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Abstract A mathematical model for cholera is formulated that incorporates hyper-
infectivity and temporary immunity using distributed delays. The basic reproduction
number R0 is defined and proved to give a sharp threshold that determines whether
or not the disease dies out. The case of constant temporary immunity is further con-
sidered with two different infectivity kernels. Numerical simulations are carried out
to show that when R0 > 1, the unique endemic equilibrium can lose its stability
and oscillations occur. Using cholera data from the literature, the quantitative effects
of hyperinfectivity and temporary immunity on oscillations are investigated numeri-
cally.

Keywords Cholera · Hyperinfectivity · Temporary immunity · Distributed delay ·
Oscillation

1 Introduction

Recent severe cholera outbreaks in Haiti (Bertuzzo et al. 2011; Chao et al. 2011;
Enserink 2010; Tuite et al. 2011), Zimbabwe (Koenig 2009; Mukandavire et al. 2011;
WHO 2008), and Angola (WHO 2007), together with the endemicity of the disease in
parts of Africa and Asia (Bhattacharya et al. 2009; Waldor et al. 2010), highlight the
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continuing relevance of cholera for public health. John Snow (1854) demonstrated
that the consumption of contaminated water causes cholera outbreaks. Cholera is
a bacterial disease caused by the bacterium Vibrio cholerae, which is an aquatic
organism with a resulting waterborne transmission route for cholera, as discovered
by Filippo Pacini and later Robert Koch. However, other transmission pathways for
cholera exist: direct person–person transmission has been documented in a psychi-
atric hospital (Goh et al. 1990), and household members of cholera patients are at
increased risk of infection (Oseasohn et al. 1966; Tamayo et al. 1965; Weil et al.
2009), perhaps reflecting food preparation by infected individuals (Holmberg et al.
1984) or contamination of household water storage containers (Swerdlow et al. 1992).
Pathways where the pathogen can persist only for a short period of time outside
of human hosts can be grouped as “direct” transmission, while pathways where the
pathogen is long-lived are considered “indirect” or “delayed” transmission (Tien and
Earn 2010). Furthermore, the infectivity of V. cholerae has been shown to depend
upon how long ago the pathogen was shed (Alam et al. 2005; Merrell et al. 2002;
Sengupta et al. 1998). This “hyper-infectivity” of freshly shed cholera bacteria has
been suggested to play an important role in cholera dynamics (Hartley et al. 2006;
Pascual et al. 2006).

The primary symptom of cholera is diarrhea, which can be extremely severe, lead-
ing to rapid death due to dehydration if left untreated. Some measure of infection-
derived immunity is gained upon recovery. Challenge–rechallenge experiments sug-
gest immunity on the order of 3 or more years (Levine et al. 1981). This is in contrast
to more recent modeling work suggesting that mild cases may be associated with
short-lived immunity on the order of weeks to months, which can significantly im-
pact the time course of the disease (King et al. 2008).

Mathematical models have been proposed to understand the multiple transmis-
sion pathways and to control the spread of cholera; see, for example, Andrews and
Basu (2011), Bertuzzo et al. (2011), Capasso and Paveri-Fontana (1979), Chao et al.
(2011), Codeço (2001), Eisenberg et al. (2002), Hartley et al. (2006), Joh et al.
(2009), King et al. (2008), Mukandavire et al. (2011), Sanches et al. (2011), Shuai
and van den Driessche (2011), Tian et al. (2010), Tian and Wang (2011), Tien and
Earn (2010) and Tuite et al. (2011). Differential infectivity can be incorporated into
mathematical models by categorizing the pathogen into discrete infectious states ac-
cording to their infectivity, e.g., hyper and lower infectious states (Hartley et al. 2006)
or multiple infectious states (Shuai and van den Driessche 2011). The resulting mod-
els are ordinary differential equations (ODE) and their global dynamics have been
completely established in Shuai and van den Driessche (2011). The effect of tempo-
rary immunity on cholera transmission has been previously studied in Sanches et al.
(2011), where immunity is assumed to be lost exponentially, resulting in an ODE
model.

In this paper, we formulate a cholera model that incorporates both temporary im-
munity and differential infectivity (where infectivity varies with the time since the
pathogen was shed). Both immunity and infectivity are modeled using arbitrary ker-
nel functions. The resulting model with two arbitrary distributed delays is formulated
in Sect. 2 and analyzed in Sects. 3 and 4. In particular, the basic reproduction number

R0 is defined and proved to be a threshold parameter. If R0 ≤ 1, then the disease dies
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out; otherwise, there exists a unique endemic equilibrium. In Sect. 5, numerical sim-
ulations with two different infectivity kernels show that the stability of the endemic
equilibrium depends upon the temporary immunity kernel; when the endemic equi-
librium is unstable, oscillations may occur due to bifurcations. The infectivity kernel
affects both the parameter sets that support periodic orbits, as well as the amplitude
of the orbits where they exist. A summary and discussion of results is given in Sect. 6.

