integral plus a

constant is absolutely continuous, x contains an absolutely continuous function with (almost everywhere)

derivative in L2(R). On the other hand, if the class of x contains an absolutely continuous function h

whose (almost everywhere) derivative g is in L2(R), then detailed calculations and estimates show that

t−1(Utx − x) tends to x′, the class of g. There is much to do to make this sketch a sound and complete

mathematical argument.

We now describe a core, for d
dt , that is particularly useful for computations.

Theorem 4.9. The family D0 of functions in L2(R) that vanish outside a finite interval and are

continuously differentiable with derivatives in L2(R) determines a core for the generator d
dt of the one-

parameter, translation, unitary group on L2(R).

Proof. Suppose f ∈ D( d
dt). For any ε > 0, there is a positive integer N (N � 1) such that

‖f − f[−N,N ]‖2 <
ε

2
and ‖f ′ − f ′

[−N,N ]‖2 <
ε

2
,

where f[−N,N ] denotes the function on R that agrees with f on [−N,N ] and is 0 outside [−N,N ].

Since f is absolutely continuous on R (f ∈ D( d
dt )), f[−N,N ] is absolutely continuous on [−N,N ]. Thus,

f[−N,N ] is differentiable almost everywhere on [−N,N ] with derivative f ′
[−N,N ] (in L2([−N,N ])) and

f[−N,N ](x) =

∫ x

−N

f ′
[−N,N ](s)ds+ f[−N,N ](−N), x ∈ [−N,N ],

from the absolute continuity of f[−N,N ] on [−N,N ].

We approximate f ′
[−N,N ] by a continuous function g′N on [−N,N ] so that

‖f ′
[−N,N ] − g′N‖2 <

ε

8N
.

Now, comparing the indefinite integrals,

f[−N,N ](x) =

∫ x

−N

f ′
[−N,N ](s)ds+ f[−N,N ](−N)
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and

gN(x) =

∫ x

−N

g′N (s)ds+ f[−N,N ](−N),

we have

|f[−N,N ](x) − gN(x)| =
∣
∣
∣
∣

∫ x

−N

[f ′
[−N,N ](s)− g′N(s)]ds

∣
∣
∣
∣

�
(∫ N

−N

|f ′
[−N,N ](s)− g′N (s)|2ds

) 1
2
(∫ N

−N

|1|2ds
) 1

2

<
ε

8N

√
2N

Hence

‖f[−N,N ] − gN‖2 =

(∫ N

−N

|f[−N,N ](x) − gN(x)|2dx
) 1

2

<
ε

8N
2N =

ε

4
.

Using the technique in the proof of Theorem 4.7, we extend gN to R from [−N,N ] so that the extension

g remains continuously differentiable with g and g′ vanishing outside some finite interval and

‖gN − g‖2 <
ε

4
and ‖g′N − g′‖2 <

ε

4
.

Then

‖f[−N,N ] − g‖2 � ‖f[−N,N ] − gN‖2 + ‖gN − g‖2 < ε

4
+

ε

4
=

ε

2
,

‖f ′
[−N,N ] − g′‖2 � ‖f ′

[−N,N ] − g′N‖2 + ‖g′N − g′‖2 <
ε

8N
+

ε

4
<

ε

2
.

Finally,

‖f − g‖2 � ‖f − f[−N,N ]‖2 + ‖f[−N,N ] − g‖2 <
ε

2
+

ε

2
= ε,

‖f ′ − g′‖2 � ‖f ′ − f ′
[−N,N ]‖2 + ‖f ′

[−N,N ] − g′‖2 <
ε

2
+

ε

2
= ε.

Thus, if (f, f ′) ∈ G ( d
dt ), it can be approximated as closely as we wish by (g, g′) with g ∈ D0. It follows

that D0 is a core for d
dt .

