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A general compartmental model for cholera is formulated that incorporates two pathways of transmis-
sion, namely direct and indirect via contaminated water. Non-linear incidence, multiple stages of infec-
tion and multiple states of the pathogen are included, thus the model includes and extends cholera
models in the literature. The model is analyzed by determining a basic reproduction number R0 and
proving, by using Lyapunov functions and a graph-theoretic result based on Kirchhoff’s Matrix Tree The-
orem, that it determines a sharp threshold. If R0 6 1, then cholera dies out; whereas if R0 > 1, then the
disease tends to a unique endemic equilibrium. When input and death are neglected, the model is used to
determine a final size equation or inequality, and simulations illustrate how assumptions on cholera
transmission affect the final size of an epidemic.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Cholera and other waterborne diseases can be transmitted
directly to humans by person-to-person contact or indirectly to hu-
mans via contaminated water. Cholera, which is a bacterial disease
caused by the bacterium Vibrio cholerae, is a diarrheal disease that
can, if untreated, lead to death. It is endemic in some regions (e.g.,
the Bay of Bengal [20]), but manifests as an epidemic outbreak in
other regions (e.g., the Haiti outbreak in 2010 [1,41] and the out-
break starting in 2008 in Zimbabwe [31]). For more information
about cholera and its occurrence, we refer the reader to [15]. Sev-
eral models for this disease that take account of its two transmis-
sion pathways have been proposed and analyzed; see, for example,
[1,5,7,9,14,19,31,38–41]. These models differ from each other in
some aspects. Experimental studies suggest that a relatively high
level of pathogen is needed to develop cholera [34], and thus sat-
urating incidence is normally assumed for the indirect transmis-
sion [7,14,38,39], while mass action incidence is also seen in the
literature (e.g., [9,40,41]). Laboratory studies also suggest that
the infectivity of Vibrio cholerae existing outside the host decays
in time, and thus cholera models with hyperinfectious and low-
er-infectious states of the pathogen have been studied (e.g., see
[1,14]). For the direct transmission due to person-to-person
contact, the differential infectivity of infectious individuals can
be modeled using multiple infection stages [40]; the resulting
ll rights reserved.
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models are usually called multi-stage models or stage progression
models.

In this paper a general compartmental ordinary differential
equation model for the transmission of cholera is proposed that
incorporates both direct and indirect transmission, non-linear inci-
dence, multiple infectious states of the pathogen, and multiple
infection stages of infectious individuals. General forms for direct
and indirect transmission include both mass action and saturating
incidence. Heterogeneity in infectious host individuals and in the
pathogen are included in terms of arbitrary numbers of stages of
infectious individuals and states of the pathogen, respectively.
Our model contains earlier cholera models in [7,14,31,38–40] as
special cases, and our analysis also incorporates and extends many
of the previous results. Specifically, the basic reproduction number
R0 is determined and proved to be a sharp threshold for the model
with recruitment and death: if R0 6 1, then the disease-free equi-
librium is globally asymptotically stable, and cholera dies out; if
R0 > 1, then the disease-free equilibrium is unstable, a unique
endemic equilibrium is globally asymptotically stable, and the
disease persists at a positive level. As is the case for many other
complex epidemic models, proving the global stability of the
endemic equilibrium imposes significant mathematical challenges.
For example, global stability of the endemic equilibrium has been
established for only a few cholera models using various methods
such as monotone dynamical systems, the geometric approach,
and the method of Lyapunov functions (see [38–40]), while such
global stability results are missing for other cholera models (e.g.,
the hyperinfectivity model in [14] and the stage progression
model in [40]). In addition, some global stability proofs (see [31,
Supporting Information] and [39, Theorem 4.13]) apply a constant
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Table 1
Special cases of model (2.1).

(n,m) f(S, I) g(S,B) h(I) Reference

(1,1) 0 kSB
KþB

nI Codeço [7]
Tian et al. [38]

(1,1) 0 S/(B)a nI Tian and Wang [39]
(1,1) bSI kSB

KþB
nI Tian and Wang [39]

Mukandavire et al. [31]
(1,1) bSI kSB h(I)b Tian and Wang [39]
(1,1) bSI kSB nI Tien and Earn [40]
(n,1) biSIi kSB niIi Tien and Earn [40]
(1,2) 0 kk SBk

KkþBk
nI Hartley et al. [14]

a /0 P 0, /00 6 0.
b h0 P 0, h00 6 0.
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matrix result to a non-constant matrix; see Section 7 for further
discussion. Here we successfully apply the graph-theoretic
approach recently developed in [12,13,27] to construct a Lyapunov
function for our cholera model and thus prove the global stability
of the endemic equilibrium. Hence, for the first time, we
completely establish the global dynamics for models in [14,40]
and also provide a unified proof for the global stability results in
[31,38–40].

The paper is organized as follows. In Section 2 we formulate our
model including recruitment and death, then in Section 3 we con-
sider equilibria and calculate the basic reproduction number R0.
The next two sections determine global stability in the case
R0 6 1 (Section 4) and R0 > 1 (Section 5). For our model without
recruitment and death, in Section 6 we consider the final size of
a cholera epidemic. We conclude in Section 7 with a discussion.

2. Model formulation

The total population is divided into n + 2 compartments: a sus-
ceptible compartment, n infectious compartments representing
different infection stages [40], and a removed compartment, with
the number of individuals in each compartment given by S, Ii,
1 6 i 6 n, and R, respectively. These letters are also used to identify
the compartment. A stage Ii can be interpreted as a latent stage if
the infectivity of individuals in Ii is assumed to be zero. For cholera,
the incubation period ranges from a few hours to 5 days, usually 2–
3 days [15], although the latent compartment is normally ne-
glected in other models cited above. The contaminated water is
categorized into m levels [14], with the pathogen concentration
given by Bk, 1 6 k 6m. Pathogen shed from infectious individuals
in each infection stage enter B1, then progress to B2 and so on.
For cholera disease, the infectivity of Bk normally decreases as m
increases [14]. Susceptible individuals can be infected either by
contacting infectious individuals (direct transmission) or by
ingesting contaminated water (indirect transmission). All newly
infected individuals first enter the stage I1, then I2 and so on; see
Fig. 1 for the flow diagram of this model. The incidence function
is assumed to be of the form

Xn

j¼1

fjðS; IjÞ þ
Xm

j¼1

gjðS;BjÞ;

where fi and gk represent direct transmission and indirect transmis-
sion, respectively. In the literature, functions fi and gk take different
Fig. 1. The transfer diagr
forms, such as mass action incidence /(x,y) = bxy and saturating
incidence /ðx; yÞ ¼ bx y

Kþy; see Table 1. Infectious individuals Ii are
assumed to contaminate the water by shedding the pathogen at a
rate hi(Ii) per unit of pathogen concentration. In the literature, it is
usually assumed that hi is linear; see Table 1. Our analysis applies
to the functions in Table 1 and others that satisfy the assumptions
introduced below.

