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GLOBAL DYNAMICS OF A DISEASE MODEL

INCLUDING LATENCY WITH DISTRIBUTED

DELAYS

ZHISHENG SHUAI AND P. VAN DEN DRIESSCHE

ABSTRACT. An infectious disease model with two dis-
tributed delays is proposed to incorporate both the latency of
the infection in a vector and the latent period in an infected
host. The basic reproduction number R0 is defined and shown
to give a sharp threshold. Specifically, if R0 ≤ 1, then the
disease-free equilibrium is globally asymptotically stable and
the disease dies out; whereas if R0 > 1, then a Lyapunov func-

tional is used to prove that the endemic equilibrium is globally
asymptotically stable, thus the disease persists at an endemic
level. This model includes and extends several delay models in
the literature.

1 Introduction Disease models study the transmission dynamics
of infectious diseases in the host population. The infectious agents can be
viruses, bacteria, or parasites. Normally a certain amount of pathogen
is required to break down the natural defence (immune) system of a
host; the pathogen also takes a certain time to develop inside a host.
As a result, after the initial infection, a host can stay in a latent period
before becoming infectious. Such a latency in disease transmission is
modelled by introducing a new compartment into a mathematical model,
called a latent or exposed compartment. The resulting model is normally
an ordinary differential equation system, in which the latent period is
assumed to be exponentially distributed; see, for example, [16, 18]. If
the latent period is assumed to satisfy a general distribution, then a delay
and/or integro-differential system is formed; see, for example, [26, 28].

Some infectious diseases, such as malaria, dengue, West Nile virus
and Lyme disease, are transmitted indirectly to the host population by
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vectors (e.g., mosquitos or ticks). The vector population is infected by
an infectious host and then can transmit the disease to a susceptible
host. These vector-borne diseases are modelled by taking both host
and vector population into account; see, for example, [4, 6, 24] and [1,
Chapter 14]. An alternative way is to use delay differential equations
approximating the interplay between the vector and the pathogen. For
example, the latent delay in a vector can be used to describe the time
needed before the pathogen develops sufficiently in the vector to pass
the infection to a susceptible host [3].

The recent papers [11, 12] have separately included these two kinds
of latent delays (in the host and in the vector) in different models and
provided nice comparisons between them. In this paper, we propose a
general disease model to simultaneously incorporate both latent delays.
The model is formulated in Section 2 and can be used to model trans-
mission and spread of vector-borne or water-borne diseases. The basic
reproduction number R0 is defined in Section 3, and proved in Sections 3
and 4 to determine a sharp threshold. Specifically, if R0 ≤ 1, then the
disease-free equilibrium is globally asymptotically stable and the disease
dies out; whereas if R0 > 1, then there exists a unique endemic equi-
librium that is globally asymptotically stable, thus the disease persists
at a positive level. Section 5 contains discussion of our results show-
ing specifically how they include and extend some previous results for
directly and indirectly transmitted disease models.

2 Model formulation Let S(t), E(t), I(t) and R(t) be the number
of individuals in the susceptible, exposed (latent), infectious and recov-
ered class, respectively, with the total population N(t) = S(t) + E(t) +
I(t) + R(t). Assume that A > 0 represents the constant recruitment,
m > 0 represents the natural mortality rate, and α ≥ 0 represents the
mortality rate due to the disease. The rate of change of N(t) is

(2.1) N ′(t) = A−mN(t)− αI(t).

Let γ > 0 be the recovery rate, then the rate of change of R(t) is

(2.2) R′(t) = γI(t)−mR(t).

Susceptible individuals can be infected directly, or indirectly by in-
fectious individuals via either vectors for vector-borne diseases or con-
taminated water for water-borne diseases. To account for latency in the
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vector, the disease transmission at time t is assumed to take the form

(2.3)

∫ ∞

0

f(S(t), I(t− r)) k(r) dr.

