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Abstract The ability of disease to invade a community network that is connected
by environmental pathogen movement is examined. Each community is modeled by
a susceptible–infectious–recovered (SIR) framework that includes an environmental
pathogen reservoir, and the communities are connected by pathogen movement on a
strongly connected, weighted, directed graph. Disease invasibility is determined by the
basic reproduction number R0 for the domain. The domain R0 is computed through
a Laurent series expansion, with perturbation parameter corresponding to the ratio
of the pathogen decay rate to the rate of water movement. When movement is fast
relative to decay, R0 is determined by the product of two weighted averages of the
community characteristics. The weights in these averages correspond to the network
structure through the rooted spanning trees of the weighted, directed graph. Clustering
of disease “hot spots” influences disease invasibility. In particular, clustering hot spots
together according to a generalization of the group inverse of the Laplacian matrix
facilitates disease invasion.
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1 Introduction

Consider a network of communities (patches), connected to one another according
to a weighted, directed graph (digraph). When can a disease invade this network?
Intuitively, the answer to this question must depend on both the network structure as
well as on the properties of the individual patches. The purpose of this paper is to make
this relationship explicit for a large class of networks and patch types, by examining
the dependence of the basic reproduction number R0 for the domain as a function of
the network structure and patch characteristics.

We consider community networks where the disease dynamics in each patch are
governed by an SIR (susceptible–infectious–recovered) framework together with an
environmental (free-living) pathogen state, through which the disease is transmitted.
Our motivating disease is cholera, with free-living pathogen residing in water. As
such, we subsequently refer to the environmental pathogen reservoir as water, but the
modeling framework considered here can be applied to other waterborne diseases, or
to pathogens with a free-living, non-aquatic state (for example, in soil or fomites).
Infectious individuals shed pathogen into the water compartment within their cor-
responding patch. We make minimal assumptions on the form of the disease trans-
mission and shedding functions. Regarding network structure, there are two types of
movement networks to consider: movement of individuals, and pathogen movement
through the environment (water). The role these networks play in the spread of cholera
is an important public health consideration (Dowell and Braden 2011; Piarroux et al.
2011), and recent modeling work has begun to examine this question using a variety
of approaches (Bertuzzo et al. 2010; Chao et al. 2011; Eisenberg et al. 2013). We
make two assumptions on these networks: the water network is strongly connected,
and infectious individuals are too sick to move. Other properties of the network are
arbitrary.

Our analysis exploits the presence of two time scales in the system: the movement
rate in the water network, and the pathogen decay rate in the water. In particular,
our computation of the basic reproduction number R0 for the domain hinges upon
a Laurent series expansion of a perturbation of the Laplacian matrix for the water
network, with the perturbation parameter ε corresponding to the ratio of the pathogen
decay rate to the rate of water movement. Small ε values thus correspond to rapid
movement relative to decay. Our main mathematical results are the following:

(1) To lowest order in ε, invasibility is determined by two weighted averages of patch
characteristics: the first a measure of transmission within patch, and second the
pathogen decay rates in each patch. The weights in both these averages explicitly
reflect the network structure through the rooted spanning trees of the weighted,
directed graph.
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Disease invasion on community networks 1067

(2) Higher order corrections correspond to a generalization of the group inverse of the
Laplacian matrix for the water network. This generalized group inverse is related
to how the vertices (communities) in the network can be grouped together into
meta-communities.

These mathematical results in turn give the following biological insights on how
the placement of disease “hot spots” in a network affects the ability of a disease to
invade:

(i) Patches that are the roots of rooted spanning trees with the largest weight (loosely
speaking, patches with the most net “inflow”) in the network have the greatest
impact on invasibility.

(ii) Clustering disease hot spots together with respect to meta-communities increases
the ability of the disease to invade. The strength of this clustering effect increases
as the disparity in patch risk between hot spots and non-hot spots increases.