2 Model Formulation

Let S(t), I (t),R(t) be the numbers of individuals at time t in the susceptible, in-
fectious, and recovered compartments, respectively, with the total population N(t) =
S(t) + I (t) + R(t). Suppose that Λ > 0 denotes the constant recruitment, m > 0
denotes the natural mortality rate, and α ≥ 0 denotes the mortality rate due to the
disease. The rate of change of N(t) is

N ′(t) = Λ − mN(t) − αI (t), (1)

where ′ represents the derivative with respect to time t . Susceptible individuals can
be infected by contacting infectious individuals (direct transmission) or by drink-
ing contaminated water in which pathogen is shed by infectious individuals (indirect
transmission), and both direct and indirect transmission are modeled by mass ac-
tion incidence with transmission coefficients β,λ ≥ 0, respectively. Assume that the
shedding rate ξ ≥ 0 represents the average number of pathogen contributed per infec-
tious individual and that the removal rate of the pathogen in the contaminated water
is denoted by η > 0. Let f (t) ≥ 0, not identically zero, measure the infectivity of
pathogen that was shed into the water t time units ago. Assume that f (t) is piecewise
continuous on any finite interval and of exponential order η at infinity. The incidence
function thus takes the form

βS(t)I (t) + λS(t)

∫ t

0
ξI (r)e−η(t−r)f (t − r) dr.

Note that Pascual et al. (2006) suggest that a hyperinfective stage can be replaced by
human–human transmission, but our model includes both these aspects through the
terms f (t) and βS(t)I (t). Let 1/γ , γ > 0, be the average infectious period, then the
rate of change of I (t) is

I ′(t) = βS(t)I (t) + λξS(t)

∫ t

0
I (r)e−η(t−r)f (t − r) dr − (m + γ + α)I (t). (2)

Let P(t) denote the fraction of individuals remaining in the recovered compartment
t time units after becoming recovered. It is assumed that P(t) ≥ 0 is nonincreasing,
piecewise continuous and satisfies P(0+) = 1,P (∞) = 0, and

∫ ∞
0 P(t) dt is finite.

Thus, the number in the recovered compartment is

R(t) =
∫ t

0
γ I (r)e−m(t−r)P (t − r) dr. (3)
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Table 1 Variables and parameters with units in system (5)

S number of susceptible individuals individual

I number of infectious individuals individual

R number of recovered individuals individual

Λ recruitment individual day−1

m natural mortality rate day−1

α cholera-induced mortality rate day−1

1/γ average infectious period day

ξ pathogen shedding rate pathogen individual−1 day−1

η pathogen removal rate day−1

β direct transmission coefficient individual−1 day−1

λ indirect transmission coefficient pathogen−1 day−1

Differentiating gives

R′(t) = γ I (t) − mR(t) + γ

∫ t

0
I (r)e−m(t−r)dtP (t − r) dr, (4)

where the integral is in the Riemann–Stieltjes sense and dtP (t − r) = d
dt

P (t − r)

whenever the derivative exists. It can be verified that R(t) given in (3) is the unique
solution of (4) with the initial condition R(0) = 0. Substituting (1), (2), (4) into
S′(t) = N ′(t)−I ′(t)−R′(t) gives an equation for S′(t). Therefore, the cholera model
can be written as a system with two distributed delays:

S′(t) = Λ − mS(t) − βS(t)I (t) − λξS(t)

∫ t

0
I (r)e−η(t−r)f (t − r) dr

− γ

∫ t

0
I (r)e−m(t−r)dtP (t − r) dr,

(5)

I ′(t) = βS(t)I (t) + λξS(t)

∫ t

0
I (r)e−η(t−r)f (t − r) dr − (m + γ + α)I (t),

R′(t) = γ I (t) − mR(t) + γ

∫ t

0
I (r)e−m(t−r)dtP (t − r) dr,

with nonnegative initial conditions S(0), I (0),R(0). Table 1 summarizes the model
variables and parameters. Model (5) includes as special cases several epidemic mod-
els in the literature; see Sects. 4 and 5 for detailed discussions. Note that our model
assumes mass action incidence and thus neglects saturation effects, so does not con-
tain the models in Codeço (2001) and Hartley et al. (2006) as special cases.

The existence, uniqueness, and continuity of solutions of system (5) follow from
the standard theory of Volterra integro-differential equations; see (Miller 1971,
p. 338). The first equation of (5) leads to S′(t) ≥ 0 whenever S(t) = 0 and I (r) ≥ 0
for all 0 ≤ r ≤ t , and thus S(t) ≥ 0 for all t ≥ 0. Similarly, the second equation of
(5) yields I (t) ≥ 0 for all t ≥ 0. The nonnegativity of R(t) follows from the expres-
sion (3). It follows from (1) that N ′(t) ≤ Λ−mN(t), and thus lim supt→∞ N(t) ≤ Λ

m
.
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Therefore, the feasible region

Γ =
{
(S, I,R) ∈ R

3
∣∣∣ S, I,R ≥ 0, S + I + R ≤ Λ

m

}

is positively invariant with respect to (5).

