1. For the system X' = AX, write out the general solution and sketch the phase portrait.

(1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 (2) $A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$ (3) $A = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$

$$(4) A = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} \qquad (5) A = \begin{pmatrix} 3 & 2 \\ -2 & 3 \end{pmatrix} \qquad (6) A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$

$$(7) \quad A = \left(\begin{array}{cc} -2 & 1\\ 0 & -2 \end{array} \right)$$

2. For the system X' = AX, (a) find the matrix T that puts A in canonical form; (b) find the general solution of both $Y' = (T^{-1}AT)Y$ and X' = AX.

(1)
$$A = \begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$$
 (2) $A = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$ (3) $A = \begin{pmatrix} 1 & 2 \\ 3 & -3 \end{pmatrix}$

3. For the system

$$X' = \left(\begin{array}{cc} 0 & 1\\ -9 & \beta \end{array}\right) X$$

where $\beta \in \mathbb{R}$. Identify the type of phase portrait for the three cases: (a) $\beta < 0$ (b) $\beta = 0$ and (c) $\beta > 0$. Give a sketch of the phase portrait for each case.

4. Consider the harmonic oscillator equation x'' + bx' + kx = 0, where $b \ge 0$ and k > 0. Identify the regions in the relevant portion of the bk-plane (b as horizontal axis) where the corresponding system has similar phase portraits.