Here, f is a general incidence function, that is assumed to be sufficiently
smooth and f(S, I) ≥ 0, f(S, 0) = f(0, I) = 0 for all S, I ≥ 0. In the
literature, function f takes different forms, such as mass action incidence
f(S, I) = λSI and saturating incidence f(S, I) = λS I

B+I
, where B is a

positive constant. The kernel function k is assumed to be nonnegative
and integrable with

K =

∫ ∞

0

k(r) dr > 0.

For vector-borne diseases, function k(r) represents the vector infection
rate due to the presence of infectious hosts times the fraction of the
vector population surviving to time r, which is the time taken for the
vector to become infectious after infection from the host. For water-
borne diseases, k(r) represents the pathogen shedding rate of infectious
hosts times the fraction of pathogen surviving in the environment that
was shed from infectious individuals r time units ago. For both cases, it
is biologically reasonable to assume the time r is finite, which is a special
case of (2.3); however, we keep the infinite interval in our study to in-
corporate possible reservoirs in the environment/vector where pathogen
was shed a long time ago. For directly transmitted diseases, k(r) is a
Dirac function, k(r) = δ(r), thus the disease transmission term (2.3)
becomes f(S(t), I(t)).

Using the general transmission term (2.3), the rate of change of S(t)
is written as

(2.4) S′(t) = A−

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −mS(t).

To account for latency in the host, let P (t) denote the probability
(without taking death into account) that an exposed individual still
remains in the exposed class t time units after entering the exposed
class. It is assumed that P : [0,∞) → [0, 1] is nonincreasing, piecewise
continuous with possibly finitely many jumps and satisfies P (0+) =
1, limt→∞ P (t) = 0 with

∫∞

0
P (u)du positive and finite. The proportion

of exposed individuals can be expressed by the integral

(2.5) E(t) =

∫ t

0

e−m(t−u) P (t− u)

∫ ∞

0

f(S(u), I(u− r)) k(r) dr du.
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Differentiating (2.5) gives

E′(t) =

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −mE(t)(2.6)

+

∫ t

0

e−m(t−u) dtP (t− u)

×

∫ ∞

0

f(S(u), I(u− r)) k(r) dr du

=

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −mE(t)

+

∫ t

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du.

Since P (t) is possibly not differentiable and has finitely many jumps,
the integral in (2.6) is interpreted in the sense of Riemann-Stieltjes.

Substituting (2.1), (2.2), (2.4) and (2.6) into I ′(t) = N ′(t) − S′(t) −
E′(t)−R′(t) leads to

(2.7) I ′(t) = −

∫ t

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r))k(r) dr du− (m+ α+ γ)I(t).

Notice that E(t) and R(t) do not appear in (2.4) and (2.7). Hence we
can study the reduced system of S(t) and I(t) first and then (2.5) or
(2.6), and (2.2) determine the behaviors of E(t) and R(t). In the rest
of the paper, we study the delay integro-differential equation system
consisting of (2.4) & (2.7), and its limiting system [23] for the endemic
equilibrium. The limiting system is

S′(t) = A−

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −mS(t),(2.8)

I ′(t) = −

∫ ∞

0

e−mu duP (u)

∫ ∞

0

f(S(t− u), I(t− u− r))

× k(r) dr du − (m+ α+ γ)I(t).
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To the best of our knowledge, model (2.2), (2.4), (2.6), (2.7) is the first
disease model in the literature that simultaneously incorporates both
distributed delays for the latency of the infection in a vector and the
latent period in an infected host.

Our model includes as special cases many earlier SEIR models in the
literature, such as the standard ordinary differential equation (ODE)
model [13, 14, 16, 18], the delay model with latency in a vector [3,
11, 12, 19, 20, 21, 22], the model with host latent delay [26] and the
delay model incorporating age-structure and varying infectivity [25]. For
example, when k is assumed to be a Dirac function, say k(r) = δ(r− τ),
the discrete time lag τ represents a constant latency of the infection in
the vector population. If further letting τ → 0, then the indirect disease
transmission can be treated as direct transmission, thus our model can
also be used to model directly transmitted diseases. The probability
function P can also take different special forms; for example, P (t) = e−ǫt

with mean host latent period 1/ǫ. In this case, when the disease is
transmitted directly (i.e., k(r) = δ(r)), our model becomes the standard
ODE SEIR model [13, 14, 16, 18]. Similarly, when choosing different
functions for f, k and P , our model contains various delay models cited
above; see Section 5 for further discussion.