Based on the above assumptions and ignoring the removed
individuals R (since R does not influence the dynamics of the other
variables), a general cholera model can be formulated as the fol-
lowing system of n + m + 1 ordinary differential equations:

dS
dt
¼ A�

Xn

j¼1

fjðS; IjÞ �
Xm

j¼1

gjðS;BjÞ � dS;

dI1

dt
¼
Xn

j¼1

fjðS; IjÞ þ
Xm

j¼1

gjðS;BjÞ � ðdþ c1 þ a1ÞI1;

dIi

dt
¼ ci�1Ii�1 � ðdþ ci þ aiÞIi; i ¼ 2; . . . ;n;

dB1

dt
¼
Xn

j¼1

hjðIjÞ � d1B1;

dBk

dt
¼ dk�1Bk�1 � dkBk; k ¼ 2; . . . ;m;

ð2:1Þ

with non-negative initial conditions S(0), Ii(0), Bk(0) P 0 for all
1 6 i 6 n, 1 6 k 6m. The removed individuals satisfy
am for model (2.1).
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dR
dt
¼ cnIn � dR ð2:2Þ

with R(0) P 0. Here A > 0 represents the constant recruitment,
d > 0 denotes the natural mortality rate, ai P 0, 1 6 i 6 n, repre-
sents the mortality rate due to the disease in the ith infection
stage, ci > 0, 1 6 i 6 n � 1, represents the transition rate of infec-
tious individuals from stage Ii to Ii+1, cn > 0 represents the recovery
rate of In, dk > 0, 1 6 k 6m � 1, represents the transition rate of
pathogen from Bk to Bk+1, and dm > 0 represents the removal rate
of Bm.

Functions fi, gk, and hi are assumed to be sufficiently smooth
so that solutions to (2.1) with non-negative initial conditions
exist and are unique. For biological considerations, we
are interested in non-negative solutions. Hence, we make the
following biologically motivated assumptions throughout the
paper.

(H1) fi(S, Ii) P 0 and fi(S,0) = fi(0, Ii) = 0 for all S, Ii P 0, 1 6 i 6 n.
(H2) gk(S,Bk) P 0 and gk(S,0) = gk(0,Bk) = 0 for all S, Bk P 0,

1 6 k 6m.
(H3) hi(Ii) P 0 and hi(0) = 0 for all Ii P 0, 1 6 i 6 n.
(H4) There exists some index i, 1 6 i 6 n, such that function hi

satisfies hi(Ii) > 0 for all Ii > 0.

Assumptions (H1)–(H3) ensure that solutions of (2.1) starting
with non-negative initial conditions stay non-negative for all
t > 0. Assumption (H1) allows the possibility of fi � 0 for some
infection stage, which can be interpreted as latent or quarantined.
If all fi � 0, then direct transmission is ignored. Assumptions (H3)–
(H4) allow the possibility of hi � 0 for some infection stage in which
infectious individuals do not shed pathogen into the environment
probably due to incubation or isolation, while assumption (H4) is
required to ensure involvement of the pathogen in the disease
transmission.

Adding the first n + 1 equations of (2.1) gives

d
dt
ðSþ I1 þ � � � þ InÞ 6 A� dðSþ I1 þ � � � þ InÞ;

which implies that

lim sup
t!1

ðSðtÞ þ I1ðtÞ þ � � � þ InðtÞÞ 6
A
d
:

Let Hi ¼ maxIi2 0;Ad½ �hiðIiÞ and H ¼
Pn

i¼1Hi. It follows from the (n + 2)th

equation of (2.1) that dB1
dt 6 H � d1B1 and thus lim supt!1B1ðtÞ 6 H

d1
.

Thus from the last equation of (2.1), lim supt!1BkðtÞ 6 H
dk

for all

1 6 k 6m. Therefore, the feasible region

C¼ ðS;I1;. . .;In;B1;. . .;BmÞ2Rnþmþ1
þ jSþ I1þ���þ In6

A
d
;Bk6

H
dk
;k¼1; .. . ;m

� �
;

is positively invariant with respect to model (2.1).
3. Equilibria and the basic reproduction number

It follows from assumptions (H1)–(H3) that model (2.1) always
admits a disease-free equilibrium (DFE) P0 = (S0,0, . . . ,0) in C, where
S0 ¼ A

d. Furthermore, by (H4), P0 is the unique equilibrium that lies
on the boundary of C. A positive equilibrium of (2.1), if one exists,
is called an endemic equilibrium, and denoted by
P� ¼ S�; I�1; . . . ; I�n;B

�
1; . . . ;B�m

� �
. Here S�; I�1; . . . ; I�n;B

�
1;B

�
m > 0 satisfy

the following equilibrium equations:
A ¼
Xn

j¼1

fj S�; I�j
� �

þ
Xm

j¼1

gjðS
�;B�j Þ � dS�;

l1I�1 ¼
Xn

j¼1

fj S�; I�j
� �

þ
Xm

j¼1

gj S�;B�j
� �

;

liI
�
i ¼ ci�1I�i�1; i ¼ 2;3; . . . ;n;

d1B�1 ¼
Xn

j¼1

hj I�j
� �

;

dkB�k ¼ dk�1B�k�1; k ¼ 2;3; . . . ;m;

ð3:1Þ

where li = d + ci + ai > 0, 1 6 i 6 n.
The following assumptions are introduced to define the basic

reproduction number for the system (2.1).

(H5) limx!0þ
fiðS0 ;xÞ

x ¼ pi P 0 for all 1 6 i 6 n.
(H6) limx!0þ

gkðS0 ;xÞ
x ¼ qk P 0 for all 1 6 k 6m.

(H7) limx!0þ
hiðxÞ

x ¼ ri P 0 for all 1 6 i 6 n.

Using (H1)–(H3), it can be easily verified that pi ¼ @fi
@Ii
ðS0;0Þ;

qk ¼ @gk
@Bk
ðS0;0Þ; ri ¼ h0ið0Þ if fi, gk, hi are differentiable.

We assume that new infections occur only in the I1 compart-
ment. Define two (n + m) � (n + m) matrices

F ¼

p1 � � � pn q1 � � � qm

0 � � � � � � 0

..

.

0 � � � � � � 0

0
BBBB@

1
CCCCA

and

V ¼
U 0

�R D

 !

with bidiagonal

U ¼

l1

�c1 l2

�c2
. .

.

. .
.

ln�1

�cn�1 ln

0
BBBBBBBBB@

1
CCCCCCCCCA
;

R ¼

r1 r2 � � � rn�1 rn

0 � � � � � � 0

..

.

0 � � � � � � 0

0
BBBB@

1
CCCCA

and bidiagonal

D ¼

d1

�d1 d2

�d2
. .

.

