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1. Introduction

Let W = [wij ] be a nonnegative n× n matrix. Its spectral radius, denoted by ρ(W ),
gives the asymptotic growth rate of any matrix norm of W k (see, for example, [5] and
[7, Section 5.6]). This fact is of wide application in population dynamics. For example, in
a Leslie matrix population model [3, Chapter 2], the spectral radius of the nonnegative
projection matrix W determines whether the population grows or goes to extinction,
depending on whether ρ(W ) > 1 or 0 � ρ(W ) < 1. In an infectious disease model [1,4]
with a nonnegative next-generation matrix W , the spectral radius ρ(W ), called the basic
reproduction number in this content, often determines whether the disease persists or
dies out, depending on whether ρ(W ) > 1 or ρ(W ) < 1. A natural question is how to
reduce or enlarge one or more entries of W so that the controlled matrix Wc (that is
obtained from W by reducing or enlarging those entries of W ) has spectral radius 1. It
turns out that the target reproduction number defined in [11] can be used to measure
the magnitude of this reduction or enlargement.

Suppose that only one entry of W is targeted, say the entry wij for some i, j with
1 � i, j � n. Let A denote the matrix obtained from W by replacing the entry wij by
zero, i.e.,

A = W − PiWPj , (1.1)

where Pi is the n × n projection matrix with the (i, i) entry equal to 1 and all other
entries 0. If ρ(A) < 1, then the target reproduction number Tij [11] is defined as

Tij = wij(I −A)−1
ji , (1.2)

where I is the n × n identity matrix. To exclude trivial situations, we always assume
that ρ(W ) > 0 and that Tij > 0 whenever it is well defined. The following special case
of Theorem 4.4 in [11] gives a relation between ρ(W ) and Tij .

Proposition 1.1. Let W be an n× n nonnegative irreducible matrix such that ρ(A) < 1,
where A is as defined in (1.1). Then either 1 < ρ(W ) < Tij, ρ(W ) = Tij = 1, or
Tij < ρ(W ) < 1.

The next result, a special case of Theorem 2.2 in [11], shows how Tij can be used to
modify wij to find the controlled matrix Wc whose spectral radius equals 1.

Proposition 1.2. Let W be an n× n nonnegative irreducible matrix such that ρ(A) < 1,
where A is as defined in (1.1). If Wc is the controlled matrix obtained from W by replacing
wij by wij/Tij, then ρ(Wc) = 1.

Example 1. Suppose W =
[ 0.5 0.7

0.7 0.5

]
; then det(λI − W ) = (λ + 0.2)(λ − 1.2), and

thus ρ(W ) = 1.2. In this case, it follows from (1.2) that T11 = 0.5
[ 1 −0.7 ]−1 =
−0.7 1−0.5 11
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[ 0.5 0.7

0.7 1

]
11 = 25. If we let Wc =

[ 0.5/25 0.7
0.7 0.5

]
, we find that det(λI − Wc) = (λ − 1)×

(λ + 0.48); so ρ(WC) = 1, in accordance with Proposition 1.2.

Several applications of target reproduction numbers Tij to infectious disease control
problems have been considered in [11]. New results concerning such applications will be
described in Section 5.

It turns out that the numbers Tij also have a combinatorial interpretation. To describe
this we need to introduce some definitions and notation from graph theory.

If W = [wij ] is any n × n nonnegative matrix, let D = D(W ) = (V (D), Γ (D))
denote the associated weighted digraph with vertex set V (D) = {1, 2, . . . , n} and arc
set Γ (D) = {ij: wji > 0}. If ij ∈ Γ , then the arc ij (from vertex i to vertex j)
has weight wji. Following [2, p. 65], we use wji for the weight of ij instead of wij for
convenience in applications. If wii > 0, then the arc ii exists and is called the loop at
vertex i. A digraph H is a subdigraph of D if V (H) ⊆ V (D), Γ (H) ⊆ Γ (D), and every
arc ij in Γ (H) has weight wji. If V (H) = V (D), then H is a spanning subdigraph of D.
The weight w(H) of any subdigraph H is the product of the weights of the arcs in H
with the understanding that an empty product equals 1 (when H has no arcs). A walk
Faz in D from vertex a to vertex z is an alternating sequence of vertices and arcs of the
form a, ab, b, bc, . . . , yz, z; if a = z then the walk is closed. A trivial walk consists of a
single vertex and no arcs. See [13] for additional graph-theoretic definitions.