Since both systems (2.4) & (2.7) and (2.8) include infinite delays,
a suitable phase space is needed (see, for example, [2] and references
therein). Assume that there exists a positive number λ such that
∫∞

0 k(r)eλr dr < ∞. Define the following Banach space of fading mem-
ory type [2]

C =
{

φ ∈ C((−∞, 0],R) : φ(s)eλs is uniformly continuous

on (−∞, 0], and sup
s≤0

|φ(s)|eλs <∞
}

,

with the norm ‖φ‖ = sups≤0 |φ(s)|e
λs. For ψ ∈ C(R,R) and t > 0,

let ψt ∈ C be such that ψt(s) = ψ(t + s), s ∈ (−∞, 0]. Consider both
systems (2.4) & (2.7) and (2.8) in the phase space

(2.9) X = C × C.

Let φ, ψ ∈ C such that φ(s) ≥ 0, ψ(s) ≥ 0 for all s ∈ (−∞, 0]. For
any solution (St, It) of systems (2.4) & (2.7) and (2.8) with initial con-
ditions (φ, ψ), the standard theory of functional differential equations
[10] implies that St, It ∈ C for all t > 0. It can be verified that the set
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Γ =

{

(S(·), I(·)) ∈ X : S(s) ≥ 0, I(s) ≥ 0,

s ∈ (−∞, 0], S(0) + I(0) ≤
A

m

}

is positively invariant for each of the systems (2.4) & (2.7) and (2.8).
It follows that if S(0) + I(0) ≤ A

m
, then S(t) + I(t) ≤ A

m
for all t > 0.

The set Γ is commonly called the feasible region, in which we study the
disease dynamics.

3 Basic reproduction number and the disease-free equilib-

rium Both systems (2.4) & (2.7) and (2.8) always have a disease-free
equilibrium (DFE) P0 = (S0, 0) with S0 = A/m. In this section, we
study the global stability of P0.

Assume that

0 < lim
I→0+

f(S, I)

I
=: C(S) ≤ +∞, ∀ 0 < S ≤ S0.

Let c = C(S0). If the incidence function f is differentiable, then c =
∂f
∂I

(S0, 0). Let

(3.1) Q = − lim
t→∞

∫ t

0

e−muduP (u) du,

and it can be verified that 0 < Q < 1. Define the basic reproduction
number as

(3.2) R0 =
cQK

m+ α+ γ
.

Here, 1/(m + α + γ) is the average time hosts stay in the infectious
compartment taking death into account, c is the disease transmission
rate in a totally susceptible host population, Q is the probability of
hosts surviving the latent stage, and K is the disease transmission of
vector to host times the average time vectors stay infectious. We refer
readers to [1, 5, 29] for more discussion about R0.

The following theorem shows that the basic reproduction number R0

determines the stability of the DFE P0. The proofs of Theorem 3.1 and
Theorem 4.2 in Section 4 utilize global Lyapunov functions that are used
in [13, 14] and global Lyapunov functionals that are motivated by the
work in [20, 21, 22].
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Theorem 3.1. Suppose that the incidence function satisfies

(3.3) f(S, I) ≤ C(S)I < cI for all 0 ≤ S < S0, I > 0.

For both systems (2.4) & (2.7) and (2.8), if R0 ≤ 1, then the disease-free

equilibrium P0 is globally asymptotically stable in Γ; if R0 > 1, then P0

is unstable.

Proof. For the system (2.4) & (2.7), consider a Lyapunov functional
L = L1 + L2 + L3 with

L1 = I +Q

∫ S0

S(t)

(

lim
x→0+

f(S0, x)

f(ξ, x)
− 1

)

dξ,

L2 =

∫ t

0

Q(u)

∫ ∞

0

f(S(t− u), I(t− u− r))k(r) dr du,

and

L3 =
m+ α+ γ

K

∫ ∞

0

I(t− u)

∫ ∞

u

k(r) dr du.