. .
.

dm�1

�dm�1 dm

0
BBBBBBBB@

1
CCCCCCCCA
:

The dimensions of U, R and D are n � n, m � n and m �m, respec-
tively. Notice that both U and D have the Z-sign pattern, that is,
non-positive off-diagonal entries. It can be verified that both U
and D are non-singular M-matrices [3, p.137], and thus U�1 P 0,
D�1 P 0. In fact, the (i, j) entries of U�1 and D�1 satisfy
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U�1
ij ¼

1
li

1 6 i ¼ j 6 n;

0 1 6 i 6 n;1 6 i < j 6 n;Qi�1

k¼j
ckQi

k¼j
lk

1 6 i 6 n; 1 6 j < i 6 n

8>>>><
>>>>:

and

D�1
ij ¼

1
di

1 6 j 6 i 6 m;

0 1 6 i < j 6 m;

(

respectively. As a consequence,

V�1 ¼ U�1 0

D�1RU�1 D�1

 !
P 0

and thus V is a non-singular M-matrix. Following [8,42], the basic
reproduction number R0 is defined as the spectral radius of matrix
FV�1, that is,

R0 ¼ qðFV�1Þ

and the DFE of (2.1) is locally asymptotically stable if R0 < 1,
whereas it is unstable if R0 > 1. Since F has rank 1, straightforward
calculation gives

R0 ¼
p1

l1
þ p2c1

l1l2
þ � � � þ pnc1 � � � cn�1

l1 � � �ln

þ q1

d1
þ � � � þ qm

dm

� 	
r1

l1
þ � � � þ rnc1 � � � cn�1

l1 � � �ln

� 	
: ð3:2Þ

Each term involving pi arises from direct transmission and is multi-
plied by the probability of reaching Ii (before dying) and the average
time spent in that compartment. Each term involving qk arises from
indirect transmission and is multiplied by the average time in Bk

and the sum of the probabilities of surviving to each infectious stage
times the rate of pathogen shedding from that stage. This expres-
sion for R0 generalizes that in [14, Eq. (4)] and those in [40, Eqs.
(7) and (A.7)].

4. Global dynamics when R0 <1

To establish the global stability of the disease-free equilibrium,
we further make several biologically reasonable assumptions on
the disease transmission terms. Assume that

(A1) fi(S, Ii) 6 fi(S0, Ii) 6 piIi for all 0 6 S 6 S0, Ii P 0 and 1 6 i 6 n;
(A2) gk(S,Bk) 6 gk(S0,Bk) 6 qkBk for all 0 6 S 6 S0, Bk P 0 and

1 6 k 6m;
(A3) hi(Ii) 6 riIi for all Ii P 0 and 1 6 i 6 n.
(A4) There exists either some index i, 1 6 i 6 n, such that function

fi satisfies fi(S, Ii) < fi(S0, Ii) for all 0 6 S < S0, Ii > 0, or some
index k, 1 6 k 6m, such that function gk satisfies
gk(S,Bk) < gk(S0 ,Bk) for all 0 6 S < S0, Bk > 0.

Assumptions (A1), (A2) and (A4) hold for incidence functions that
are monotone increasing in both variables and concave down in
the second variable, including those commonly used in the litera-
ture, such as mass action and saturating incidence. Assumption
(A3) holds if function h is monotone increasing and concave down.
It can be verified that all functions used in Table 1 satisfy assump-
tions (A1)–(A4).

Theorem 4.1. Suppose that assumptions (H1)–(H7) hold. Then the
following conclusions hold for system (2.1).

(1) IfR0 < 1 and (A1)–(A3) hold, then the DFE is globally asymptot-
ically stable in C.
(2) IfR0 ¼ 1 and (A1)–(A4) hold, then the DFE is globally asymptot-
ically stable in C.

(3) If R0 > 1, then the DFE is unstable and system (2.1) is uni-
formly persistent.
Proof. Motivated by Guo and Li [11], let (w1, . . . ,wn+m)T =
(p1, . . . ,pn,q1, . . . ,qm)TV�1. Since V�1 P 0, it follows that wj P 0 for
all 1 6 j 6 n + m. Notice that w1 ¼ R0 6 1. Construct a Lyapunov
function

L ¼ w1I1 þ � � � þwnIn þwnþ1B1 þ � � � þwnþmBm: ð4:1Þ

Differentiating L along solutions of (2.1) and using (A1)–(A3) yields

L0 ¼ dL
dt






ð2:1Þ
¼ w1

Xn

j¼1

fjðS; IjÞ þ
Xm

j¼1

gjðS;BjÞ
 !

�
Xn

j¼1

wjljIj

þ
Xn

j¼2

wjcj�1Ij�1 þwnþ1

Xn

j¼1

hjðIjÞ �
Xm

j¼1

wnþjdjBj þ
Xm

j¼2

wnþjdj�1Bj�1

6 w1

Xn

j¼1

pjIj þ
Xm

j¼1

qjBj

 !
�
Xn

j¼1

wjljIj þ
Xn

j¼2

wjcj�1Ij�1

þwnþ1

Xn

j¼1

rjIj �
Xm

j¼1

wnþjdjBj þ
Xm

j¼2

wnþjdj�1Bj�1

¼ w1ðp1; . . . ;pn; q1 . . . ; qmÞ
TðI1; . . . ; In;B1; . . . ;BmÞ

� ðw1; . . . ;wnþmÞT VðI1; . . . ; In;B1; . . . ;BmÞ

¼ w1ðp1; . . . ;pn; q1 . . . ; qmÞ
TðI1; . . . ; In;B1; . . . ;BmÞ

� ðp1; . . . ; pn; q1 . . . ; qmÞ
TðI1; . . . ; In;B1; . . . ;BmÞ

¼ ðw1 � 1Þ
Xn

j¼1

pjIj þ
Xm

j¼1

qjBj

 !
6 0; if R0 6 1: ð4:2Þ

If R0 < 1; L0 ¼ 0 implies that
Pn

j¼1pjIj þ
Pm

j¼1qjBj ¼ 0, by (4.2). It
follows that

Pn
j¼1fjðS; IjÞ þ

Pm
j¼1gjðS;BjÞ ¼ 0, which implies

S0 = A � dS and I01 ¼ �l1I1 by the first two equations of (2.1). Hence,
the invariant set where L0 = 0 satisfies S ¼ S0 ¼ A

d and I1 = 0. Simi-
larly, the remaining equations of (2.1) give I2 = � � � = In = 0,
B1 = � � � = Bm = 0. That is, the largest invariant set where L0 = 0 is
the singleton {P0}. By LaSalle’s Invariance Principle [25], P0 is glob-
ally asymptotically stable in C if R0 < 1.

If R0 ¼ w1 ¼ 1; L0 ¼ 0 implies that fi(S, Ii) = fi(S0, Ii) = piIi and
gk(S,Bk) = gk(S0,Bk) = qkBk for all 1 6 i 6 n, 1 6 k 6m. It follows from
assumption (A4) that S = S0 or Ii = Bk = 0 for all i, k. Substituting
S = S0 into the first equation of (2.1) gives

Pn
j¼1fjðS; IjÞþPm

j¼1gjðS;BjÞ ¼ 0. Thus, as in the case R0 < 1, the largest invariant
set where L0 = 0 is the singleton {P0}, and thus by LaSalle’s
Invariance Principle [25], P0 is globally asymptotically stable in C
if R0 = 1.