We are now ready to describe the combinatorial interpretation of Tij .

Theorem 1.3. Let W be an n × n nonnegative irreducible matrix such that ρ(A) < 1,
where A is as defined in (1.1). Then

Tij =
∑
Q

w(Q), (1.3)

where the sum is over all closed walks Q from i to i in D = D(W ) that contain the arc
ji (of weight wij) exactly once and the unique occurrence of ji is as the last arc of the
walk.

Proof. Since ρ(A) < 1, definition (1.2) can be rewritten as

Tij = wij

(
I + A + A2 + · · ·

)
ji
. (1.4)

It is not difficult to see [11, Section 3.2] that the ji entry of I +A+A2 + · · · enumerates
the weighted walks F̃ij in D from i to j that do not contain the arc ji (of weight wij).
Thus,

Tij = wij f̃ij , (1.5)

with
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f̃ij =
∑
F̃ij

w(F̃ij), (1.6)

where the sum is over all weighted walks F̃ij just defined (i.e., all weighted walks in D
from i to j that do not contain the arc ji). When the arc ji and the vertex i are added
at the end of such walks and their weight is multiplied by the weight wij , expression
(1.3) results. �

Notice that if Z = I − A, then the relation between its inverse and adjoint implies
that (1.2) can be rewritten as

Tij = (−1)i+jwij
detZ(i|j)

detZ , (1.7)

where Z(i|j) denotes the matrix obtained from Z by deleting the i-th row and the j-th
column. Relations (1.3) and (1.7) imply the following result.

Corollary 1.4. Let W be an n × n nonnegative irreducible matrix such that ρ(A) < 1,
where A is as defined in (1.1), and let Z = I −A. Then

∑
Q

w(Q) = (−1)i+jwij
detZ(i|j)

detZ , (1.8)

where the sum is over all closed walks Q in D = D(W ) that contain the arc ji

(of weight wij) exactly once and the unique occurrence of ji is as the last arc of the
walk.

Our object is to extend relation (1.8) in certain ways. We begin in Section 2 by ex-
pressing some determinants as sums of the weights of subdigraphs of a weighted digraph
D associated with a more general version of the matrix W . Our approach involves combi-
natorial interpretations and does not make any use of the result involving the inverse and
adjoint of a matrix; nor does it require any considerations of convergence. In Section 3,
we prove an identity involving the sum of the weighted walks between two vertices in a
digraph. In Section 4, we give a new expression for Tij in terms of cycles (cycle-unions
as defined in Section 2). Finally, in Section 5, we use the relations established to give
results applicable to disease control strategies in models of infectious disease dynamics.

2. Some determinant and cofactor expansions

In this and the next section, we consider the entries wij in the n×n matrix W = [wij ]
as formal variables. So, in particular, a statement of equality between two generating
functions involving sums of (finite) products of variables wij (plus, perhaps, a constant
term) simply means that any particular product of m variables wij has the same (finite)
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coefficient in each of the generating functions, for m = 0, 1, 2, . . . . See, e.g., Tutte [12]
for an exposition of the calculus of operations on formal power series.

Brualdi and Cvetković [2, Chapter 4] give a non-traditional graph-theoretic approach
to the elementary theory of determinants. In this section we formulate some basic deter-
minant expansions in terms of sums of the weights of certain subdigraphs of a digraph.
We use these expansions in the subsequent sections to derive our main results. First we
give some additional definitions.

A cycle-union of the digraph D associated with the matrix W = [wij ], is a spanning
subdigraph U such that each component of U is either a cycle or an isolated vertex.
A linear subdigraph L of D is a cycle-union with no isolated vertices; that is, every
vertex of L has indegree and outdegree 1. Let c(U) and c(L) denote the number of cycles
in such digraphs. We now give the Harary–Coates formulation of the definition of the
determinant detW of the matrix W (see [2, p. 65]).