In the classic representation of the Heisenberg relation, QP − PQ = i�I, the operator Q corresponds

to multiplication by x, the identity transform on R. The domain of Q consists of functions f in L2(R)

such that xf is in L2(R). Elementary measure-theoretic considerations establish that D0 is also a core for

Q. Moreover, D0 ⊆ D(QP )∩D(PQ), that is, D0 is contained in the domain of QP −PQ. A calculation,

similar to the one at the end of Example 4.2, shows that

[QP − PQ]|D0 = −iI|D0.

Moreover, for any f ∈ D (= D(QP − PQ), the domain of QP − PQ),

((QP − PQ)f)(t) = t

(

i
d

dt
f

)

(t)−
(

i
d

dt

)

(tf(t)) = itf ′(t)− (if(t) + itf ′(t)) = −if(t).

Thus

[QP − PQ]|D = −iI|D .

4.3 In A (M) with M a factor of type II1

The following simple lemma will prove useful to us.

Lemma 4.10. Suppose that T is a closed operator on the Hilbert space H and B ∈ B(H). Then the

operator TB is closed.
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Proof. Suppose (xn, yn) ∈ G (TB) and xn → x, yn = TBxn → y. We show that (x, y) ∈ G (TB). By

assumption, Bxn ∈ D(T ). Since B is bounded (hence, continuous), Bxn → Bx. Since T is closed and

TBxn = yn → y, we have that (Bx, y) ∈ G (T ), so that Bx ∈ D(T ) and TBx = y. Hence (x, y) ∈ G (TB)

and TB is closed.

Remark 4.11. With T and B as in the preceding lemma, the operator BT is not necessarily closed

in general, even not preclosed (closable).

Consider the following example. Let {y1, y2, y3, . . . } be an orthonormal basis for a Hilbert space H,

and let

D =

{

x ∈ H :

∞∑

n=1

n4|〈x, yn〉|2 < ∞
}

, z =

∞∑

n=1

n−1yn.

Define B in B(H) by Bx = 〈x, z〉z; and define mapping T with domain D by

Tx =

∞∑

n=1

n2〈x, yn〉yn.

Note, first, that T is a closed densely defined operator. To see this, by definition, D certainly contains

the submanifold of all finite linear combinations of the basis elements y1, y2, y3, . . . , from which D is

dense in H. Now, suppose {um} is a sequence in D tending to u and {Tum} converges to v. Then, for

yn′ ∈ {y1, y2, y3, . . . }

〈Tum, yn′〉 =
〈 ∞∑

n=1

n2〈um, yn〉yn, yn′

〉

= n2〈um, yn′〉 → n2〈u, yn′〉.

But 〈Tum, yn′〉 → 〈v, yn′〉, so that 〈v, yn′〉 = n2〈u, yn′〉; and
∞∑

n=1

|n2〈u, yn〉|2 =
∞∑

n=1

|〈v, yn〉|2 = ‖v‖2 < ∞.

Thus u ∈ D and

Tu =

∞∑

n=1

n2〈u, yn〉yn =

∞∑

n=1

〈v, yn〉yn = v,

so that G (T ) is closed. Hence T is densely defined and closed. However, BT is not preclosed. If

um = m−1ym, then um → 0, but

BTum = 〈Tum, z〉z =

〈 ∞∑

n=1

n2〈um, yn〉yn,
∞∑

n=1

n−1yn

〉

z

=

〈 ∞∑

n=1

n2〈m−1ym, yn〉yn,
∞∑

n=1

n−1yn

〉

z

= 〈mym,m−1ym〉z = z �= 0.

Hence BT is not preclosed. (Recall that an operator S is preclosed, i.e., G (S)− is a graph of a linear

transformation, if and only if convergence of the sequence {xn} in D(S) to 0 and {Sxn} to z implies that

z = 0.)

Lemma 4.12. If M is a factor of type II1, P is a self-adjoint operator affiliated with M, and A is

an operator in M, such that P ·̂ A −̂ A ·̂ P is a bounded operator B, necessarily, affiliated with M and,

hence, in M, then τ(B), the trace of B, where τ is the trace on M, is 0. In particular, B is not of the

form aI with a some non-zero scalar in this case.