3 Model Analysis

The model (5) always has a disease-free equilibrium (DFE) P0 = (S0,0,0) in Γ ,
where S0 = Λ

m
. Let

F =
∫ ∞

0
e−ηrf (r) dr, (6)

which is finite following the assumptions on f (t). Motivated by the studies on
cholera models (Shuai and van den Driessche 2011; Tien and Earn 2010) and
epidemic models with arbitrary distributed delay (van den Driessche et al. 2007;
van den Driessche and Zou 2007), define the basic reproduction number as

R0 = β + λξF

m + γ + α
S0, (7)

which completely determines the stability of the DFE, as shown in Theorem 3.1 be-
low. Here, 1/(m + γ + α) is the average time in the infectious compartment taking
death into account. The first term in R0, namely, βS0/(m + γ + α), represents the
contribution from direct transmission, and the second term represents that from indi-
rect transmission through the water.

Theorem 3.1 The following results hold for (5).

(1) If R0 ≤ 1, then the DFE is globally asymptotically stable in Γ .
(2) If R0 > 1, then the DFE is unstable.

Proof Since the variable R(t) does not appear in the first two equations of (5), it is
sufficient to study the dynamical behavior of the reduced system consisting of the
equations of S(t) and I (t). Following Li et al. (2010) and McCluskey (2009, 2010),
let

L = S − S0 − S0 ln
S

S0
+ I + λξS0

∫ t

0
I (t − r)F (r) dr,

where

F(t) =
∫ ∞

t

e−ηrf (r) dr, (8)

with F(0) = F . It can be easily verified that L ≥ 0 with equality holding iff S = S0
and I (r) = 0 for all 0 ≤ r ≤ t . Differentiating L along (5) gives

L′ = L′|(5) = Λ − mS − γ

∫ t

0
I (r)e−m(t−r)dtP (t − r) dr − Λ

S0

S
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+ mS0 + βS0I + λξS0

∫ t

0
I (r)e−η(t−r)f (t − r) dr

+ γ
S0

S

∫ t

0
I (r)e−m(t−r)dtP (t − r) dr − (m + γ + α)I

+ λξS0I (0)F (t) + λξS0

∫ t

0

dI (t − r)

dt
F (r) dr. (9)

It follows from integration by parts that

λξS0

∫ t

0

dI (t − r)

dt
F (r) dr

= λξS0

∫ t

0

(
−dI (t − r)

dr

)
F(r) dr

= −λξS0F(t)I (0) + λξS0FI + λξS0

∫ t

0
I (t − r)

dF (r)

dr
dr

= −λξS0F(t)I (0) + λξS0FI − λξS0

∫ t

0
I (t − r)e−ηrf (r) dr. (10)

Combining (9) and (10), along with the facts that Λ = mS0, S ≤ S0 and P(t) is
nonincreasing, yields

L′ = mS0

(
2 − S

S0
− S0

S

)
+ γ

(
S0

S
− 1

)∫ t

0
I (r)e−m(t−r)dtP (t − r) dr

+ βS0I + λξS0FI − (m + γ + α)I

= mS0

(
2 − S

S0
− S0

S

)
+ γ

(
S0

S
− 1

)∫ t

0
I (r)e−m(t−r)dtP (t − r) dr

+ (R0 − 1)(m + γ + α)I

≤ 0, if R0 ≤ 1. (11)

Since L′ = 0 implies that S = S0, substituting S = S0 into the first equation of (5)
leads to I (t − r) = 0 for all 0 ≤ r ≤ t . Therefore, the largest invariant set where
L′ = 0 is the singleton {P0}. By the LaSalle–Lyapunov theorem (see LaSalle 1976,
Theorem 3.4.7), P0 attracts all solutions of system (5) whose initial conditions satisfy
0 ≤ S(0) + I (0) ≤ Λ

m
. For R0 ≤ 1, the local stability of P0 can be proved by using

a similar argument as in Li et al. (2010, Theorem 3.1). Therefore, P0 is globally
asymptotically stable in Γ provided R0 ≤ 1.

If R0 > 1 and I �= 0, it follows that

(R0 − 1)(m + γ + α)I > 0,

which along with (11) implies that by continuity L′ > 0 in a small enough neighbor-

hood of P0 in the interior of Γ , denoted by
◦
Γ . Therefore, P0 is unstable if R0 > 1. �
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Biologically, Theorem 3.1 implies that if R0 ≤ 1, then the disease dies out even-
tually, irrespective of the initial conditions. In order to further study the dynamical
behavior of (5) when R0 > 1, consider the following limiting system (see Miller
1971, p. 176):

S′(t) = Λ − mS(t) − βS(t)I (t) − λξS(t)

∫ ∞

0
I (t − r)e−ηrf (r) dr

− γ

∫ ∞

0
I (t − r)e−mrdrP (r) dr,

(12)

I ′(t) = βS(t)I (t) + λξS(t)

∫ ∞

0
I (t − r)e−ηrf (r) dr − (m + γ + α)I (t),

R′(t) = γ I (t) − mR(t) + γ

∫ ∞

0
I (t − r)e−mr

r P (r) dr.