If R0 > 1, then by continuity, L0 > 0 in a neighborhood of P0 in
the interior of C, denoted by . Solutions in sufficiently close
to P0 move away from P0, implying that P0 is unstable. Using a
uniform persistence result from [10] and an argument as in the
Proof of Proposition 3.3 of [26], it can be shown that,
when R0 > 1, instability of P0 implies uniform persistence of
(2.1). h

Uniform persistence of (2.1) and the positive invariance of the
compact set C imply the existence of an equilibrium of (2.1) in
(see Theorem D.3 in [37] or Theorem 2.8.6 in [4]).
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Proposition 4.2. Suppose that assumptions (H1)–(H7) hold. IfR0 > 1,
then there exists at least one endemic equilibrium for system (2.1).
5. Global dynamics when R0 > 1

By Proposition 4.2, an endemic equilibrium
P� ¼ S�; I�1; . . . ; I�n;B

�
1; . . . ;B�m

� �
exists. Here S�; I�1; . . . ; I�n;B

�
1; . . . ;B�m are

positive and satisfy the equilibrium equations (3.1). In this section,
we prove the uniqueness and global stability of P⁄.

Assume that

(B1) there exists a function U : ð0; S0� ! Rþ such that
ðS� S�ÞðUðSÞ �UðS�ÞÞ > 0; 0 < S 6 S0; S – S�; ð5:1Þ

fiðS; IiÞUðS�Þ
fi S�; I�i
� �

UðSÞ
� 1

 !
1�

fi S�; I�i
� �

UðSÞIi

fiðS; IiÞUðS�ÞI�i

� 	
6 0;

0 < S 6 S0; Ii > 0; 1 6 i 6 n; ð5:2Þ
and
gkðS;BkÞUðS�Þ
gkðS

�;B�kÞUðSÞ
� 1

� 	
1� gkðS

�;B�kÞUðSÞBk

gkðS;BkÞUðS�ÞB�k

� 	
6 0;

0 < S 6 S0; Bk > 0; 1 6 k 6 m; ð5:3Þ
(B2) for all Ii > 0, 1 6 i 6 n,
hiðIiÞ
hi I�i
� �� 1

 !
1�

hi I�i
� �

Ii

hiðIiÞI�i

� 	
6 0: ð5:4Þ
Most functions fi, gk, and hi that are commonly used in the literature,
including those given in Table 1, satisfy the above assumptions
(5.1)–(5.4).

Define the non-negative (n + m) � (n + m) weight matrix
W = (wij) as

wij ¼

fj S�; I�j
� �

i ¼ 1; 1 6 j 6 n;

gk S�;B�k
� �

i ¼ 1; j ¼ nþ k; 1 6 k 6 m;

ci�1I�i�1 2 6 i 6 n; j ¼ i� 1;

hj I�j
� �

i ¼ nþ 1; 1 6 j 6 n;

dk�1B�k�1 i ¼ nþ k; 2 6 k 6 m; j ¼ i� 1;
0 otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5:5Þ

Note that if gmðS
�;B�mÞ > 0 and hn I�n

� �
> 0 then W is irreducible.

The global stability of the endemic equilibrium is established in
the following result. The proof utilizes global Lyapunov functions
that are motivated by the work in [21–24] and the graph-
theoretic approach for the large-scale systems recently developed
in [12,13,27].

Theorem 5.1. Suppose that assumptions (H1)–(H7) hold. Assume that
W is irreducible and (B1)–(B2) hold. If R0 > 1, then system (2.1) has a
unique endemic equilibrium P⁄ that is globally asymptotically stable in

.

Proof. For system (2.1), consider the following Lyapunov function

V ¼ c1

Z S

S�

UðnÞ�UðS�Þ
UðnÞ dnþ

Xn

j¼1

cj Ij� I�j � I�j ln
Ij

I�j

 !
þ
Xm

j¼1

cnþj Bj�B�j �B�j ln
Bj

B�j

 !
:

ð5:6Þ

Here cj > 0, j = 1, . . . ,n + m, are constants to be specified later.
Differentiating V along solutions of (2.1) and using the equilibrium
equations (3.1) to simplify gives
V 0 ¼dV
dt






ð2:1Þ
¼ c1dðS� �SÞ 1�UðS�Þ

UðSÞ

� 	

þ c1

Xn

j¼1

fj S�;I�j
� �

2�UðS�Þ
UðSÞ þ

fjðS;IjÞUðS�Þ
fj S�;I�j
� �

UðSÞ
� I1

I�1
� fjðS;IjÞI�1

fjðS�;I�j ÞI1

0
@

1
A

þ c1

Xm

j¼1

gj S�;B�j
� �

2�UðS�Þ
UðSÞ þ

gjðS;BjÞUðS�Þ

gj S�;B�j
� �

UðSÞ
� I1

I�1
�

gjðS;BjÞI�1
gj S�;B�j
� �

I1

0
@

1
A

þ
Xn

j¼2

cjcj�1I�j�1
Ij�1

I�j�1
� Ij

I�j
�

Ij�1I�j
I�j�1Ij

þ1

 !

þ cnþ1

Xn

j¼1

hj I�j
� � hjðIjÞ

hj I�j
� ��B1

B�1
� hjðIjÞB�1

hj I�j
� �

B1

þ1

0
@

1
A

þ
Xm

j¼2

cnþjdj�1B�j�1
Bj�1

B�j�1
� Bj

B�j
�

Bj�1B�j
B�j�1Bj

þ1

 !
: ð5:7Þ

Notice that, by (5.1),

ðS� � SÞ 1�UðS�Þ
UðSÞ

� 	
6 0 ð5:8Þ

with equality holding if and only if S = S⁄. Let H(x) :¼ 1 � x + lnx, for
x 2 (0,1). Using (5.2) and the property that H(x) 6 0 with H(x) = 0
if and only if x = 1, gives

