MAC 2312H (202) • Honors Calculus II • Spring 2014

EXAM 3

(SAMPLE)

NAME(print)			
UCF PID			

- * Show all your work on the test itself. Correct answers with little or no supporting work will not be given credit.
- * You are allowed a **hand written**, **half** of **8.5 in** × **11 in**, **one-sided** sheet of notes. Books, calculators or other aids are not allowed.
- * Write legibly. Circle your final answer to each problem.

	# 1	# 2	# 3	# 4	# 5	TOTAL
	20	20	10	8	12	70
Ì						

1. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

(2)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 3}}$$

(3)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 2^n}{n!}$$

$$(4) \sum_{n=1}^{\infty} (-1)^n \frac{\arctan n}{n^3}$$

2. Determine whether the series converges or diverges. Specify what TEST is used.

$$(1) \sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

(2)
$$\sum_{n=1}^{\infty} \frac{|\cos n|}{1 + (1.2)^n}$$

(3)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{2n+1} \right)$$

(4)
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$$

3. Find the sum of the series.

(1)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{3n}}$$

(2)
$$\sum_{n=1}^{\infty} \left[\arctan(n+1) - \arctan n \right]$$

4. For what values of x does the series $\sum_{n=1}^{\infty} (\ln x)^n$ converge.

5. Find the limit of the **sequence**.

$$(1) \quad a_n = \frac{n\sin n}{n^2 + 1}$$

(2)
$$a_n = \frac{n^n}{(2n)!}$$
 (Hint: consider the series $\sum_{n=1}^{\infty} a_n$)

ANSWERS:

- 1. (1) conditionally convergent
- (2) conditionally convergent
 - (3) absolutely convergent
- (4) absolutely convergent
- 2. (1) divergent
- (2) convergent
- (3) divergent
- (4) convergent
- 3. (1) $\frac{1}{11}$ (2) $\frac{\pi}{4}$
- 4. $e^{-1} < x < e$
- 5. (1) 0
- (2) 0