Since system (12) consists of functional differential equations with infinite delays,
a certain suitable phase space is required. Assume that there exists 0 < κ < m such
that

∫ ∞
0 f (r)e−(η−κ)r dr < ∞. Define the following Banach space of fading memory

type (e.g., see Atkinson and Haddock 1988)

Cκ =
{
φ ∈ (

(−∞,0],R
) ∣∣ φ(s)eκs is uniformly continuous on (−∞,0],

and sup
s≤0

∣∣φ(s)
∣∣eκs < ∞

}
(13)

with norm ‖φ‖κ = sups≤0 |φ(s)|eκs . For ψ ∈ C(R,R) and t > 0, let ψt ∈ Cκ be such
that ψt(s) = ψ(t + s), s ∈ (−∞,0]. Consider system (12) in the phase space

X = R × Cκ × R. (14)

Let S(0),R(0) ≥ 0 and φ ∈ Cκ be such that φ(s) ≥ 0 for all s ∈ (−∞,0]. The stan-
dard theory of functional differential equations (Hino et al. 1991) yields the existence,
uniqueness, and continuity of solutions (S(t), It ,R(t)) of (12) with initial conditions
(S(0),φ,R(0)), and gives It ∈ Cκ for all t > 0. It can be verified that

Δ =
{(

S, I (·),R) ∈ X

∣∣∣ S,R ≥ 0, I (s) ≥ 0, s ∈ (−∞,0], S + I (0) + R ≤ Λ

m

}

(15)

is positively invariant with respect to system (12). Let
◦
Δ be the interior of Δ.

Define

Q = −
∫ ∞

0
e−mtdtP (t) dt. (16)

Notice that Q = 1 − ∫ ∞
0 me−mtP (t) dt < 1. When R0 > 1, system (12) has a unique

endemic equilibrium (EE) P ∗ = (S∗, I ∗,R∗) in
◦
Δ, found by solving (12) at a station-

ary state with I ∗ > 0.
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Theorem 3.2 If R0 > 1, then for system (12) there exists a unique endemic equi-

librium P ∗ = (S∗, I ∗,R∗) in
◦
Δ, where S∗ = S0

R0
, I ∗ = mS0(1− 1

R0
)

m+α+γ (1−Q)
> 0, and

R∗ = 1−Q
m

γ I ∗.

The stability of the EE depends on the distribution P(t). For example, when P(t)

is a negative exponential, that is, P(t) = e−σ t with σ > 0, giving 1/σ as the average
time of temporary immunity, the EE is always locally asymptotically stable as long
as it exists (see Theorem 4.1 below). However, when P(t) is a step function, the EE
can become unstable and Hopf bifurcation may occur (see Sect. 5).

4 Stability of the Endemic Equilibrium

Throughout this section, assume that P(t) = e−σ t . It follows from the limiting system
of (3) that

−γ

∫ ∞

0
I (t − r)e−mrdrP (r) dr = σR(t),

and thus system (12) becomes

S′(t) = Λ − mS(t) − βS(t)I (t) − λξS(t)

∫ ∞

0
I (t − r)e−ηrf (r) dr + σR(t),

I ′(t) = βS(t)I (t) + λξS(t)

∫ ∞

0
I (t − r)e−ηrf (r) dr − (m + γ + α)I (t), (17)

R′(t) = γ I (t) − (m + σ)R(t).

Model (17) includes model (1.19) in Jin et al. (2006) as a special case when the
direct transmission is ignored, i.e., β = 0. The following local stability result thus
generalizes the second part of Theorem 3.1 in Jin et al. (2006).

Theorem 4.1 If R0 > 1, then the EE of (17) is locally asymptotically stable.

Proof The existence of the EE P ∗ = (S∗, I ∗,R∗) follows from Theorem 3.2. Let
x = S − S∗, y = I − I ∗, and z = R − R∗. The linearization at P ∗ satisfies

x′(t) = −mx(t) − βI ∗x(t) − βS∗y(t) − λξI ∗Fx(t)

− λξS∗
∫ ∞

0
y(t − r)e−ηrf (r) dr + σz(t),

y′(t) = βI ∗x(t) + βS∗y(t) + λξI ∗Fx(t) + λξS∗
∫ ∞

0
y(t − r)e−ηrf (r) dr

(18)
− (m + γ + α)y(t),

z′(t) = γy(t) − (m + σ)z(t).
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It is sufficient to prove that the equilibrium (x, y, z) = (0,0,0) is asymptotically
stable for system (18). Following Beretta and Takeuchi (1995, 1997) and Jin et al.
(2006), construct a Lyapunov functional

V = 1

2
(x + y + z)2 + 1

2
ay2 + 1

2
bz2 + 1

2
aλξS∗

∫ ∞

0
e−ηrf (r)

∫ t

t−r

y2(u) dudr,

where constants a, b > 0 will be determined later. Differentiating V along (18) gives

V ′ = V ′|(18) = (x + y + z)
(
x′ + y′ + z′) + ayy′ + bzz′

+ 1

2
aλξS∗

∫ ∞

0
e−ηrf (r)

(
y2(t) − y2(t − r)

)
dr

= −mx2 − (m + α)y2 − mz2 − (2m + α)xy − 2mxz − (2m + α)yz

+ a
(
βI ∗ + λξI ∗F

)
xy + aβS∗y2 − a(m + γ + α)y2

+ aλξS∗y
∫ ∞

0
y(t − r)e−ηrf (r) dr + bγyz − b(m + σ)z2

+ 1

2
aλξS∗Fy2 − 1

2
aλξS∗

∫ ∞

0
e−ηrf (r)y2(t − r) dr. (19)