The remainder of this paper is organized as follows. Precise description of the
modeling framework and accompanying assumptions are given in Sect. 2. In Sect. 3
the Laurent series for the Laplacian matrix is computed, based upon the elegant work
of Langenhop (Langenhop 1971) on nearly singular matrices. In Sect. 4 the domain
R0 is examined in terms of this series. These two sections are the analytical heart of the
paper. Examples of specific networks are given in Sect. 5. These are cartoon networks,
chosen to illustrate points (i)–(ii) listed above. The paper concludes with a discussion
in Sect. 6. Two appendices are included: Appendix A contains basic terminology and
standard graph-theoretic results used throughout the paper, and Appendix B presents
mathematical details on the group inverse and its generalization.

2 Modeling framework

2.1 Network structure and patch dynamics

Patch dynamics are assumed to correspond to a “SIWR” (susceptible–infectious–
water–recovered) type ordinary differential equation (ODE) model, a generalization
of the model for cholera formulated by Codeço (2001). The human population at each
patch is divided into susceptible, infectious, and recovered compartments. Infection
in patch i occurs through contact with an environmental water compartment at rate
gi (Si , Wi ); direct (human–human) transmission is ignored. Humans in patch i recover
at rate γi . Loss of infection-derived immunity (σi ) and disease-induced mortality (αi )
are both included in the model, as well as natural mortality (di ) and susceptible recruit-
ment (Ai ). The water compartment in patch i is in turn contaminated by pathogen
shedding from infectious individuals at rate hi (Ii ), and pathogen decays at rate δi .
All parameters are allowed to vary between patches. A list of the model parameters is
given in Table 1.

The individual patches are connected through three different networks: the move-
ment of susceptible and recovered individuals, and the movement of water. Infectious
individuals are assumed to be too sick to move. Let MS = [mS

i j ], MR = [m R
i j ], and

MW = [mW
i j ] denote the corresponding movement matrices, with m#

i j giving the move-
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Table 1 Model parameters
Ai > 0 Susceptible recruitment in patch i

di > 0 Natural death rate in patch i

αi ≥ 0 Disease-induced death rate in patch i

γi > 0 Recovery rate of infectious individuals in patch i

σi ≥ 0 Rate of loss of immunity of recovered
individuals in patch i

δi > 0 Pathogen decay rate in patch i

m#
i j ≥ 0 Movement rate from patch j to patch i of

susceptible / recovered individuals or pathogen

gi (Si , Wi ) ≥ 0 Incidence function for waterborne disease
transmission in patch i

hi (Ii ) ≥ 0 Pathogen shedding rate function in patch i

ment rate from patch j to i and m#
i i = 0 in compartment # ∈ {S, R, W }. We then have

the following system:

Ṡi = Ai − gi (Si , Wi ) − di Si + σi Ri + n
�
j=1

(
mS

i j S j − mS
ji Si

)

İi = gi (Si , Wi ) − (di + αi + γi )Ii

Ṙi = γi Ii − (di + σi )Ri + n
�
j=1

(
m R

i j R j − m R
ji Ri

)

Ẇi = hi (Ii ) − δi Wi + n
�
j=1

(
mW

i j W j − mW
ji Wi

)
, (1)

for i = 1, . . . , n, where n is the number of patches, and . = d
dt . The parameters

Ai , di , γi and δi are all assumed positive, and the αi , σi nonnegative. A schematic is
shown in Fig. 1.

We make the following assumptions throughout:

A1: MW is irreducible.
A2: Infectious individuals do not move between patches.
A3: The incidence functions gi are differentiable, and satisfy gi (Si , Wi ) ≥ 0, gi (Si , 0)

= gi (0, Wi ) = 0 for each i .
A4: The shedding functions hi are differentiable, with hi (Ii ) ≥ 0 and hi (0) = 0 for

all i .