Here, constant Q is defined in (3.1) and function Q(r) is defined as
follows

(3.4) Q(r) = −

∫ ∞

r

e−muduP (u) du.

Notice that Q = Q(0). It is easy to see that L2 ≥ 0, L3 ≥ 0, and that
L1 ≥ 0 in Γ under the assumption (3.3). Thus, L ≥ 0 and L = 0 if and
only if S = S0 and I(r) = 0 for all r ≤ t. Differentiating L1, L2 and
L3 along the system (2.4) & (2.7) and using integration by parts for L′

2

and L′
3 give

L′
1 = I ′ +QS′

(

1− lim
x→0+

f(S0, x)

f(S(t), x)

)

(3.5)

= −

∫ t

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du
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− (m+ α+ γ)I(t)

+Q

(

A−

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −A
S(t)

S0

)

·

(

1− lim
x→0+

f(S0, x)

f(S(t), x)

)

= −

∫ t

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du

− (m+ α+ γ)I(t)

+QA

(

1−
S(t)

S0

)(

1− lim
x→0+

f(S0, x)

f(S(t), x)

)

−Q

(

1− lim
x→0+

f(S0, x)

f(S(t), x)

)
∫ ∞

0

f(S(t), I(t− r)) k(r) dr

≤ −

∫ t

0

e−mu duP (u)

∫ ∞

0

f(S(t− u), I(t− u− r))

× k(r) dr du− (m+ α+ γ)I(t)

−Q

(

1− lim
x→0+

f(S0, x)

f(S(t), x)

)
∫ ∞

0

f(S(t), I(t− r))k(r) dr,

L′
2 = Q(t)

∫ ∞

0

f(S(0), I(−r)) k(r) dr(3.6)

+

∫ t

0

Q(u)
∂

∂t

(
∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr

)

du

= Q(t)

∫ ∞

0

f(S(0), I(−r)) k(r) dr +

∫ t

0

Q(u) (−1)

×
∂

∂u

(
∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr

)

du

= Q(t)

∫ ∞

0

f(S(0), I(−r)) k(r) dr

−

[

Q(u)

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr

]t

u=0
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+

∫ t

0

dQ(u)

du

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du

= Q

∫ ∞

0

f(S(t), I(t− r)) k(r) dr +

∫ t

0

e−muduP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du

and

L′
3 =

m+ α+ γ

K

∫ ∞

0

∂

∂t

(

I(t− u)

)
∫ ∞

u

k(r) dr du(3.7)

=
m+ α+ γ

K

∫ ∞

0

(−1)
∂

∂u

(

I(t− u)

)
∫ ∞

u

k(r) dr du

= −
m+ α+ γ

K

[

I(t− u)

∫ ∞

u

k(r) dr

]∞

u=0

−
m+ α+ γ

K

∫ ∞

0

I(t− u)k(u) du

= (m+ α+ γ)I(t)−
m+ α+ γ

K

∫ ∞

0

I(t− u)k(u) du.

Hence, adding (3.5), (3.6) and (3.7) and using (3.3), it follows that

L′ = L′
1 + L′

2 + L′
3

(3.8)

≤

∫ ∞

0

(

lim
x→0+

Qf(S(t), I(t− r))f(S0, x)

f(S(t), x)

−
m+ α+ γ

K
I(t− r)

)

k(r) dr

≤

∫ ∞

0

(

lim
x→0+

QI(t− r)f(S0, x)

x
−
m+ α+ γ

K
I(t− r)

)

k(r) dr

=

∫ ∞

0

(

(R0 − 1)
m+ α+ γ

K
I(t− r)

)

k(r) dr ≤ 0 if R0 ≤ 1.