Notice that in the above and also later derivations, x, y, z stand for x(t), y(t), z(t),
respectively. Choose a and b such that

(2m + α)xy = a
(
βI ∗ + λξI ∗F

)
xy, (20)

and

(2m + α)yz = bγyz. (21)

It follows from the arithmetic–geometric mean inequality that

aλξS∗y
∫ ∞

0
y(t − r)e−ηrf (r) dr

≤ aλξS∗
∫ ∞

0
e−ηrf (r)

y2(t) + y2(t − r)

2
dr

= 1

2
aλξS∗Fy2 + 1

2
aλξS∗

∫ ∞

0
e−ηrf (r)y2(t − r) dr. (22)

Combining (19), (20), (21), (22), and using an equilibrium equation of (17), namely,
(β + λξF)S∗ = m + γ + α, lead to

V ′ ≤ −(m + α)y2 − m(x + z)2 − b(m + σ)z2 ≤ 0. (23)

In particular, V ′ = 0 implies that x(t) = y(t) = z(t) = 0 from (23) and y(t − r) =
y(t) = 0 for all 0 ≤ r ≤ t from (22). Therefore, (0,0,0) is (globally) asymptotically
stable for the linear system (18), and as a consequence, P ∗ is locally asymptotically
stable for (17). �
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Theorem 4.1 rules out the possibility of Hopf bifurcations for system (17). The
global stability of the EE of (17) is conjectured but remains open except for sev-
eral special cases. For example, in the special case when immunity is permanent
(σ → 0), system (17) becomes an SIR model with direct and indirect transmis-
sion, i.e., the model (1.1) in Jin and Ma (2006). The global stability of the EE
for this SIR model is proved in Jin and Ma (2006) for a “weak” delay; we com-
ment that the same Lyapunov functional used in Li et al. (2010) and McCluskey
(2009, 2010) can be applied to prove this for arbitrary distributed delay for the
pathogen infectivity. Similar Lyapunov functionals have been applied to other de-
lay epidemic/virus models (e.g., see Huang and Takeuchi 2011; Li and Shu 2010;
Magal et al. 2010) after the successful application of Lyapunov functions in ordinary
differential equation epidemic models in Korobeinikov (2004) and Korobeinikov and
Maini (2004) and the extension to delay models in McCluskey (2009, 2010). The
following result shows that the global stability result also holds when there is no
disease-induced death (α = 0) and a long period of temporary immunity (σ small).

Theorem 4.2 Suppose that α = 0 and R0 > 1. If the inequality

mS∗ + βS∗I ∗ ≥ σR∗ (24)

holds, then the EE of (17) is globally asymptotically stable in
◦
Δ. Thus, all solutions

of (5) with P(t) = e−σ t starting in
◦
Γ approach the EE of (17) given in Theorem 3.2

with Q = σ/(m + σ).

Proof The proof is motivated by Nakata et al. (2011). It suffices to study the dynam-
ical behavior of (17) in the invariant set {N = S + I + R = Λ

m
}. Thus,

R′(t) = γ
Λ

m
− γ S(t) − (m + σ + γ )R(t). (25)

To prove the global asymptotic stability of P ∗ = (S∗, I ∗,R∗), construct a Lyapunov
functional (following Nakata et al. 2011):

V = S − S∗ − S∗ ln
S

S∗ + I − I ∗ − I ∗ ln
I

I ∗ + 1

2

σ

γ S∗
(
R − R∗)2

+ λξS∗
∫ ∞

0
F(r)

(
I (t − r) − I ∗ − I ∗ ln

I (t − r)

I ∗

)
dr,

where F(t) is defined as in (8). Applying the same techniques as in the proof of
Theorem 3.1 and using (25), the derivative of V along (17) satisfies

V ′ = V ′|(17) = mS∗
(

2 − S

S∗ − S∗

S

)
+ βS∗I ∗

(
2 − S

S∗ − S∗

S

)

− σ

γ S∗ (m + σ + γ )
(
R − R∗)2

+ λξS∗I ∗
∫ ∞

0
e−ηrf (r)

(
1 − S∗

S
+ ln

S∗

S
+ 1 − SI (t − r)

S∗I
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+ ln
SI (t − r)

S∗I

)
dr

+ σ

(
1 − S∗

S

)(
R − R∗) + σ

S∗
(
R − R∗)(S∗ − S

)
.