Assumption A1 states that the water network is strongly connected. This is a reasonable
assumption for many situations, including wetlands, tidal rivers, and settings where
both diffusion and advection play significant roles. The assumption that infectious
individuals do not move (A2) is reasonable for individuals with symptomatic cholera,
as the severe diarrhea associated with the disease likely restricts movement. Mild
and asymptomatic cholera cases, however, are common (Kaper et al. 1995), and the
extent that asymptomatic infection contributes to spatial spread of the disease is not
well known. We note that the techniques used here can be applied to settings where
pathogen movement occurs solely through human movement, i.e. where infectious
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a

c d

b

Fig. 1 Modeling framework schematic. a Communities in a landscape, connected by a water network.
Size of the red circles indicates disease transmission within each patch, with larger circles corresponding
to disease hot spots. b Flow diagram showing within patch dynamics. Dashed lines indicate movement
of water (blue) and healthy individuals (green) between patches. c A sample water network. d A sample
movement network for healthy individuals (infectious individuals are assumed not to move). Thickness of
the arrows in c and d correspond to the weight of the arc between patches (color figure online)

individuals move and the environmental network plays a negligible role in pathogen
spatial spread. Assumptions A3 and A4 are satisfied by most biologically reasonable
incidence and shedding functions, such as mass action and simple saturating incidence,
and linear shedding.

Under these assumptions, a solution of system (1) with nonnegative initial condi-
tions is unique, nonnegative, and bounded. System (1) admits a unique disease free
equilibrium (DFE), given by Si = S0

i = Ai/di , Ii = Ri = Wi = 0 (Eisenberg et al.
2013). The ability of disease to invade the DFE is determined by the basic reproduc-
tion number, which in turn involves the linearized incidence and shedding rates at the
DFE. We make the following additional assumption on the incidence functions:
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1070 J. H. Tien et al.

A5: When evaluated at the disease free equilibrium, ∂gi
∂Wi

> 0 for all i .

Assumption A5 is a technical assumption that allows a similarity transform useful
for our analysis (see Sect. 2.2). This assumption will be satisfied if the reproduction
number of each patch in isolation is nonzero.

The basic reproduction number for the domain can then be computed as the spectral
radius of the “next generation” matrix FV −1 (Diekmann and Heesterbeek 2000; van
den Driessche and Watmough 2002). For system (1), this gives the following form for
the domain R0:

R0 = ρ(FV −1)

= ρ(Dq G−1
W Dr G−1

I ), (2)

where

GW =

⎛
⎜⎜⎜⎜⎝

δ1 + �n
j=1mW

j1 −mW
12 . . . −mW

1n

−mW
21 δ2 + �n

j=1mW
j2 . . . −mW

2n
...

...
. . .

...

−mW
n1 −mW

n2 . . . δn + �n
j=1mW

jn

⎞
⎟⎟⎟⎟⎠

, (3)

with mW
j j = 0 for j = 1, . . . , n, and

G I = diag{di + αi + γi }. (4)

Note that GW can be written as diag{δi } + LW , where LW is the Laplacian matrix
associated with MW , i.e. the off-diagonal entries of LW are defined as the negative of
the corresponding off-diagonal entries of MW , while the diagonal entries of LW are
chosen such that the sum of the entries in each column of LW equals zero. Further
details on the Laplacian matrix are given in Appendix A. As all off-diagonal entries of
GW are nonpositive (i.e. the Z sign pattern) and the sum of the entries of each column
is positive, GW is a non-singular M-matrix and G−1

W ≥ 0 (Berman and Plemmons
1979, p. 137). The linearized incidence and shedding at the DFE are given by the
diagonal matrices Dq and Dr :

Dq = diag{qi }, with qi = ∂gi (S0
i , 0)

∂Wi
, (5)

Dr = diag{ri }, with ri = h′
i (0), (6)

where S0 denotes the vector of susceptibles at the disease free equilibrium. Detailed
analysis of equilibria and R0 for a version of (1) that includes direct transmission
within patches is given in Eisenberg et al. (2013).

The next generation matrix can also be used to compute the basic reproduction
number R(i)

0 of patch i in isolation, i.e. system (1) with MS = MR = MW = 0:

R(i)
0 = 1

δi

qi ri

di + αi + γi
. (7)
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Disease invasion on community networks 1071

This patch reproduction number is the product of the expected pathogen lifetime
in the environment 1/δi times a “transmission rate” qiri/(di + αi + γi ). These terms
will be relevant when further considering R0 for the entire domain.