It can be verified that the largest invariant set where L′ = 0 is the sin-
gleton {P0}. Using the LaSalle-Lyapunov Theorem (see [15, Theorem
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3.4.7] or [9, Theorem 5.3.1]), it follows that the DFE P0 attracts all
solutions of system (2.4) & (2.7) whose initial conditions are in Γ. Fur-
thermore, the Lyapunov functional L can be used to show that P0 is
locally stable using the same proof as that for Corollary 5.3.1 in [9]; see
also Lemma A.1 in [26]. Therefore, P0 is globally asymptotically stable
in Γ.

If R0 > 1 and I 6= 0, it follows that

(3.9) (R0 − 1)(m+ α+ γ)I(t) > 0.

Inequality (3.9) and continuity imply that L′ > 0 in a small enough

neighbourhood of P0 in the interior of Γ, denoted by
◦

Γ. Therefore, P0

is unstable when R0 > 1.

For the limiting system (2.8), a similar Lyapunov functional as L (i.e.,
changing the upper limit of the outer integral in L1 to infinity) can be
used to prove the global stability of the DFE. We omit the detailed proof
since most of the derivations are similar as those for the system (2.4) &
(2.7), which we have shown above.

Remark 1. It can be easily verified that assumption (3.3) holds for
mass action incidence, or if the incidence function f(S, I) is (i) monotone
increasing in S and I and (ii) concave down in I. The latter condition
(ii) can be replaced by f(S, I)/I is monotone decreasing in I. Hence,
Theorem 3.1 holds for different incidence functions that are commonly
used in the literature, such as f(S, I) = λSqIp, f(S, I) = λSq Ip

B+Ip with

constants p, q, λ,B positive and p ≤ 1, or f(S, I) = λ SI
S+I

.

Remark 2. When the incidence function takes the form f(S, I) = λSqIp

or f(S, I) = λSq Ip

B+Ip with constants p > 1 and q, λ,B > 0, assumption
(3.3) fails; in fact, when p > 1, the disease-free equilibrium P0 is always
locally stable but the global dynamics can be very complicated; see, for
example, [18].

4 Global stability of the endemic equilibrium In this section
we study the dynamical behavior when the basic reproduction number
R0 > 1. In particular, we prove the existence, uniqueness and global
stability of an endemic equilibrium for the limiting system (2.8) and
show all solutions of (2.4) & (2.7) approach the endemic equilibrium of
(2.8) as time tends to infinity.
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The endemic equilibrium (S∗, I∗), S∗, I∗ > 0 of system (2.8) satisfies

(4.1)
A−Kf(S∗, I∗)−mS∗ = 0,

QKf(S∗, I∗)− (m+ α+ γ)I∗ = 0,

which are also the equilibrium equations for the ordinary differential
equation system

(4.2)

S′ = A−Kf(S, I)−mS,

I ′ = Kf(S, I)−
m+ α+ γ

Q
I.

Notice that the basic reproduction number for (4.2) has the same expres-
sion as the basic reproduction number for (2.8), i.e., as defined in (3.2).
It has been shown in the literature (see, for example, [17, Section 7])
that there exists at least one endemic equilibrium for (4.2) if R0 > 1,
where R0 is defined in (3.2). Therefore, we have the following lemma
about the existence of the endemic equilibrium for (2.8).

Lemma 4.1. If R0 > 1, then there exists at least one endemic equilib-

rium P ∗ = (S∗, I∗) ∈
◦

Γ for the limiting system (2.8).

The uniqueness and global stability of P ∗ is established in the follow-
ing theorem.

Theorem 4.2. Assume that there exists a function Φ : (0, S0] → R+

such that

(4.3) (S − S∗)(Φ(S) − Φ(S∗)) > 0, 0 < S ≤ S0, S 6= S∗,

and

(4.4)

(

f(S, I)Φ(S∗)

f(S∗, I∗)Φ(S)
− 1

)(

1−
f(S∗, I∗)Φ(S)I

f(S, I)Φ(S∗)I∗

)

≤ 0,

0 < S ≤ S0, I > 0.