Since

σ

(
1 − S∗

S

)(
R − R∗) + σ

S∗
(
R − R∗)(S∗ − S

) = σ
(
R − R∗)(2 − S

S∗ − S∗

S

)

≤ −σR∗
(

2 − S

S∗ − S∗

S

)
,

and the inequality 1 − x + lnx ≤ 0 for all x > 0 with equality holding iff x = 1, it
follows that

V ′ ≤ (
mS∗ + βS∗I ∗ − σR∗)(2 − S

S∗ − S∗

S

)
− σ

γ S∗ (m + σ + γ )
(
R − R∗)2

+ λξS∗I ∗
∫ ∞

0
e−ηrf (r)

(
1 − S∗

S
+ ln

S∗

S
+ 1 − SI (t − r)

S∗I

+ ln
SI (t − r)

S∗I

)
dr

≤ 0, assuming (24) holds. (26)

Furthermore, it can be verified similarly as in the proof of Theorem 3.1 that the largest
invariant set where V ′ = 0 is the singleton {P ∗}, so P ∗ of the limiting system (17)

is globally asymptotically stable in
◦
Δ. The second part of Theorem 4.2 follows from

Theorem 7.2 in Miller (1971). �

We conjecture that Theorem 4.2 still holds after removing the assumption (24).

5 Disease Oscillations

Throughout this section, assume that P(t) is a step function, namely, P(t) = 1 for
all 0 ≤ t ≤ w and P(t) = 0 otherwise. Here, w > 0 is the constant finite period of
immunity. In this case,

γ

∫ ∞

0
I (t − r)e−mrdrP (r) dr = −γ I (t − w)e−mw,

which appears in the first and third equations of (12). Hopf bifurcations have been
shown numerically and analytically in Brauer et al. (2008) and Hethcote et al. (1981)
when the indirect transmission in (12) is ignored, namely, λ = 0 or ξ = 0. In this
section, we investigate the effect of indirect transmission on disease oscillations by
choosing different kernel functions f (t).
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5.1 Hyperinfectivity μ–w Model

Hyper and lower infectivity of V. cholerae have been investigated analytically in Hart-
ley et al. (2006) and Shuai and van den Driessche (2011) by incorporating differential
infectivity states of the pathogen into Codeço’s model (Codeço 2001); the resulting
models are ordinary differential equation systems. In the following, by choosing an
appropriate kernel function f (t), we demonstrate that our delay model (5) can also
be used to investigate the effect of hyperinfectivity on cholera transmission. Let f (t)

be given as follows:

f (t) =
{

θ, 0 ≤ t ≤ μ,

1, t > μ,

where θ ≥ 1 measures the ratio of hyper to lower infectivity and μ > 0 is the
constant period for which the pathogen is hyperinfectious. It is biologically rea-
sonable to assume w > μ since the temporary immunity w of cholera ranges
from 9 weeks to 3 years or more (Kaper et al. 1995; King et al. 2008), while
μ is normally less than 1 day (Hartley et al. 2006). It follows from (6) and (7)
that

F =
∫ ∞

0
e−ηtf (t) dt = θ

η

(
1 − e−ημ

) + 1

η
e−ημ

and

R0 = β + λξ
η

(θ(1 − e−ημ) + e−ημ)

m + γ + α
S0. (27)

Note that, when β = 0, R0 agrees with the basic reproduction number in Hartley
et al. (2006) for ημ � 1. Let

W(t) =
∫ t

0
ξe−η(t−r)I (r) dr (28)

denote the number of pathogen in the contaminated water, then for t > μ:

∫ t

0
ξI (r)e−η(t−r)f (t − r) dr

=
∫ t−μ

0
ξI (r)e−η(t−r) dr +

∫ t

t−μ

ξI (r)e−η(t−r)θ dr

= e−ημW(t − μ) + θ
(
W(t) − e−ημW(t − μ)

)
. (29)

Substituting (29) into (5) or (12) gives

S′(t) = Λ − βS(t)I (t) − λθS(t)
(
W(t) − W(t − μ)e−ημ

)
− λS(t)W(t − μ)e−ημ − mS(t) + γ I (t − w)e−mw,

I ′(t) = βS(t)I (t) + λθS(t)
(
W(t) − W(t − μ)e−ημ

)
(30)
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+ λS(t)W(t − μ)e−ημ − (m + γ + α)I (t),

R′(t) = γ I (t) − mR(t) − γ I (t − w)e−mw,

W ′(t) = ξI (t) − ηW(t), when t > w > μ.

The last equation of (30) follows from the differentiation of W(t) in (28). Note that
in the special case of no hyperinfectivity (i.e., θ = 1 or μ = 0), system (30) reduces
to a delay differential equation system that generalizes model (1) in Tien and Earn
(2010) by incorporating temporary immunity. The initial conditions for system (30)
can be generated using two associated systems:

S′(t) = Λ − βS(t)I (t) − λθS(t)W(t) − mS(t),

I ′(t) = βS(t)I (t) + λθS(t)W(t) − (m + γ + α)I (t),

R′(t) = γ I (t) − mR(t),

W ′(t) = ξI (t) − ηW(t), when 0 ≤ t ≤ μ,

(31)

with initial values S(0) > 0, I (0) ≥ 0,R(0) ≥ 0,W(0) ≥ 0, and

S′(t) = Λ − βS(t)I (t) − λθS(t)
(
W(t) − W(t − μ)e−ημ

)
− λS(t)W(t − μ)e−ημ − mS(t),

I ′(t) = βS(t)I (t) + λθS(t)
(
W(t) − W(t − μ)e−ημ

)
+ λS(t)W(t − μ)e−ημ − (m + γ + α)I (t),

R′(t) = γ I (t) − mR(t),

W ′(t) = ξI (t) − ηW(t), when μ < t ≤ w.