Proof. Let En be the spectral projection for P corresponding to the interval [−n, n] for each positive

integer n. Then PEn is an everywhere defined bounded self-adjoint operator as is EnPEn, and EnPEn =
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PEn. Note, for this, that EnP ⊆ PEn, so, EnP is bounded and its closure En ·̂ P = PEn. From the

(algebraic) properties, established in Section 3, of the algebra A (M) of operators affiliated with M,

En ·̂ (P ·̂ A) ·̂ En −̂ En ·̂ (A ·̂ P ) ·̂ En = EnBEn;

and from Lemma 4.10,

En ·̂ (P ·̂ A)En −̂ En ·̂ (A ·̂ P )En = EnBEn.

(Since P ·̂ A and A ·̂ P are closed and En is bounded, (P ·̂ A)En and (A ·̂ P )En are closed. Hence

they are equal to their closures (P ·̂ A) ·̂ En and (A ·̂ P ) ·̂ En, respectively.) Now, since En, A and

En ·̂ P = PEn = EnPEn are all bounded,

En ·̂ (P ·̂ A)En = (En ·̂ P ) ·̂ AEn = EnPEnAEn = EnPEnEnAEn

and

En ·̂ (A ·̂ P )En = (En ·̂ A) ·̂ (PEn) = EnAEnPEn = EnAEnEnPEn.

Thus

EnPEnEnAEn − EnAEnEnPEn = EnBEn. (∗)

Since EnPEn and EnAEn are bounded and in M, the left-hand side of (∗) is a commutator in M. Hence

τ(EnBEn) = 0. As ‖EnBEn‖ � ‖B‖, for each n, and En ↑ I in the strong-operator topology, EnBEn is

strong (hence, weak)-operator convergent to B. From [5, Theorem 8.2.8], τ is ultraweakly continuous on

M. Thus 0 = τ(EnBEn) → τ(B).

Theorem 4.13. If M is a factor of type II1, P and Q are self-adjoint operators affiliated with M,

and P ·̂ Q −̂ Q ·̂ P is a bounded operator B, then B has trace 0. In particular, P ·̂ Q −̂ Q ·̂ P is not of

the form aI for some non-zero scalar a.

Proof. Since P ·̂ Q −̂ Q ·̂ P is affiliated with M, it is, by definition, closed on its dense domain. We

are given that B is bounded on this domain. Hence B is everywhere defined. With En as in Lemma 4.12,

we argue as in Lemma 4.12, with Q in place of A, to conclude that

En ·̂ (P ·̂ Q) ·̂ En −̂ En ·̂ (Q ·̂ P ) ·̂ En = EnBEn.

In this case,

En ·̂ (P ·̂ Q) ·̂ En = (En ·̂ P ) ·̂ (Q ·̂ En) = EnPEn ·̂ (Q ·̂ En)

= EnPEnEn ·̂ QEn (Lemma 4.10)

= EnPEn ·̂ (En ·̂ QEn),

and

En ·̂ (Q ·̂ P ) ·̂ En = En ·̂ Q ·̂ PEn = En ·̂ QPEn (Lemma 4.10)

= En ·̂ QEnPEn

= En ·̂ QEnEnPEn = (En ·̂ QEn) ·̂ EnPEn.

Thus

(EnPEn) ·̂ (En ·̂ QEn) −̂ (En ·̂ QEn) ·̂ (EnPEn) = EnBEn.

Since EnPEn and EnBEn are bounded operators in M, Lemma 4.12 applies, and τ(EnBEn) = 0. Again,

En ↑ I and τ(B) = 0. It follows that B cannot be aI with a �= 0.

Corollary 4.14. The Heisenberg relation, QP − PQ = i�I, cannot be satisfied with self-adjoint

operators Q and P in the algebra of operators affiliated with a factor of type II1.



2452 Liu Z Sci China Math November 2011 Vol. 54 No. 11

References
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