If R0 > 1, then the endemic equilibrium P ∗ of the limiting system (2.8)

is unique and globally asymptotically stable in
◦

Γ; furthermore, all so-

lutions of the system (2.4) & (2.7) starting in
◦

Γ approach the endemic

equilibrium P ∗ of (2.8).
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Proof. Define a nonnegative function Θ : (0,∞) → [0,∞), Θ(x) =
x − 1 − lnx with Θ(x) = 0 iff x = 1. Consider a Lyapunov functional
V = V1 + V2 + V3, where

V1 = Q

∫ S

S∗

Φ(ξ)− Φ(S∗)

Φ(ξ)
dξ + I∗Θ

(

I

I∗

)

,

V2 =

∫ ∞

0

Q(u)

∫ ∞

0

f(S∗, I∗)Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr du,

and

V3 = Q

∫ ∞

0

f(S∗, I∗)Θ

(

I(t− u)

I∗

)
∫ ∞

u

k(r) dr du.

Here, constant Q and function Q(r) are defined in (3.1) and (3.4), re-
spectively, and Q(0) = Q. From the definitions, V2 ≥ 0, V3 ≥ 0, and
under assumption (4.3) it follows that V1 ≥ 0. Differentiating V1 along
the solution of (2.8), and using the equilibrium equations (4.1) and as-
sumption (4.3) give

V ′
1 = QS′

(

1−
Φ(S∗)

Φ(S(t))

)

+ I ′
(

1−
I∗

I(t)

)

(4.5)

= Q

(

Kf(S∗, I∗) +mS∗

−

∫ ∞

0

f(S(t), I(t− r)) k(r) dr −mS(t)

)

×

(

1−
Φ(S∗)

Φ(S(t))

)

−

(
∫ ∞

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du

+QKf(S∗, I∗)
I(t)

I∗

)(

1−
I∗

I(t)

)

= Q

(

Kf(S∗, I∗)−

∫ ∞

0

f(S(t), I(t− r)) k(r) dr

)

×

(

1−
Φ(S∗)

Φ(S(t))

)

+Qm(S∗ − S(t))

(

1−
Φ(S∗)

Φ(S(t))

)
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−QKf(S∗, I∗)
I(t)

I∗
+QKf(S∗, I∗)

−

(

1−
I∗

I(t)

)
∫ ∞

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du

≤ 2QKf(S∗, I∗)−QKf(S∗, I∗)
Φ(S∗)

Φ(S)
−QKf(S∗, I∗)

I(t)

I∗

−Q

(

1−
Φ(S∗)

Φ(S(t))

)
∫ ∞

0

f(S(t), I(t− r)) k(r) dr

−

(

1−
I∗

I(t)

)
∫ ∞

0

e−mu duP (u)

×

∫ ∞

0

f(S(t− u), I(t− u− r)) k(r) dr du.

Differentiating V2 and V3 along the solution of (2.8) and using integra-
tion by parts give

V ′
2 =

∫ ∞

0

Q(u)
∂

∂t

[
∫ ∞

0

f(S∗, I∗)

(4.6)

×Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr

]

du

=

∫ ∞

0

Q(u) (−1)
∂

∂u

[
∫ ∞

0

f(S∗, I∗)

×Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr

]

du

= −

[

Q(u)

∫ ∞

0

f(S∗, I∗)Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr

]∞

u=0

+

∫ ∞

0

dQ(u)

du

∫ ∞

0

f(S∗, I∗)Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr du

= Q

∫ ∞

0

f(S∗, I∗)Θ

(

f(S(t), I(t− r))

f(S∗, I∗)

)

k(r) dr

+

∫ ∞

0

e−muduP (u)

∫ ∞

0

f(S∗, I∗)
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×Θ

(

f(S(t− u), I(t− u− r))

f(S∗, I∗)

)

k(r) dr du

and

V ′
3 = Q

∫ ∞

0

f(S∗, I∗)
∂

∂t
Θ

(

I(t− u)

I∗

)
∫ ∞

u

k(r) dr du(4.7)