Proposition 2.1.

detW = (−1)n
∑
L

(−1)c(L)w(L),

where the sum is over all linear subdigraphs L of D(W ).

From this we can deduce an expression for the determinant of the matrix Y = I−W .

Proposition 2.2.

detY = det(I −W ) =
∑
U

(−1)c(U)w(U), (2.1)

where the sum is over all cycle-unions U of D(W ).

Proof. It follows from Proposition 2.1 that

det(−W ) = (−1)n detW =
∑
L

(−1)c(L)w(L).

To obtain the expansion of detY from this, replace each factor wii �= 0 that occurs
in any term w(L) by 1 − wii and then multiply out the resulting products. Choosing
the −wii term from each such factor gives the terms in the expansion of det(−W ). But
each time the 1 is chosen instead of the −wii, the loop at vertex i is removed, in effect,
and L is converted into a cycle-union U with the weight function and exponent of −1
adjusted accordingly. (Notice that the cycle-union with no arcs contributes a term of 1
to detY .) �

Following [2, pp. 77, 103], we define a 1-connection of i to j in any weighted digraph
to be a spanning subdigraph Eij with the following properties: it contains a path from i
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to j (of length 0 if i = j) and a (possibly empty) collection of c(Eij) cycles such that the
path and cycles collectively are vertex disjoint.

Let K denote the n-vertex digraph in which there is an arc ij of weight yji = δji−wji

for 1 � i, j � n; and if H is any subdigraph of K, let y(H) denote the product of the
weights yji of the arcs ij in H (with the usual convention for empty products). Finally,
if M is any n × n matrix, let M(a, . . . |b, . . .) denote the matrix obtained from M by
deleting rows a, . . . and columns b, . . . from M .

The following result [2, pp. 77, 105] contains an alternate formulation of the usual
definition of cofactors in the expansion of a determinant. We adopt the convention that
Y (1|1) = 1 when n = 1.

Proposition 2.3. Let the cofactors Cij of entries yij in the expansion of the determinant
of the matrix Y = I −W = [yij ] be defined by the relations

detY =
n∑

j=1
yijCij =

n∑
i=1

yijCij , (2.2)

for i = 1, 2, . . . , n in the first sum and for j = 1, 2, . . . , n in the second. Then

Cij = (−1)i+j detY (i|j) = (−1)n
∑
Eij

(−1)1+c(Eij)y(Eij), (2.3)

where the sum is over all 1-connections Eij of i to j in K.

Proposition 2.4. Let Y = I −W .

(i) If i �= j, then

yijCij =
∑
Uij

(−1)c(Uij)w(Uij) (2.4)

where the sum is over all cycle-unions Uij of D(W ) that contain the arc ji.
(ii) If i = j, then

yiiCii = (1 − wii)
∑
U ′

(−1)c(U
′)w

(
U ′), (2.5)

where the sum is over all cycle-unions U ′ of the digraph associated with W (i|i).

Proof. Relation (2.4) follows readily upon comparing terms containing wij in Proposi-
tion 2.2 and in (2.2). Relation (2.5) follows from the definition of yii and the expansion
obtained by replacing detY by Cii in Proposition 2.2. �

Expanding detY along its n-th row and then expanding each factor detY (n|j) that
arises in this expansion along its last column gives the following result.
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Lemma 2.5. Let Y = I −W . If n � 2, then

detY = ynn detY (n|n) −
n−1∑
i,j=1

winwnj(−1)i+j detY (i, n|j, n). (2.6)

Also expanding detY (n|n − 1) along its last column (which is now its (n − 1)-st
column) leads to another result.

Lemma 2.6. Let Y = I −W . If n � 2, then

detY (n|n− 1) =
n−1∑
i=1

win(−1)n+i detY (i, n|n− 1, n). (2.7)

There are, of course, more general versions of expansions (2.6) and (2.7); we have
given only the expansions we use explicitly in the next section.

3. An identity involving the weights of walks in a digraph

For 1 � i, j � n, let the generating function fij be defined as follows:

fij =
∑
Fij

w(Fij),

where the sum is over all walks Fij from i to j in the digraph D = D(W ) associated with
the n × n matrix W . We now show, by induction on n, that fij satisfies the following
relation.