(32)

By Theorem 3.1, when R0 ≤ 1, the DFE of (30) is globally asymptotically stable;
biologically, the cholera disease dies out eventually. If R0 > 1, numerical simula-
tions show that the unique EE of (30) loses its stability when the temporary im-
munity w is large enough and Hopf bifurcation occurs. Simulations use parame-
ter values from Hartley et al. (2006) (see Table 2), thus R0 agrees approximately
with the basic reproduction number in Hartley et al. (2006) as ημ = 0.063 � 1.
First, the hyperinfectivity ratio θ is assumed to equal 700 (Hartley et al. 2006),
giving R0 = 18.8. Simulations of (30) with initial conditions (31) and (32) taking
S(0) = 9900, I (0) = 100,R(0) = W(0) = 0, using DDE23 (Shampine and Thomp-
son 2001), show that oscillations exist for a wide range of temporary immunity w,
from about 2 months to 2 years; see Fig. 1 for the prevalence I (t)/N(t) versus time.
Note that for w = 600 days, values of the prevalence can be very small, so stochastic
effects may be important. For w = 1000 days, it appears that oscillations die out and
the EE regains its stability. This “stability switch” phenomenon, where increasing
delays result in an equilibrium solution first losing and then regaining stability, is ob-
served in several different delay systems (see, for example, Beretta and Kuang 2002).
If the ratio θ between hyper and lower infectivity is decreased, the critical value of w

destabilizing the EE is first decreased slightly and then increased; see Figs. 2–4. For
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Table 2 Parameters taken from Hartley et al. (2006) used in the simulation for system (30)

Parameter Value

Λ 10000/(30 × 365) ≈ 0.91

m 1/(30 × 365) ≈ 9.1 × 10−5

γ 1/5 = 0.2

α 0

η 1/30 ≈ 0.03

ξ 10

β 0

λ 1.5 × 10−6/7 ≈ 2.1 × 10−7 (for Figs. 1, 2, 3, 4)

μ 5/24 ≈ 0.21

θ varying

example, when the difference between hyper and lower infectivity is completely ig-
nored (θ = 1), the temporary immunity w needs to be at least 5 months to destabilize
the EE; see Fig. 4.

To separate the effects of changes in R0 and θ , let R0 = 18.8 be fixed, vary θ , and
let λ be given by

λ = R0η(m + γ + α)

ξS0(θ(1 − e−ημ) + e−ημ)
. (33)

Figure 5 demonstrates the joint effect of hyperinfectivity (θ ) and temporary immu-
nity (w) on the existence, amplitude, and period of oscillations in cholera prevalence
when R0 is held fixed. Hyperinfectivity reduces the destabilizing threshold of tem-
porary immunity, agreeing with the simulation results in Figs. 1–4. The amplitude
of the oscillations increases as the hyperinfectivity ratio increases. Hyperinfectivity
may induce disease oscillations even when the basic reproduction number R0 is held
constant, while the length of the temporary immunity is tightly linked to the period
of these oscillations (see, for example, Fig. 1).

5.2 Incubation τ–w Model

Let f (t) = 1
η
δ(t − τ), where δ(·) is the delta function, τ is the incubation time that

the pathogen needs to develop in the water to become infectious or the time that it
takes for the pathogen to arrive in the drinking water, and 1/η is the average time the
pathogen is in the water. This assumption gives F = 1

η
e−ητ and

R0 = β + λξ
η

e−ητ

m + γ + α
S0. (34)
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Fig. 1 The prevalence of cholera for system (30) when w = 40,45,50,60,600, 1000 days, respectively,
with θ = 700 and parameters from Table 2, giving R0 = 18.8

In this case system (5) or (12) becomes

S′(t) = Λ − βS(t)I (t) − λξ

η
S(t)I (t − τ)e−ητ − mS(t) + γ I (t − w)e−mw,

I ′(t) = βS(t)I (t) + λξ

η
S(t)I (t − τ)e−ητ − (m + γ + α)I (t), (35)

R′(t) = γ I (t) − mR(t) − γ I (t − w)e−mw.
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Fig. 2 The prevalence of cholera for system (30) when w = 35,40 days, respectively, with θ = 375 and
parameters from Table 2, giving R0 = 11.5

Fig. 3 The prevalence of cholera for system (30) when w = 75,80 days, respectively, with θ = 70 and
parameters from Table 2, giving R0 = 4.7

Fig. 4 The prevalence of cholera for system (30) when w = 150,160 days, respectively, with θ = 1 and
parameters from Table 2, giving R0 = 3.2

There is a dichotomy of time scales involved with transmission in system (35): rapid
transmission without any delay is incorporated into the direct transmission term
(βSI ), while the delayed transmission term can be interpreted as environmental trans-
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Fig. 5 The first row: The limit superior/inferior in cholera prevalence for system (30) when θ = 1,700,
respectively, with different w values, parameters from Table 2, R0 = 18.8 and λ as given in (33), i.e.,
λ = 1.3 × 10−6 when θ = 1 while λ = 2.1 × 10−7 when θ = 700. The second row: The limit supe-
rior/inferior and period of oscillation in cholera prevalence for system (30) with ω = 70 days, θ ranging
from 1 to 700, parameters from Table 2, R0 = 18.8 and λ as given in (33)

mission. Hyperinfectivity associated with recently shed cholera bacteria would then
be incorporated into the direct transmission parameter β (see Pascual et al. 2006).
System (35) includes vector-borne disease models in Beretta and Takeuchi (1995,
1997), Jin and Ma (2006) and Jin et al. (2006) as special cases if direct transmission
is ignored (β = 0) and/or immunity is assumed to be permanent (w → ∞). The ini-
tial conditions for system (35) can be generated from a similar ordinary differential
equation system as (31) and (32) associated with (30).