2�UðS�Þ
UðSÞ þ

fjðS;IjÞUðS�Þ
fj S�;I�j
� �

UðSÞ
� I1

I�1
� fjðS;IjÞI�1

fj S�;I�j
� �

I1

¼ fjðS;IjÞUðS�Þ
fj S�;I�j
� �

UðSÞ
�1

0
@

1
A 1�

fj S�;I�j
� �

UðSÞIj

fjðS;IjÞUðS�ÞI�j

0
@

1
A

þ3�UðS�Þ
UðSÞ �

fjðS;IjÞI�1
fj S�;I�j
� �

I1

�
fj S�;I�j
� �

UðSÞIj

fjðS;IjÞUðS�ÞI�j
� I1

I�1
þ Ij

I�j

6H
UðS�Þ
UðSÞ

� 	
þH

fjðS;IjÞI�1
fj S�;I�j
� �

I1

0
@

1
AþH

fj S�;I�j
� �

UðSÞIj

fjðS;IjÞUðS�ÞI�j

0
@

1
Aþ Ij

I�j
� ln

Ij

I�j
� I1

I�1
þ ln

I1

I�1

6
Ij

I�j
� ln

Ij

I�j
� I1

I�1
þ ln

I1

I�1
: ð5:9Þ

Similarly, it follows from (5.3) that

2�UðS�Þ
UðSÞ þ

gjðS;BjÞUðS�Þ

gj S�;B�j
� �

UðSÞ
� I1

I�1
�

gjðS;BjÞI�1
gj S�;B�j
� �

I1

¼
gjðS;BjÞUðS�Þ

gj S�;B�j
� �

UðSÞ
� 1

0
@

1
A 1�

gj S�;B�j
� �

UðSÞBj

gjðS;BjÞUðS�ÞB�j

0
@

1
A

þH
UðS�Þ
UðSÞ

� 	
þH

gjðS;BjÞI�1
gj S�;B�j
� �

I1

0
@

1
AþH

gj S�;B�j
� �

UðSÞBj

gjðS;BjÞUðS�ÞB�j

0
@

1
A

þ Bj

B�j
� ln

Bj

B�j
� I1

I�1
þ ln

I1

I�1

6
Bj

B�j
� ln

Bj

B�j
� I1

I�1
þ ln

I1

I�1
ð5:10Þ

and from (5.4) that

hjðIjÞ
hj I�j
� �� B1

B�1
� hjðIjÞB�1

hj I�j
� �

B1

þ 1 ¼ hjðIjÞ
hj I�j
� �� 1

0
@

1
A 1�

hj I�j
� �

Ij

hjðIjÞI�j

0
@

1
A

þH
hjðIjÞB�1

hj I�j
� �

B1

0
@

1
AþH

hj I�j
� �

Ij

hjðIjÞI�j

0
@

1
Aþ Ij

I�j
� ln

Ij

I�j
� B1

B�1
þ ln

B1

B�1

6
Ij

I�j
� ln

Ij

I�j
� B1

B�1
þ ln

B1

B�1
: ð5:11Þ

Also
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Ij�1

I�j�1
� Ij

I�j
�

Ij�1I�j
I�j�1Ij

þ 1 ¼ H
Ij�1I�j
I�j�1Ij

 !
þ Ij�1

I�j�1
� ln

Ij�1

I�j�1
� Ij

I�j
þ ln

Ij

I�j

6
Ij�1

I�j�1
� ln

Ij�1

I�j�1
� Ij

I�j
þ ln

Ij

I�j
ð5:12Þ

and similarly,

Bj�1

B�j�1
� Bj

B�j
�

Bj�1B�j
B�j�1Bj

þ 1 6
Bj�1

B�j�1
� ln

Bj�1

B�j�1
� Bj

B�j
þ ln

Bj

B�j
: ð5:13Þ

Let

xi ¼
Ii 1 6 i 6 n;

Bk i ¼ nþ k; 1 6 k 6 m:

�

Combining (5.7)–(5.13) and using the notation of xi and wij defined
in (5.5) gives

V 0 6 c1

Xn

j¼1

w1j
xj

x�j
� ln

xj

x�j
� x1

x�1
þ ln

x1

x�1

 !

þ c1

Xnþm

j¼nþ1

w1j
xj

x�j
� ln

xj

x�j
� x1

x�1
þ ln

x1

x�1

 !

þ
Xn

j¼2

cjwj;j�1
xj�1

x�j�1

� ln
xj�1

x�j�1

� xj

x�j
þ ln

xj

x�j

 !

þ cnþ1

Xn

j¼1

wnþ1;j
xj

x�j
� ln

xj

x�j
� xnþ1

x�nþ1
þ ln

xnþ1

x�nþ1

 !

þ
Xnþm

j¼nþ2

cjwj;j�1
xj�1

x�j�1

� ln
xj�1

x�j�1

� xj

x�j
þ ln

xj

x�j

 !

¼
Xnþm

i;j¼1

ciwij
xj

x�j
� ln

xj

x�j
� xi

x�i
þ ln

xi

x�i

 !
: ð5:14Þ

To show that V0 6 0, choose constants ci > 0 such that (5.14)
vanishes. Let ðG;WÞ be the weighted digraph (see Appendix A) with
the weight matrix W as given in (5.5). Let ci ¼

P
T 2Ti

wðTÞ be as
given in (A.1). Since W is irreducible, it follows that ci > 0 for all i.
Identity (A.2) from Appendix A yields

Xnþm

i;j¼1

ciwij
xj

x�j
� ln

xj

x�j
� xi

x�i
þ ln

xi

x�i

 !
� 0:

Therefore, V0 6 0 for all ðS; I1; . . . ; In;B1; . . . ;BmÞ 2 . Furthermore,
V0 = 0 implies that for some constant k > 0,

S ¼ S�; I1 ¼ kI�1; . . . ; In ¼ kI�n; B1 ¼ kB�1; . . . ; Bm ¼ kB�m;

using properties of H(x) and strong connectivity of the weighted
graph (G,A). Substituting these relations into the first two equations
of (2.1) yields

0 ¼ A� dS� � l1kI�1:

By the first two equations of (3.1), this last equation holds only at
k = 1, namely at P⁄. Therefore, the only invariant set in the set
{V0 = 0} is the singleton {P⁄}. By LaSalle’s Invariance Principle [25],
P⁄ is globally asymptotically stable in . As a consequence, P⁄ is also
unique. h

In the special case that fi(S, Ii) = /(S)wi(Ii) and gk(S,Bk)
= /(S)uk(Bk), choose U(S) = /(S) in assumption (B1), then condi-
tions (5.2) and (5.3) become

ðwiðIiÞ � wi I�i
� �
Þ wiðIiÞ

Ii
�

wi I�i
� �
I�i

� 	
6 0; Ii > 0; 1 6 i 6 n ð5:15Þ

and
ðukðBkÞ �uk B�k
� �
Þ ukðBkÞ

Bk
�

uk B�k
� �
B�k

� 	
6 0; Bk > 0; 1 6 k 6 m:

ð5:16Þ

Therefore, assumptions (B1)–(B2) hold if /(S), wi(Ii), uk(Bk), hi(Ii) are
increasing and /iðIiÞ

Ii
; ukðBkÞ

Bk
; hiðIiÞ

Ii
are decreasing functions. It can be

verified that all functions listed in Table 1 satisfy these assump-
tions, and thus our global stability result holds for those models.

The endemic equilibrium P⁄ can be found explicitly if n = m = 1,
with mass action incidence functions f(S, I) = bSI and g(S,B) = kSB,
and a linear function h(I) = nI with b, k, n positive constants [40].
In this case, when R0 ¼ b

l S0 þ kn
dl S0 > 1, system (2.1) admits an en-

demic equilibrium P⁄ = (S⁄, I⁄,B⁄), where S� ¼ S0
R0
; I� ¼ dS�ðR0�1Þ

l , and

B� ¼ nI�

d . Theorem 5.1 shows that P⁄ is unique and globally asymp-
totically stable, as also shown in [40, Proposition 3].

6. Final size of an epidemic

In the absence of recruitment and death, model (2.1) and (2.2) can
be applied to estimate the final size of a cholera epidemic. In this
section, assume that A = d = ai = 0, fi(S, Ii) = biSIi, and hi(Ii) = niIi, for
all 1 6 i 6 n. The indirect transmission gk(S,Bk) is assumed to be in
the form of mass action [40] or saturating incidence [7,14,31], that
is, either gk(S,Bk) = kkSBk, or gkðS;BkÞ ¼ kkS Bk

KkþBk
; Kk > 0, for all

1 6 k 6m. Without loss of generality, assume that the total popula-
tion N ¼ Sþ

Pn
i¼1Ii þ R � 1. The following lemma can be proved

similarly as the proof of Lemma 2 in [40]; biologically, it means that
disease outbreaks eventually ‘‘burn out’’ in the absence of birth and
death.