Theorem 3.1. If 1 � i, j � n, then

fij detY = Cij = (−1)i+j detY (i|j), (3.1)

where Y = I −W = [yij ] and Cij is the cofactor of yij in detY .

Proof. If i = j = n = 1, then

f11 detY = (1 − w11)
(
1 + w11 + w2

11 + · · ·
)

= 1 = C11,

in view of our convention about C11 when n = 1; so (3.1) holds when n = 1.
We may suppose that n � 2 and that the analogue of relation (3.1) holds for all square

matrices with n − 1 rows and columns. There are essentially two cases to consider for
the proof of (3.1); namely, when i = j and when i �= j. For notational convenience we
treat only the cases when i = j = n and when i = j + 1 = n; the remaining cases follow
by symmetry.
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If 1 � i, j � n − 1, let f ′
ij be defined as fij except that now the walks F ′

ij are re-
stricted to walks on the subdigraph D′ associated with the matrix W (n|n). Our induction
hypothesis gives

f ′
ij detY (n|n) = (−1)i+j detY (i, n|j, n) (3.2)

for 1 � i, j � n− 1.
Case 1: i = j = n. We assert that fnn satisfies the recurrence relation

fnn = 1 + wnnfnn +
n−1∑
i,j=1

winf
′
ijwnjfnn. (3.3)

The 1 records the weight of the trivial walk consisting of vertex n and no arcs. The term
wnnfnn records the weights of the walks that starts at n, proceed along the loop (of
weight wnn) back to n and may or may not proceed along another walk that eventually
stops at n. The term winf

′
ijwnjfnn records the weights of the walks that immediately

leave n by arc ni, of weight win, to some vertex i in D′, continue along a walk in D′ to
some vertex j, from which they leave D′ along the arc jn, of weight wnj , and return to n

for the first time; these walks may or may not continue until they return to n for the last
time. Combining all these possibilities, the contribution of all walks starting and ending
at n are included, as required.

Appealing successively to expansion (2.6), the induction hypothesis (3.2), and relation
(3.3), we find that

fnn detY = fnn

(
(1 − wnn) detY (n|n) −

n−1∑
i,j=1

winwnj(−1)i+j detY (i, n|j, n)
)

= detY (n|n)fnn

(
1 − wnn −

n−1∑
i,j=1

winf
′
ijwnj

)
= detY (n|n), (3.4)

as required.
Case 2: i = j + 1 = n. We assert that when n � 2, fn,n−1 satisfies the recurrence

relation

fn,n−1 = fnn

n−1∑
i=1

winf
′
i,n−1. (3.5)

Any walk from n to n−1 starts with a (possibly trivial) walk starting at n and continuing
until it returns to n for the last time; this accounts for the factor fnn in (3.5). The walk
then leaves n along some arc ni, of weight win, to a vertex i in D′; it then proceeds along
some walk in D′ until it reaches n−1 for the last time; the sum records the contributions
of this latter part of the walk.
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Relation (3.5), conclusion (3.4), the induction hypothesis (3.2) for f ′
i,n−1, and expres-

sion (2.7) imply that

fn,n−1 detY = detY fnn

n−1∑
i=1

winf
′
i,n−1

=
n−1∑
i=1

win detY (n|n)f ′
i,n−1

=
n−1∑
i=1

win(−1)i+n−1 detY (i, n|n− 1, n)

= (−1) detY (n|n− 1) = (−1)2n−1 detY (n|n− 1),

as required. This suffices to prove relation (3.1) in view of the earlier remarks. �
Appealing to (2.3) and Proposition 2.2, we can rewrite relation (3.1) to give another

expression for the sum of the weights of all walks from i to j in D(W ).

Corollary 3.2. If 1 � i, j � n, then

fij =
∑
Fij

w(Fij) =
(−1)n

∑
Eij

(−1)1+c(Eij)y(Eij)∑
U (−1)c(U)w(U)

, (3.6)

where, as before, the sums are over all walks Fij from i to j in D(W ), all 1-connections
Eij of i to j in digraph K as defined in Section 2, and all cycle-unions in D(W ), respec-
tively.

We remark that the quotient of the two formal power series is well-defined since the
series in the denominator has a non-zero constant term, namely, 1; see, e.g., [12, p. 118].