2.2 Time scales, perturbation parameter ε, and notation

Let dW denote a characteristic rate of water movement across the network, such that
MW = dW M̄W . For example, dW can be ‖MW ‖ for some matrix norm. Let L denote the
Laplacian matrix corresponding to the scaled water movement matrix M̄W , τ = dW t ,
and ε = δ

dW
, where δ = maxi δi . Let G denote the transfer rate matrix GW in scaled

time:

G = L + εD, with (8)

D = diag

{
δi

δ

}
. (9)

From (2), the next generation matrix is then given by

FV −1 = Dq G−1 Dr G−1
I

= diag

{
qi

dW

}
(L + εD)−1 diag

{
ri

di + αi + γi

}
. (10)

The Laplacian matrix L is a singular M-matrix, and by assumption A1 has a one
dimensional nullspace (Guo et al. 2006; Moon 1970). Thus for ε small, G = L + εD
can be regarded as a perturbation of the singular matrix L . Laurent series expansions
for nearly singular matrices have been considered by several authors (e.g. Avrachenkov
et al. 2001; Langenhop 1971; Rothblum 1981; Schweitzer and Stewart 1993). Using
the approach of Langenhop (1971), we show in Sect. 3 that the Laurent series for G−1

has a simple pole:

G−1 = (L + εD)−1

= 1

ε
X−1 + X0 + εX1 + . . . (11)

Then

FV −1 = diag{qi }
(

1

δ
X−1 + 1

dW
X0 + δ

d2
W

X1 + . . .

)
diag

{
ri

di + αi + γi

}
. (12)

At times, it will be convenient to work with the matrix ˜FV −1 = G−1 Dr G−1
I Dq .

Note that ˜FV −1 and FV −1 are similar matrices, with ˜FV −1 = D−1
q FV −1 Dq . The

corresponding expression for ˜FV −1 in terms of the Laurent series expansion is

˜FV −1 =
(

1

δ
X−1 + 1

dW
X0 + δ

d2
W

X1 + . . .

)
diag

{
qiri

di + αi + γi

}
. (13)
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Table 2 Summary of notation
GW Transfer matrix for the water compartments

G Transfer matrix for the water compartments in scaled
time

L Laplacian matrix of G in scaled time

D Diagonal matrix of scaled pathogen decay rates

δ Maximum pathogen decay rate

dW Characteristic rate of water movement

ε Ratio of rates of decay to movement, δ/dW

Xi Terms of the Laurent series expansion for G−1

u Basis for ker L , with u positive and
∑n

i=1 ui = 1

δ̂ Average pathogen decay rate with respect to
δ̂ = ∑n

i=1 δi ui , u

The terms of the Laurent series depend heavily upon the nullspace of L . We use
u ∈ R

n to denote a basis for ker L , normalized so that
∑n

i=1 ui = 1. It follows from
A1 and the matrix tree theorem (Moon 1970; see also Theorem 2 in Appendix A) that
all components of u can be taken to be positive, so we assume this throughout.

Table 2 summarizes some of the notation used repeatedly in the remainder of the
paper.

3 Terms of the Laurent series expansion

We follow the approach of Langenhop (1971) to compute the terms of the Laurent
series for (L + εD)−1 in (11). In addition to range L and ker L , the following spaces
are fundamental to Langenhop’s construction:

N1,0 = {x ∈ R

n : Dx ∈ range L}
R1,0 = {Dx : x ∈ ker L}
N0,1 = {x ∈ R

n : Lx ∈ R1,0}
R0,1 = {Lx : x ∈ N1,0} (14)

We assume throughout that the network consists of a single strongly connected
component (assumption A1), and thus the Laplacian matrix L has a one dimensional
nullspace. The perturbation to L is of the form εD, where D has full rank. Langenhop’s
results in this setting gives the following result.

Lemma 1 There exists a convergent Laurent series for (L + εD)−1 in a punctured
neighborhood of 0. This Laurent series has a simple pole.

Proof The pole is simple if N0,1 and ker L coincide (this criterion determines μ = 0
in equation (3.1) of Langenhop (1971), corresponding to a simple pole). Consider any
x ∈ N0,1. Then there exists a scalar α such that
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Lx = α

⎛
⎜⎝

δ1u1
...