Lemma 6.1. Assume that all the above assumptions hold. Then,
Ii(t) ? 0, Bk(t) ? 0 for all 1 6 i 6 n, 1 6 k 6m, as t ?1.
6.1. Mass action

Assume that gk(S,Bk) = kkSBk for all 1 6 k 6m. The basic repro-
duction number R0, as defined in (3.2), becomes

R0 ¼
b1

c1
þ b2

c2
þ � � � þ bn

cn
þ k1

d1
þ � � � þ km

dm

� 	
n1

c1
þ � � � þ nn

cn

� 	
: ð6:1Þ

Let

ei ¼
Xi

j¼1

bj

cj
þ

Xi

j¼1

nj

cj

 !
�
Xm

j¼1

kj

dj

 !
; 1 6 i 6 n

and

�k ¼
Xm

j¼k

kj

dj
; 1 6 k 6 m:

Notice that en ¼ R0. Following [29,40], set

Q ¼ ln Sþ
Xn�1

j¼1

ejIjþ1 þ enRþ
Xm

j¼1

�jBj: ð6:2Þ

It can be verified that the derivative of Q along the model (2.1) and
(2.2) vanishes. Hence, using Lemma 6.1, it follows that

ln Sð1Þ þ enRð1Þ ¼ ln Sð0Þ þ
Xn�1

j¼1

ejIjþ1ð0Þ þ enRð0Þ þ
Xm

j¼1

�jBjð0Þ:

In the case that a small number of infectives or pathogen is initially
introduced, that is, S(0) � 1, Ii(0) � 0, 1 6 i 6 n, R(0) � 0, Bk(0) � 0,
1 6 k 6m, the final size of an epidemic satisfies the following
relation
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1� Rð1Þ ¼ expð�R0Rð1ÞÞ: ð6:3Þ

This relation agrees those in [29,40]. An explicit solution in terms of
the Lambert function for (6.3) can be found in [29, Appendix A].

6.2. Saturating incidence

Assume that gkðS; BkÞ ¼ kkS Bk
KkþBk

; Kk > 0, for all 1 6 k 6m. This
indirect incidence is an attempt to model, in a continuous way,
the fact that a relatively high level of pathogen is needed to devel-
op cholera; see [19] for a discontinuous gk used to model this fact.
Then the basic reproduction number is given by (6.1) but with dk

replaced by dk Kk, 1 6 k 6m. Defining ei and �k as in Section 6.1
but with dk replaced by dkKk, and taking Q as in (6.2), it can be ver-
ified that the derivative of Q along the model (2.1) and (2.2) is non-
negative. Hence,

ln Sð1Þ þ enRð1ÞP ln Sð0Þ þ
Xn�1

j¼1

ejIjþ1ð0Þ þ enRð0Þ þ
Xm

j¼1

�jBjð0Þ:

In the case that a small number of infectives or pathogen is initially
introduced, the final size of an epidemic satisfies the following
inequality.

1� Rð1ÞP expð�R0Rð1ÞÞ; ð6:4Þ

giving an upper bound on the final size R(1).

6.3. Simulations

From Sections 6.1 and 6.2, the final size of an epidemic may dif-
fer for mass action and saturating incidence. Numerical simulation
is employed to further investigate this difference created by inci-
dence functions. Consider the case when n = 1 and m = 1. As the dif-
ference appears in the term of indirect transmission, assume b = 0,
that is, ignore direct transmission. Simulations in Fig. 2 use param-
eters for c, n, d as in [14] (with the time unit of 1 day) and take k and
K so that the basic reproduction number R0 ¼ 2:7 is the same for
both incidence functions. These simulations show that mass action
creates a larger outbreak in the scales of the peak prevalence
maxt{I(t)}, the peak incidence maxt{kS(t)B(t)} or maxt

kSðtÞBðtÞ
KþBðtÞ

n o
,

and a slightly large outbreak size R(1), while saturating incidence
leads to a slightly longer outbreak period T = min{s : I(t) < 10�3,
"t P s}; see Table 2. Solving (6.3) with R0 ¼ 2:7 yields
R(1) � 0.9156, which approximately agrees with the outbreak size
for mass action and provides an upper bound from (6.4) for the
outbreak size for saturating incidence (see Table 2).
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Fig. 2. The outbreak of an epidemic using models with indirect transmission given by ma
mass action k = 0.18/100, giving R0 ¼ 2:7; for saturating incidence k = 0.18 and K = 100,
incidence functions.
Simulations in Fig. 3 demonstrate the effect of direct/indirect
transmission and heterogeneous infection stages when R0 is held
fixed. Consider the case when n = m = 2 and indirect transmission
is in the form of saturating incidence. Infectivity of the hyperinfec-
tious state B1 (freshly shed pathogen) is assumed to be 700 times
the infectivity of the lower-infectious state B2 (pathogen that have
stayed in the environment for a while) [14]. Curve 1 ignores direct
person-to-person transmission. Parameters for ki, Ki, di, ni, ci are ta-
ken from [14], giving R0 ¼ 15:825. Person-to-person transmission
is included in Curve 2, but equal infectivity for individuals in I1 and
I2 is assumed (b1 = b2). Parameter values for ki are reduced such
that direct and indirect transmission contribute equally and
R0 ¼ 15:825 is held fixed. Curve 3 regards I1 as a latent stage (indi-
viduals in this stage cannot directly infect susceptible individuals
but can shed pathogen into the environment) and keeps the equal
contribution towards R0 ¼ 15:825 from direct and indirect trans-
mission. Simulations show that direct person-to-person transmis-
sion provides a fast route for cholera spread and produces a
higher peak in prevalence maxt {I1(t) + I2(t)}. Heterogeneity in
infectious host individuals may decelerate the disease spread and
reduce the peak in prevalence.

7. Discussion

The model (2.1) proposed in this paper is a general compart-
mental model for the transmission of cholera as well as other
waterborne diseases. Model (2.1) incorporates both direct and
indirect transmission, non-linear incidence, multiple infectious
states of the pathogen, and multiple infection stages of infectious
individuals. The model can serve as a general framework for mod-
eling the spread and transmission of infectious diseases, specially
diseases with multiple transmission routes. For example, both di-
rect transmission among rabbits and indirect transmission via
free-living virus particles have been observed in the spread of rab-
bit calicivirus disease (RCD) [2].

Model (2.1) includes as special cases many cholera models in
the literature; see Table 1 for the summary. It can be easily verified
that our assumptions (H1)–(H7), (A1)–(A4), and (B1)–(B2) hold for all
models summarized in Table 1. Therefore, Theorems 4.1 and 5.1
extend the global stability results in [7,38–40] to our general mod-
el (2.1). Our results, for the first time, completely establish the glo-
bal dynamics of the cholera model with a hyperinfectivity state
[14], and also for the multi-stage model [40, Appendix].