= Q

∫ ∞

0

f(S∗, I∗) (−1)
∂

∂u
Θ

(

I(t− u)

I∗

)
∫ ∞

u

k(r) dr du

= −

[

Qf(S∗, I∗)Θ

(

I(t− u)

I∗

)
∫ ∞

u

k(r) dr

]∞

u=0

+Q

∫ ∞

0

f(S∗, I∗)Θ

(

I(t− u)

I∗

)

d

du

(
∫ ∞

u

k(r) dr

)

du

= QKf(S∗, I∗)Θ

(

I(t)

I∗

)

−Q

∫ ∞

0

f(S∗, I∗)Θ

(

I(t− u)

I∗

)

k(u) du.

Adding (4.5), (4.6) and (4.7) together yields

V ′ =

∫ ∞

0

e−mu(−duP (u))

∫ ∞

0

f(S∗, I∗)k(r)

×

[

2−
Φ(S∗)

Φ(S(t))
−
I(t− r)

I∗
+

Φ(S∗)f(S(t), I(t− r))

φ(S(t))f(S∗, I∗)

−
I∗f(S(t− u), I(t− u− r))

I(t)f(S∗, I∗)

+ ln
I(t− r)f(S(t − u), I(t− u− r))

I(t)f(S(t), I(t− r))

]

dr du

=

∫ ∞

0

e−mu(−duP (u))

∫ ∞

0

f(S∗, I∗)k(r)

×

[

−Θ

(

Φ(S∗)

Φ(S(t))

)

−Θ

(

I∗f(S(t− u), I(t− u− r))

I(t)f(S∗, I∗)

)

− Θ

(

Φ(S(t))f(S∗, I∗)I(t− r)

Φ(S∗)f(S(t), I(t− r))I∗

)

×

(

Φ(S∗)f(S(t), I(t− r))

Φ(S(t))f(S∗, I∗)
− 1

)



GLOBAL DYNAMICS OF A DISEASE MODEL 249

×

(

1−
Φ(S(t))f(S∗, I∗)I(t− r)

Φ(S∗)f(S(t), I(t− r))I∗

)]

dr du

≤ 0.

The last inequality holds since Θ(x) ≥ 0 and assumption (4.4) holds.
It can be verified that the largest invariant set where V ′ = 0 is the
singleton {P ∗}, thus the endemic equilibrium P ∗ of (2.8) is globally

asymptotically stable in
◦

Γ, using the same argument as in the proof of
Theorem 3.1. An immediate consequence of Theorem 7.2 in [23] is that

P ∗ attracts all solutions of (2.4) & (2.7) starting in
◦

Γ.

One common choice for the function Φ in Theorem 4.2 is Φ(S) =
f(S, I∗). In this situation, inequalities (4.3) and (4.4) become

(S − S∗)(f(S, I∗)− f(S∗, I∗)) > 0, 0 < S ≤ S0, S 6= S∗

and

(

f(S, I)

f(S, I∗)
− 1

)(

1−
f(S, I∗)I

f(S, I)I∗

)

≤ 0, 0 < S ≤ S0, I > 0.

If the incidence function f(S, I) is mass action, or monotone increasing
in S, I and concave down in I, then both the above inequalities are
satisfied. Hence Theorem 4.2 holds for the incidence functions discussed
in Remark 1. In particular, if the incidence function is assumed to be
mass action or saturating incidence, then there exists a unique endemic
equilibrium provided R0 > 1 and the endemic equilibrium is globally
asymptotically stable. However, there are incidence functions, such as
those in Remark 2, for which the result of Theorem 4.2 fails, multiple
endemic equilibria may exist and periodic solutions may occur due to
Hopf bifurcation; see, for example, [18].