δnun

⎞
⎟⎠ , (15)

where u = (u1, . . . , un)T is a positive basis for ker L with
∑n

i=1 ui = 1. Multiplying
both sides of (15) by the row vector (1, . . . , 1) and noting that each column of L sums
to zero gives

0 = αδ̂, (16)

where δ̂ = ∑n
i=1 δi ui . Since δ̂ > 0, it follows that α = 0, and thus x ∈ ker L

and N0,1 ⊆ ker L . On the other hand, let x ∈ ker L . Then Lx = 0 ∈ R1,0, giving
ker L ⊆ N0,1. Thus N0,1 and ker L coincide and the pole is simple. Finally, as the
matrix D has full rank by assumption, ker D∩ker L = {0}. Theorem 4.1 of Langenhop
(1971) then gives the convergence of the Laurent series in a punctured neighborhood
of 0. �	

Our computation of the terms in the Laurent series is based on the following facts,
due to Langenhop:

Theorem 1 (Langenhop 1971, Lemma 3.11, Definition 4.1 and Lemma 4.1)

(a) R

n = N1,0 ⊕ ker L.
(b) R

n = R1,0 ⊕ range L.
(c) L is a bijection from N1,0 onto range L, and D is a bijection from ker L onto R1,0.
(d) X−1 D is a projection onto ker L, which sends N1,0 to 0.
(e) X0 L is a projection on N1,0, and X0 sends R1,0 to 0.

Multiplying G = L + εD by the expansion (11) for G−1, collecting powers of ε,
and setting equal to the identity matrix I d gives the following equations:

(ε−1) L X−1 = 0
(ε0) L X0 + DX−1 = I d
(ε1) L X1 + DX0 = 0
(ε2) L X2 + DX1 = 0

...

(17)

The (ε−1) equation in (17) will be used for computing X−1.
We also use the concept of the index of a square matrix, defined as the smallest

integer k such that rank Lk = rank Lk+1. For networks with a single component, zero
is a simple eigenvalue of L . This implies that L has index 1 (e.g. this can be seen by
considering the Jordan form of L). For a matrix M of index �, range M�∩ker M� = {0}
(e.g. Ben-Israel and Greville 2003, p. 155). Thus range L and ker L are complementary
spaces, and R

n = ker L ⊕ range L . With these preliminaries out of the way, we are
ready to compute the terms of the Laurent series for (L + εD)−1.
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3.1 Singular term X−1

From the (ε−1) equation in (17), each column of X−1 must be a multiple of u. Let c j u
denote the j th column of X−1. To determine the c j , note that X−1 D is a projection
onto ker L , which sends N1,0 to 0 (Theorem 1d). Setting X−1 Du = u and multiplying
both sides by the row vector (1, . . . , 1) gives

δ =
n∑

j=1

c jδ j u j . (18)

As D has full rank, each column of L is in the image of D, i.e. there exists x j such
that Dx j is equal to the j th column of L for any j . As the columns of L are in range L ,
it follows that x j ∈ N1,0, and thus 0 = X−1 Dx j = X−1Le j for j = 1, . . . , n,
giving X−1L = 0. Multiplying both sides by the row vector (1, . . . , 1) and using∑n

j=1 u j = 1 gives
(c1, . . . , cn)L = 0. (19)

Thus (c1, . . . , cn) is a left nullvector of L . However, L has a one dimensional left
nullspace, and (1, . . . , 1) is a left nullvector of L , giving ci = c j for all i, j . Thus the
columns of X−1 are identically equal to cu, for some constant c. Setting c j = c in
(18) and solving for c, we have

c = δ

δ̂
, (20)

where δ̂ = ∑n
i=1 δi ui as in the proof of Lemma 1. Thus we have shown the following

result.

Proposition 1 The singular term in the Laurent expansion for G−1 = (L + εD)−1 is
given by X−1 = δ

δ̂
U, where U has identical columns corresponding to u.

Note that a restricted case of this result is proved by using cofactors in Eisenberg
et al. (2013, Lemma 4.3).

3.2 Zeroth order term X0.

The two criteria defining X0 in Theorem 1(e) are that X0 is a left inverse of L restricted
to N1,0, and that X0 send R1,0 to 0. We first construct a map satisfying the first criterion,
and then modify it to have the appropriate zero set.