4. A new expression for Tij

We now specialize the preceding results to obtain an expression for f̃ij defined in (1.6)
as the sum of the weights of the walks from i to j in D that do not contain the arc ji.
To accomplish this, let A denote, as before, the matrix obtained from W by replacing
wij by zero as in (1.1), and let Z = I −A. Then it follows from (1.6) and Corollary 3.2
that

f̃ij = (−1)i+j detZ(i|j)
detZ =

(−1)n
∑

Eij
(−1)1+c(Eij)z(Eij)∑

Vij
(−1)c(Vij)w(Vij)

, (4.1)

where the sums are over all 1-connections Eij of i to j in K and all cycle-unions Vij of
D(W ) that do not contain the arc ji.



J.W. Moon et al. / Linear Algebra and its Applications 451 (2014) 182–196 191
The following result provides a new expression for the target reproduction number
Tij in terms of cycle-unions.

Theorem 4.1. Let W be an n× n nonnegative irreducible matrix. For 1 � i, j � n,

Tij = wij f̃ij = wij(−1)i+j detZ(i|j)
detZ =

∑
Uij

(−1)1+c(Uij)w(Uij)∑
Vij

(−1)c(Vij)w(Vij)
, (4.2)

where the sums are over all cycle-unions Uij and Vij of D(W ) that do and do not contain
the arc ji, respectively.

Proof. The first two expressions for Tij are (1.5) and (1.7). The last expression follows
from (4.1), (2.1), (2.3), and expansions (2.4) and (2.5). Note that when i = j, the factor
yii is replaced by wii in (2.5), and that if U ′ is a cycle-union of the digraph associated
with W (i|i), then

wii(−1)c(U
′)w

(
U ′) = (−1)c(Uii)−1w(Uii) = (−1)1+c(Uii)w(Uii),

where Uii is the cycle-union of D(W ) obtained by adding the loop ii to U ′ and c(Uii) =
1 + c(U ′). �
Example 2. Let W =

[w11 w12
w21 w22

]
, and D(W ) be the associated weighted digraph. There

are five cycle-unions in D(W ), and their weights are 1, w11, w22, w12w21, and w11w22,
respectively. Theorem 4.1 determines whether the weight of a cycle-union appears in
the denominator or numerator of the expression for Tij , and the number of cycles in
the cycle-union determines the sign. For instance, T11 = w11−w11w22

1−w22−w12w21
, and T12 = T21 =

w12w21
1−w11−w22+w11w22

. If we apply the formula for T11 to the matrix W =
[ 0.5 0.7

0.7 0.5

]
considered

in Example 1 (Section 1), we find that T11 = 0.25/0.01 = 25. This agrees with the value
we obtained in Example 1, but here we did not have to calculate the inverse of a matrix.

Although T12 = T21 in Example 2, in general Tij does not equal Tji; see, e.g., [11,
Section 5.3]. In the following we discuss the cases in which Tij = Tji.

It follows from Proposition 2.2 that

det(I −W ) =
∑
Uij

(−1)c(Uij)w(Uij) +
∑
Vij

(−1)c(Vij)w(Vij), (4.3)

where the sums are over all cycle-unions Uij and Vij of D(W ) that do and do not contain
the arc ji. Thus, for the fraction in the last term of (4.2), the denominator minus the
numerator always equals det(I − W ), which is independent of the choices of i and j.
Using this fact, we are able to establish the following criterion for the equality of the
target reproduction numbers Tij and Tji.
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Theorem 4.2. Let W be an n×n nonnegative irreducible matrix such that det(I−W ) �= 0.
Then Tij = Tji if and only if

∑
Ũij

(−1)c(Ũij)w(Ũij) =
∑
Ũji

(−1)c(Ũji)w(Ũji), (4.4)

where the sums are over all cycle-unions Ũij and Ũji of D(W ) that contain arc ji but
not arc ij and that contain arc ij but not arc ji, respectively.