When R0 > 1 and the temporary immunity w is large enough, the EE of (35)
becomes unstable. Simulations, using parameters as in Table 1, show that oscillations
occur for different values of τ and w; see Fig. 6. Notice that the critical value of w

destabilizing the EE increases as τ increases.

6 Discussion

We have formulated a general cholera model with arbitrary distributed delays to in-
corporate hyperinfectivity and temporary immunity. The resulting model (5) is a dif-
ferential equation system with two distributed delays. The basic reproduction number
R0 has been defined and proved to be a threshold parameter that determines whether
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Fig. 6 Stability of the EE and the existence of stable periodic solutions for model (35) with parameters
from Table 2 when τ = 0.1,0.5,1 day, giving R0 = 3.20,3.16,3.11, respectively, with varying w days

or not the disease dies out. When R0 > 1, model (5) admits a unique endemic equi-
librium, and its stability depends on the distribution of temporary immunity. If this is
given by a negative exponential, then the EE is locally asymptotically stable. Suffi-
cient conditions for the global stability of the EE in this case have also been derived
using the method of Lyapunov functionals. However, disease oscillations can occur
for other temporary immunity distributions. For example, if temporary immunity is
assumed to be of constant duration w, then the EE can become unstable. Numerical
simulations show that the EE first loses and then regains its stability as w increases,
with oscillations occurring when the EE is unstable. The parameter regions that sup-
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Fig. 7 Two stable periodic orbits coexist for model (5) with gamma-distributed infectivity and immunity
kernel functions. Infectivity kernel f has a mean η = 1/30 and shape parameter 10 while immunity kernel
P has a mean w = 350 days and shape parameter 1000. Other parameters are given in Table 2

port oscillations depend upon the infectivity kernel. In particular, we show numeri-
cally that hyperinfectivity of freshly shed pathogen affects both the existence as well
as the amplitude of disease oscillations.

Numerical simulations indicate that other hyperinfectivity and immunity distribu-
tions besides fixed delays can also support disease oscillations. For example, stable
periodic orbits can occur when immunity and infectivity are both gamma-distributed,
with mean η and shape parameter 10 for infectivity, and mean w and shape parameter
1000 for immunity. For these distributions, the dynamics of system (5) are complex:
multiple attractors can coexist, and global bifurcations play an important role. Fig-
ure 7 shows bistability between two stable periodic orbits coexisting for expected
immune duration of 350 days. The period of the oscillations differs considerably be-
tween the two orbits (Figs. 7(b) and (c)); with the inner (outer) orbit having a period
of 300 (110) days. A more extensive study of what immunity distributions support
oscillations, and the effect of differential infectivity kernels other than step functions
on these oscillations, would be of interest.
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An important parameter for cholera is the expected lifetime of V. cholerae outside
of human hosts. This varies considerably depending upon environmental conditions
(Feachem et al. 1983), and has the potential to be quite long, given the ability of
V. cholerae to persist in a free-living state in association with plankton and detritus
(reviewed in Nelson et al. 2009). We have used a value of 30 days here for the ex-
pected persistence time. Other studies have suggested shorter persistence times on
the order of 5 days, so η = 0.228 (Bertuzzo et al. 2008). We found that simulations
with this value of η are qualitatively similar to those reported in Sect. 5.1.

A great deal of research has been devoted to examining seasonal oscillations
for cholera in connection with environmental drivers such as rainfall, river dis-
charge, chlorophyll levels, sea surface temperatures, and El Niño (Altizer et al. 2006;
Bouma and Pascual 2001; Emch et al. 2008; Huq et al. 2005; King et al. 2008; Pascual
et al. 2000, 2008; Ruiz-Moreno et al. 2007; Sanches et al. 2011). King et al. (2008)
and Sanches et al. (2011) examine the effect of temporary immunity on cholera oscil-
lations by incorporating this factor into models with seasonal variation in transmis-
sion. Systems (30) and (35) exhibit oscillations without any seasonal forcing of the
equations, as found previously in SIRS models with constant periods of immunity
(Hethcote et al. 1981). The effect of combining differential infectivity and tempo-
rary immunity distributions on disease dynamics is less obvious. Our finding that the
degree of hyperinfectivity affects disease oscillations even when R0 is held constant
complements work by Hartley et al. (2006), who point out that a hyperinfectious state
for freshly shed cholera bacteria could correspond to much larger values of R0 than
previously thought.
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