The following three lemmas construct a left inverse of L restricted to N1,0.

Lemma 2 I d − X−1 D is a projection onto N1,0, which maps ker L to 0.

Proof Theorem 1(d) gives that X−1 D is a projection onto ker L , which sends N1,0 to
0. The result then follows. �	
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Lemma 3 L − X−1 D is nonsingular.

Proof Let x satisfy (L − X−1 D)x = 0. Then Lx = X−1 Dx . As X−1 D is a projection
onto ker L , X−1 Dx ∈ ker L and thus Lx ∈ ker L . But Lx also belongs to the range of
L . As L has index 1, range L and ker L are complementary spaces, so Lx = 0. Thus
x is in the kernel of L . Hence 0 = Lx = X−1 Dx = x , showing that (L − X−1 D) is
nonsingular. �	
Lemma 4 For all x ∈ N1,0, (I d − X−1 D)(L − X−1 D)−1Lx = x.

Proof Let x ∈ N1,0. As X−1 D sends N1,0 to 0 by Theorem 1(d), (L − X−1 D)x = Lx
and thus (L − X−1 D)−1Lx = x for all x ∈ N1,0. The result then follows from
I d − X−1 D being a projection onto N1,0 (Lemma 2). �	

Note that L − X−1 D maps ker L one-to-one onto itself. The kernel of (I d −
X−1 D)(L − X−1 D)−1 is thus ker L , rather than the desired R1,0 specified in Theo-
rem 1(e). In general, ker L �= R1,0. The following proposition modifies the map to
give the desired zero set.

Proposition 2 Let P : R

n → R

n be the linear map defined by

Px =
{

x, x ∈ range L
X−1 Dx, x ∈ R1,0.

Then X0 = (I d − X−1 D)(L − X−1 D)−1 P.

Proof According to the above definition, P acts as the identity on range L , and projects
R1,0 onto ker L . As R

n = range L ⊕ R1,0 (Theorem 1(b)), P is well defined.
Let x ∈ R1,0. Then Px ∈ ker L , and thus (I d − X−1 D)(L − X−1 D)−1 Px = 0 as

desired.
Now let x ∈ N1,0. As Lx ∈ range L , the definition of P gives

(I d − X−1 D)(L − X−1 D)−1 P Lx = (I d − X−1 D)(L − X−1 D)−1Lx

= x,

by Lemma 4. Thus (I d − X−1 D)(L − X−1 D)−1 P satisfies property (e) in Theorem 1
defining X0. �	

Propositions 1 and 2 establish the first two terms X−1, X0 of the Laurent series
expansion for G−1. Langenhop (1971, Definition 4.3 and Lemma 4.5) shows that the
remaining terms in the Laurent series can be expressed in terms of X0 and D, with

Xk = (−X0 D)k X0, for k ≥ 1. (21)

From (21), the order zero and greater terms of the Laurent expansion for G−1 can
be written as:
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1076 J. H. Tien et al.

X0 + εX1 + ε2 X2 + . . . = X0 + ε(−X0 D)X0 + ε2(−X0 D)2 X0 + . . .

=
(

I d + ε(−X0 D) + [ε(−X0 D)]2 + . . .
)

X0

=
(

I d +
∞∑

k=1

[ε(−X0 D)]k

)
X0. (22)

Equation (22) involves a Neumann series that converges if and only if ρ(εX0 D) <

1. This gives the following convergence criterion for the Laurent series in terms of ε:

0 < ε <
1

ρ(X0 D)
. (23)

3.2.1 X0 as a generalized inverse

The zeroth order term X0 is related to the group inverse of L (definition of the group
inverse given in Appendix B). When the pathogen decay rates δi are equal for all
patches, X0 and the group inverse coincide. As pointed out by Schweitzer and Stewart
(1993) in the general case of unequal δi , X0 can be viewed as a generalization of
the group inverse. This will be relevant for biological interpretation of X0 and its
impact on R0 (Sect. 4.2). Detailed comparison of X0 with the group inverse is given
in Appendix B.