The global stability results in [30, Theorem 4 in Supporting
Information] and [39, Theorem 4.13] are special cases of our Theo-
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ss action or saturating incidence. Parameter values: b = 0, c = 0.2, n = 10, d = 1/30; for
giving R0 ¼ 2:7. Initial conditions: S(0) = 0.999, I(0) = 0.001, R(0) = B(0) = 0 for both



Table 2
Summary of numerical results in Fig. 2.

Mass action Saturating incidence Differencea (%)

Outbreak size 0.9157 0.8968 �2.1
Peak prevalence 0.0451 0.0403 �10.6
Peak incidence 0.0091 0.0081 �11.0
Outbreak period (days) 344 350 +1.7

a The difference is calculated by subtracting the mass action value from the
saturating incidence value and dividing by the mass action value.
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Fig. 3. The outbreak of an epidemic using model (2.1) with indirect transmission
given by saturating incidence. Parameter values: c1 = 1/2, c2 = 1/3, K2 = 100, K1 = K2/
700, n1 = n2 = 10, d1 = 24/5, and d2 = 1/30. Curve 1 (no direct transmission):
b1 = b2 = 0 and k1 = k2 = 0.18, giving R0 ¼ 15:825. Curve 2 (direct transmission with
homogeneous infection stages): b1 = b2 = 1.5825 and k1 = k2 = 0.09, giving
R0 ¼ 15:825. Curve 3 (direct transmission with heterogeneous infection stages):
b1 = 0, b2 = 2.6375, and k1 = k2 = 0.09, giving R0 ¼ 15:825. Initial conditions:
S(0) = 0.999, I1(0) = 0.001, I2(0) = R(0) = B1(0) = B2(0) = 0 for all three cases.
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rem 5.1. We note that the proofs of global stability of the endemic
equilibrium in [30, Theorem 4 in Supporting Information] and [39,
Theorem 4.13] are in doubt as the authors apply a constant matrix
result to a nonconstant matrix. For example, the matrix A defined
in [39, Eq. (4.16)] is Volterra-Lyapunov stable for each fixed pair
(I,B), that is, there exists a positive 3 � 3 diagonal matrix
M = M(I,B) = diag{m1(I,B), m2(I,B), m3(I,B)} such that MA + ATM is
negative definite. As a consequence, Theorem 4.12 in [39] holds
for each fixed pair (I,B). However, since the positive coefficients
mi, 1 6 i 63, possibly depend on (I,B), the derivations in Eqs.
(4.12), (4.13), (4.16) in [39] may fail. Indeed the counterexample
in [6] to the Markus-Yamabe conjecture has

A ¼ AðxÞ ¼
�1 0 ðx1 þ x2x3Þ2

�x1 �1 �x2
2x3 � 2x1x2

0 0 �1

0
B@

1
CA;

and A is Volterra-Lyapunov stable for each fixed x = (x1,x2,x3); how-
ever, there does not exist a constant positive diagonal matrix M
such that MA + ATM is negative definite. Furthermore, there exists
a solution of dx/dt = Ax that tends to infinity as t tends to infinity
[6, Theorem 1.1].

Model (2.1) can also be regarded as a general virus dynamics
model to describe the in vivo infection process of many viruses
such as human immunodeficiency virus type I (HIV-I), hepatitis B
virus (HBV), hepatitis C virus (HCV), and human T-cell lymphotrop-
ic virus I (HTLV-I), see [33]. In this case, the total target cells are
divided into a healthy target cell compartment S, n infected target
cell compartments representing different infectious stages Ii,
1 6 i 6 n (see [21]), while the virions are categorized into m
compartments according to the level of infectivity (see [30]). In
particular, model (2.1) includes several virus dynamics models as
special cases, such as [21, Eqs. (1.1) and (2.1)], [32, Eq. (1)] and
[36, Eq. (1)]. Theorems 4.1 and 5.1 extend the global stability re-
sults in [21,36] to the general virus dynamics model (2.1) with
non-linear incidence.

Stage progression (SP) models have been used in the literature to
model the transmission and spread of infectious diseases that have a
long infectious period and varying infectivity in time such as HIV/
AIDS, for example, see [11,16,35]. The incidence of SP models is usu-
ally assumed to be mass action. Ignoring indirect transmission, mod-
el (2.1) becomes an SP model with general incidence functions.
Global stability results Theorems 4.1 and 5.1 generalize those in
[11] for mass action to general incidence functions.

One of the hypotheses in model (2.1) is that individuals recov-
ering from cholera obtain permanent immunity, and thus model
(2.1) and (2.2) is of SIR type. SIRS-type cholera models, in which re-
moved individuals are assumed to lose immunity after a certain
time and become susceptible, have also been seen in the literature,
for example, see [1,9,20]. Model (2.1) and (2.2) can be easily mod-
ified to include temporary immunity and become an SIRS-type
model. For the modified SIRS-type cholera model, the basic repro-
duction numberR0 has the same expression as defined in (3.2); the
global stability of the disease free equilibrium can be proved in the
same way as the proof of Theorem 4.1 when R0 6 1. Biologically,
the disease dies out if R0 6 1, and persists if R0 > 1. In the latter
case, the uniqueness and global stability of the endemic equilib-
rium for the modified SIRS-type cholera model remain open.

Since the general functions in (2.1) allows the possibility of
fi � 0 or hi � 0 for some infection stage i, our model can be applied
to measure the effectiveness of disease control strategies such as
quarantine and isolation. Vaccination can be also incorporated into
(2.1) and other cholera models in [1,5,7,9,14,19,20,31,38–41] to as-
sist public health planning to control the disease, although social
and economic factors, which are not included in these models,
are important for control strategies, see [17,18,28].
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Appendix A. Combinatorial identity

Let ðG;WÞ be a weighted digraph with N P 2 vertices, where
W = (wij) is the N � N weight matrix. Weight wij is positive if the di-
rected arc(j, i) from vertex j to vertex i exists, otherwise wij = 0. Let
Ti be the set of all spanning trees of ðG;WÞ rooted at vertex i. For
T 2 Ti, the weight of T , denoted by wðT Þ, is the product of weights
on all arcs of T . Let

ci ¼
X
T 2Ti

wðT Þ; i ¼ 1;2; . . . ;N: ðA:1Þ

Then ci P 0, and for any family of functions fGiðxiÞgN
i¼1, the following

identity holds

XN

i;j¼1

ciwijGiðxiÞ ¼
XN

i;j¼1

ciwijGjðxjÞ: ðA:2Þ

If W is irreducible, then ci > 0 for i = 1,2, . . . ,N. We refer the reader to
[27] for the proof of (A.2).



126 Z. Shuai, P. van den Driessche / Mathematical Biosciences 234 (2011) 118–126
References

[1] J.R. Andrews, S. Basu, Transmission dynamics and control of cholera in Haiti:
an epidemic model, Lancet 377 (2011) 1248.

[2] N.D. Barlow, J.M. Kean, Simple models for the impact of rabbit calicivirus
disease (RCD) on Australasian rabbits, Ecol. Model. 109 (1998) 225.

[3] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
Academic Press, New York, 1979.

[4] N.P. Bhatia, G.P. Szegö, Dynamical Systems: Stability Theory and Applications,
Lecture Notes in Mathematics, vol. 35, Springer, Berlin, 1967.