Proof. For convenience let λij =
∑

Ũij
(−1)c(Ũij)w(Ũij) and λji =

∑
Ũji

(−1)c(Ũji)w(Ũji),
where the sums are over cycle-unions as given for (4.4). Also let λ =

∑
Ũ (−1)c(Ũ)w(Ũ)

and λ̂ =
∑

Û (−1)c(Û)w(Û), where the sums are over all cycle-unions Ũ that contain both
arcs ij and ji, and cycle-unions Û that contain neither arc ij nor ji. It follows from
Theorem 4.1 that

Tij = −λ− λij

λ̂ + λji

and Tji = −λ− λji

λ̂ + λij

. (4.5)

Hence Tij = Tji if and only if −λ−λij

λ̂+λji
= −λ−λji

λ̂+λij
if and only if (λij−λji)(λ+λ̂+λij+λji) =

(λij −λji) det(I−W ) = 0, where (4.3) is used in the last equality. Since det(I−W ) �= 0,
it follows that Tij = Tji if and only if λij = λji, as required. �

We remark that the assumption det(I−W ) �= 0 is not required for the “if” statement
in Theorem 4.2. That is, if (4.4) holds, then Tij = Tji holds by (4.5).

Cycle C′ in a digraph D is the reverse of cycle C if cycle C′ passes through the same
vertices as cycle C but in the reverse order. A weighted digraph D is cycle-balanced (e.g.,
see [9] or [11]1) if for every cycle C of D, the reverse cycle C′ exists and w(C) = w(C′).
The following result, which is a consequence of Theorem 4.2, first appeared in [11, The-
orem 4.1] as a special case of Theorem 4.2 in [11].

Theorem 4.3. Let W be an n × n nonnegative irreducible matrix. If D(W ) is cycle-
balanced, then Tij = Tji for all 1 � i, j � n.

Proof. Since D(W ) is cycle-balanced, for every cycle-union Ũij on the left-hand side of
(4.4), its reverse Ũji appears on the right-hand side of (4.4) and has the same weight
as Ũij . Thus (4.4) holds for all i, j, which implies Tij = Tji, following the remark after
Theorem 4.2. �

Notice that if a weighed digraph contains only cycles of lengths 1 or 2, then it is
cycle-balanced. As a special case, any weighted digraph consisting of 2 vertices is cycle-
balanced, and thus T12 = T21 holds in Example 2.

1 A cycle-balanced digraph is also called weight-balanced in [11].
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It has been asked2 whether the converse of Theorem 4.3 holds. It can be verified,
using Theorem 4.2, that the converse of Theorem 4.3 holds for n = 3, but the general
case for n � 4 remains open.

5. Application to infectious disease control

Consider a heterogeneous population model (formulated as a system of ordinary differ-
ential equations) where the individuals are subdivided into n epidemiologically different
infected host types. The n × n nonnegative next-generation matrix W = [wij ] repre-
sents the transmission and spread of the infection from one generation to the next [4].
The entry wij of W is defined as the expected number of new cases that an infected
individual of type j causes among the susceptible individuals of type i. As mentioned
earlier, the spectral radius often determines whether the disease persists or dies out. The
control strategy mentioned in Section 1 targets only a single entry wij in the matrix W

and considers the effect of reducing the transmission of disease from infected individuals
of type j to susceptible individuals of type i; and the target reproduction number Tij

defined in (1.2) gives a measure of the amount of reduction to ensure the disease would
eventually die out (as a result of this particular reduction).

More general control strategies might simultaneously target several entries of W for
reduction. For example, vaccinating susceptible individuals of host type i might reduce
all the entries in the i-th row of W ; or medical treatment to reduce the infectiousness of
infected individuals of host type i could reduce all the entries of the i-th column of W .
Target reproduction numbers Ti∗ and T∗i for such strategies may be defined as follows
(see [6,10,11]). In particular, Ti∗ is also called the type reproduction number in [6,10].

If B denotes the matrix obtained from W by replacing all entries wij in the i-th row
of W by zero, let

Ti∗ =
n∑

j=1
wij(I −B)−1

ji . (5.1)

And if D denotes the matrix obtained from W by replacing all entries wji in the i-th
column of W by zero, let

T∗i =
n∑

j=1
wji(I −D)−1

ij . (5.2)

The usefulness of these quantities arises from the following result, a special case of
Theorem 2.2 in [11].