5 Discussion The model (2.2), (2.4), (2.6), (2.7) and its limiting
system (2.8) proposed here are general compartment SEIR models for
infectious diseases that include both the latency of the infection in a
vector and the latent period in an infected host. General nonlinear inci-
dence and general kernel functions for both distributed latent delays are
incorporated, thus including and extending several earlier delay models
in the literature; see Table 1 for detailed discussion. In Table 1 note
that τ is a constant latent period in the vector, and ω is a constant
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latent period in the host. Our global stability results, Theorems 3.1 and
4.2, show that R0 acts as a sharp threshold, with disease dying out if
R0 ≤ 1, or becoming endemic if R0 > 1. In special cases they reduce
to previous results in the references given in Table 1. The Lyapunov
functionals constructed in the proofs of Theorems 3.1 and 4.2 contain
as special cases (up to a constant) those in [8, 11, 20, 21, 22], but are
different from those used in [3, 12, 26].

f(S, I) k(t) P (t) reference

λ SI
S+I

δ(t) † Hω(t)
‡ Gourley et al. [7, Eq. (10)]

Guo and Cai [8, Eq. (3)]

F (S)G(I) δ(t) Hω(t) Huang et al. [12, Eq. (15)]

f(S, I) δ(t) Hω(t) Huang and Takeuchi [11, Eq. (17)]

λSI δ(t) P (t) Shuai and van den Driessche [26, Eq. (2.6)]

λSI δ(t− τ ) H0(t)
♯ Ma et al. [19, Eq. (1.1)]

McCluskey [21, Eq. (5.1)]

F (S)G(I) δ(t− τ ) H0(t) Huang et al. [12, Eq. (1)]

f(S, I) δ(t− τ ) H0(t) Huang and Takeuchi [11, Eq. (1)]

λSI k(t) H0(t) Beretta and Takeuchi [3, Eq. (5)]

Röst and Wu [25, Eqs. (2)-(3)] §

McCluskey [20, Eq. (3)] §

λSI k(t) ¶ H0(t) McCluskey [21, Eq. (2.1)]

f(S, I) k(t) ¶ H0(t) McCluskey [22, Eq. (1)]

† A Dirac function ‡ A step function Hω(t) = 1 for all 0 ≤ t ≤ ω and Hω(t) = 0
otherwise ♯ A step function H0(0) = 1 and H0(t) = 0 otherwise § After replacing
variable E by I in the reference ¶ With compact support

TABLE 1: Special cases of model (2.2), (2.4), (2.6), (2.7)

For water-borne diseases, let f(S, I) = λSI (mass action), k(t) =
β
λ
δ(t)+ξe−ηt (giving direct and indirect transmission) and P (t) = H0(t),

then our model becomes

(5.1)

S
′(t) = A− βS(t)I(t)−

∫ ∞

0

λS(t)I(t− r)ξe−ηr
dr −mS(t),

I
′(t) = βS(t)I(t) +

∫ ∞

0

λS(t)I(t− r)ξe−ηr
dr − (m+ α+ γ)I(t).
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Let W (t) =
∫∞

0 I(t − r)ξe−ηr dr =
∫ t

−∞
I(u)ξe−η(t−u) du denote the

number of pathogen in the contaminated water. Differentiating W (t)
and rewriting (5.1) lead to the following ODE system

(5.2)

S′ = A− βSI − λSW −mS,

I ′ = βSI + λSW − (m+ α+ γ)I,

W ′ = ξI − ηW,

which has previously been proposed in [27] to include both direct human-
to-human transmission and indirect transmission via contaminated wa-
ter for water-borne diseases such as cholera. Our Theorems 3.1 and 4.2
contain and extend the global stability results in [27].

Our model can serve as a general framework for modeling the spread
and transmission of infectious diseases, such as vector-borne diseases
(e.g., malaria, dengue, West Nile virus and Lyme disease) or water-
borne diseases (e.g., cholera). Various heterogeneous structures such
as heterogeneous spatial distribution of host and/or vector populations,
heterogeneous susceptibility among host age groups, multiple infection
stages in the host population, and multiple host and/or vector popu-
lations can be incorporated. The resulting models, customarily called
multi-patch, multi-group or multi-stage models, may be useful for under-
standing the spatial spread of diseases and identifying optimal control
interventions for diseases with latency in the host and/or in the vector.
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