[5] V. Capasso, S.L. Paveri-Fontana, A mathematical model for the 1973 cholera
epidemic in the European Mediterranean region, Rev. Epid. San. Publ. 27
(1979) 121.

[6] A. Cima, A. van den Essen, A. Gasull, E. Hubbers, F. Mañosas, A polynomial
counterexample to the Markus-Yamabe conjecture, Adv. Math. 131 (1997)
453.

[7] C.T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic
reservoir, BMC Infect. Dis. 1 (1) (2001).

[8] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the
computation of the basic reproduction ratio R0 in models for infectious
diseases in heterogeneous populations, J. Math. Biol. 28 (1990) 365.

[9] J.N.S. Eisenberg, M.A. Brookhart, G. Rice, M. Brown, J.M. Colford Jr., Disease
transmission models for public health decision making: analysis of epidemic
and endemic conditions caused by waterborne pathogens, Environ. Health
Perspect. 110 (2002) 783.

[10] H.I. Freedman, M.X. Tang, S.G. Ruan, Uniform persistence and flows near a
closed positively invariant set, J. Dynam. Differ. Eqn. 6 (1994) 583.

[11] H. Guo, M.Y. Li, Global dynamics of a staged progression model for infectious
diseases, Math. Biosci. Eng. 3 (2006) 513.

[12] H. Guo, M.Y. Li, Z. Shuai, Global stability of the endemic equilibrium of
multigroup SIR epidemic models, Can. Appl. Math. Q. 14 (2006) 259.

[13] H. Guo, M.Y. Li, Z. Shuai, A graph-theoretic approach to the method of global
Lyapunov functions, Proc. Amer. Math. Soc. 136 (2008) 2793.

[14] D.M. Hartley, J.G. Morris Jr., D.L. Smith, Hyperinfectivity: a critical element in
the ability of V. cholerae to cause epidemics?, PLOS Med 3 (2006) 63.

[15] D.L. Heymann (Ed.), Control of Communicable Diseases Manual, nineteenth
ed., American Public Health Association, Washington, 2008.

[16] J.M. Hyman, J. Li, E.A. Stanley, The differential infectivity and staged
progression models for the transmission of HIV, Math. Biosci. 155 (1999)
77.

[17] M. Jeuland, J. Cook, C. Poulos, J. Clemens, D. Whittington, Cost-effectiveness of
new-generation oral cholera vaccines: a multisite analysis, Val. Health 12
(2009) 899.

[18] M. Jeuland, M. Lucas, J. Clemens, D. Whittington, A cost-benefit analysis of
cholera vaccination programs in Beira, Mozambique, World Bank Econ. Rev. 23
(2009) 235.

[19] R.I. Joh, H. Wang, H. Weiss, J.S. Weitz, Dynamics of indirectly transmitted
infectious diseases with immunological threshold, Bull. Math. Biol. 71 (2009)
845.

[20] A.A. King, E.L. Ionides, M. Pascual, M.J. Bouma, Inapparent infections and
cholera dynamics, Nature 454 (2008) 877.

[21] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math.
Biol. 66 (2004) 879.
[22] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS
epidemiological models with nonlinear transmission, Bull. Math. Biol. 68
(2006) 615.

[23] A. Korobeinikov, Global properties of infectious disease models with nonlinear
incidence, Bull. Math. Biol. 69 (2007) 1871.

[24] A. Korobeinikov, P.K. Maini, A Lyapunov function and global properties for SIR
and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng.
1 (2004) 57.

[25] J.P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in
Applied Mathematics, SIAM, Philadelphia, 1976.

[26] M.Y. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with
varying total population size, Math. Biosci. 160 (1999) 191.

[27] M.Y. Li, Z. Shuai, Global-stability problems for coupled systems of differential
equations on networks, J. Differ. Eqn. 248 (2010) 1.

[28] J. Lundkvist, R. Steffen, B. Jönsson, Cost-benefit of WC/rBS oral cholera vaccine
for vaccination against ETEC-caused travelers’ diarrhea, J. Travel Med. 16
(2009) 28.

[29] J. Ma, D.J.D. Earn, Generality of the final size formula for an epidemic of a
newly invading infectious disease, Bull. Math. Biol. 68 (2006) 679.

[30] D.M. Michele, M.R. Ruy, M. Martin, D.D. Ho, A.S. Perelson, Modeling the long-
term control of viremia in HIV-1 infected patients treated with antiretroviral
therapy, Math. Biosci. 188 (2004) 47.

[31] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, J.G. Morris Jr., Estimating
the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe,
Proc. Natl. Acad. Sci. USA 108 (2011) 8767.

[32] M.A. Nowak, S. Bonhoeffer, A.M. Hill, R. Boehme, H.C. Thomas, H. McDade, Viral
dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA 93 (1996)
4398.

[33] M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Principles of
Immunology and Virology, Oxford University, London, 2000.

[34] T.K. Sengupta, R.K. Nandy, S. Mukhopadyay, R.H. Hall, V. Sathyamoorthy, A.C.
Ghose, Characterization of a 20-k Da pilus protein expressed by a
diarrheogenic strain of non-O1/non-O139 Vibrio cholerae, FEMS Microbiol.
Lett. 160 (1998) 183.

[35] C.P. Simon, J.A. Jacquez, Reproduction numbers and the stability of equilibria
of SI models for heterogeneous populations, SIAM J. Appl. Math. 52 (1992) 541.

[36] H.L. Smith, P. De Leenheer, Virus dynamics: a global analysis, SIAM J. Appl.
Math. 63 (2003) 1313.

[37] H.L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial
Competition, Cambridge University, Cambridge, 1995.

[38] J.P. Tian, S. Liao, J. Wang, Dynamical analysis and control strategies in
modeling cholera, preprint. <www.math.ttu.edu/past/redraider2010/Tian2.
pdf>, 2010 (accessed 14.12.10).

[39] J.P. Tian, J. Wang, Global stability for cholera epidemic models, Math. Biosci.
232 (2011) 31.

[40] J.H. Tien, D.J.D. Earn, Multiple transmission pathways and disease dynamics in
a waterborne pathogen model, Bull. Math. Biol. 72 (2010) 1506.

[41] A.R. Tuite, J. Tien, M. Eisenberg, D.J.D. Earn, J. Ma, D.N. Fisman, Cholera
epidemic in Haiti, 2010: using a transmission model to explain spatial spread
of disease and identify optimal control interventions, Ann. Internal Med. 154
(2011) 593.

[42] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission, Math.
Biosci. 180 (2002) 29.

http://www.math.ttu.edu/past/redraider2010/Tian2.pdf
http://www.math.ttu.edu/past/redraider2010/Tian2.pdf

	Global dynamics of cholera models with differential infectivity
	1 Introduction
	2 Model formulation
	3 Equilibria and the basic reproduction number
	4 Global dynamics when ? 
	5 Global dynamics when [$]{{cal{R}}}_{0}?1[$]
	6 Final size of an epidemic
	6.1 Mass action
	6.2 Saturating incidence
	6.3 Simulations

	7 Discussion
	Acknowledgments
	Appendix A Combinatorial identity
	References