Proposition 5.1. Let W be an n×n nonnegative irreducible matrix. Assume that ρ(B) < 1
and ρ(D) < 1, where B and D are as defined above. If Wc denotes the matrix obtained

2 Yuan Lou, private communication.
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from W by (a) replacing wij by wij/Ti∗ for 1 � j � n or (b) replacing wji by wji/T∗i
for 1 � j � n, then ρ(Wc) = 1.

Biologically, if (a) a proportion more than 1 − 1/Ti∗ of the population of type i can
be effectively vaccinated or (b) the infectiousness of infected individuals of host type i

can be reduced to a proportion less than 1/T∗i, then the disease can be eradicated from
all host populations.

It follows readily from definitions (5.1) and (5.2) that Ti∗ and T∗i, respectively, are
the sums of the weights of the non-trivial closed walks in D(W ) that start and end at
vertex i and that contain (a) exactly one arc ending at vertex i or (b) exactly one arc
starting at vertex i. Note that a non-trivial walk starting and ending at vertex i contains
a unique arc ending at i if and only if it contains a unique arc starting at i. It follows
that

Ti∗ = T∗i =
∑
Qi

w(Qi), (5.3)

where the sum is over all walks Qi in D(W ) that start at vertex i and terminate at vertex
i the first time the walk returns to vertex i. Since there is equality in (5.3), we define
Ti = Ti∗ = T∗i. Biologically, relation (5.3) indicates that in order to eradicate the disease
from all host populations, the same proportion of transmission reduction is needed when
vaccinating susceptible individuals of one type host population or when treating (using
medicine, etc.) infectious individuals of the same type host population.

We now derive expressions for this sum based on its combinatorial interpretation.

Theorem 5.2. Let Y = I − W = [yij ], where W = [wij ] is an n × n matrix of formal
variables wij. Let

Ti =
∑
Qi

w(Qi),

where the sum is over all walks Qi in D(W ) of the type defined above with respect to
some given i, 1 � i � n. Then

Ti = Cii − detY
Cii

= 1
Cii

n∑
j=1

Cijwij = 1
Cii

n∑
j=1

wjiCji, (5.4)

where Cij denotes the cofactor of yij in detY .

Proof. In Section 3, fii is defined to be the sum of all closed walks in D(W ) starting and
ending at vertex i, with no restriction on the number of times the walk visits vertex i.
Recall that fii includes the contribution of the trivial walk of weight one that consists of
vertex i itself and no arcs. Every non-trivial walk enumerated by fii contains an initial
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portion that starts at vertex i and continues until it returns to vertex i for the first time;
there may be an additional portion that continues on from vertex i and may return to
vertex i more times before returning to vertex i for the last time. It follows from this
observation that

fii = 1 + Tifii. (5.5)

(See [8, p. 74] for another application of this relation to stochastic walks on a lattice.)
From Theorem 3.1,

fii detY = Cii. (5.6)

The first part of relation (5.4) follows immediately from (5.5) and (5.6). The last two
parts follow from the cofactor expansions of detY along its i-th row or its i-th column,
respectively, bearing in mind that yii = 1 − wii. �

We remark that wijCij/Cii and wjiCji/Cii enumerate the contributions to Ti∗ and
T∗i of those walks Qi in which ji is the unique arc with i as its terminal vertex and those
in which ij is the unique arc with i as its initial vertex.

Theorem 5.3. Let W be an n× n nonnegative irreducible matrix. For 1 � i � n,

Ti =
∑

Ui
(−1)1+c(Ui)w(Ui)∑

V′
i
(−1)c(V′

i)w(V ′
i)

, (5.7)

where the sums are over all cycle-unions Ui of D(W ) in which vertex i is not an isolated
vertex and all cycle-unions V ′

i of the digraph associated with W (i|i).

Proof. The expression in the denominator follows upon applying Proposition 2.2 to the
cofactor Cii in (5.4). The expression in the numerator follows upon applying Proposi-
tion 2.4 to the terms in the first sum in (5.4), bearing in mind that yij = −wij when
i �= j. �

Note that the vertex i occurs in a cycle of each cycle-union in the numerator in (5.7)
but does not occur in any of the cycle-unions in the denominator.
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