4 R0 and the Laurent series

The terms of the Laurent series expansion for G−1 in (11) give an associated series of

approximations for R0 = ρ(FV −1) with FV −1 from (12), or ρ(˜FV −1) with ˜FV −1

from (13). Here we consider the approximations for R0 corresponding to the first two
terms X−1 and X0 of the Laurent series, as these reveal how network structure and
patch characteristics combine to determine the ability of disease to invade the network.
In particular, let the network risk of patch i be defined as ui , where u as previously
denotes the normalized nullspace of the Laplacian matrix L , and let the patch trans-
missibility of i be defined as qiri/(di +αi +γi ). As implied by the names, network risk
is determined by the network structure, while patch transmissibility reflects intrinsic
patch qualities. Specifically, the network risk of i is related by the matrix tree theorem
to the spanning trees rooted at vertex i (Appendix A), while the patch transmissibility
is the “transmission” term that appears in the basic reproduction number for patch i
in isolation (7). Note that the network risk is non-dimensional, whereas patch trans-
missibility has units of inverse time. In this section, we show that R0 is closely tied
to both these quantities.

4.1 R0 and averaging on networks

To lowest order, G−1 ≈ 1
ε

X−1 from (11), giving ˜FV −1 ≈ 1
δ

X−1 diag{ qi ri
di +αi +γi

} from
(13). Proposition 1 then gives
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Disease invasion on community networks 1077

R0 ≈ 1

δ̂

n∑
i=1

qiri

di + αi + γi
ui

≡ R̂0. (24)

We have used the fact that FV −1 and ˜FV −1 are similar matrices, and thus have the
same eigenvalues. The dominant (i.e. corresponding to R̂0) right and left eigenvectors

for ˜FV −1 are u and

w =
(

q1r1

d1 + α1 + γ1
, . . . ,

qnrn

dn + αn + γn

)T

, (25)

respectively.
Intuitively, when movement between patches is fast (small ε) we expect the domain

R0 to be some sort of average involving the patch parameters. Equation (24) shows
that this is indeed the case, and specifies how the average should be taken to respect
the network structure. The Laplacian matrix generates a regular Markov process, and
to lowest order, averaging occurs according to the stationary distribution u of this
process. The network structure thus appears in (24) through the weights ui associated
with each node. Indeed, this relationship between ui and the network can be made
explicit: consider the set of all spanning trees rooted at vertex i , oriented inward
towards the root. Assign a weight to each in-tree, given by the product of all edge
weights of the tree. The matrix tree theorem states that ui is proportional to the sum
of the weights of all in-trees rooted at i (Appendix A).

There are two averages that appear in the approximation R̂0: the mean pathogen
decay rate, δ̂ = ∑n

i=1 δi ui , and an average transmission rate
∑n

i=1
qi ri

di +αi +γi
ui . The

domain R0 is approximately the product of the average transmission rate times the
reciprocal of the mean pathogen decay rate 1/δ̂. In the special case where the pathogen
decay rates are equal for each patch, R̂0 becomes the weighted average of the patch
reproduction numbers R(i)

0 , with weights according to the stationary distribution ui .
This result in the restricted case of equal δi is proven using a different approach
involving cofactor expansion in Eisenberg et al. (2013).

When the pathogen decay rates vary between patches, R̂0 can still be expressed as
a weighted average of the patch reproduction numbers R(i)

0 , with respect to a different
probability measure. From Eqs. (24) and (7),

R̂0 = 1

δ̂

n∑
i=1

1

δi

qi ri

di + αi + γi
δi ui

= 1

δ̂

n∑
i=1

R(i)
0 δi ui

= E[R(i)
0 ], (26)

where the expectation is taken with respect to the probability measure δi ui/δ̂. Note
that this measure involves both the network structure (ui ) and patch characteristics
(δi ).
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4.2 R0, the generalized group inverse, and residence times

The matrix G corresponds to a singular perturbation from the regular Markov process
generated by L , as including pathogen decay converts all of the states from recurrent to
transient. The preceding discussion shows that to lowest order, R0 involves averaging
according to the stationary distribution u of the unperturbed, regular process. Here
we show that the next order correction to R0 involves deviations from this stationary
distribution, which can be described by the generalized group inverse X0 of L .

The entries [G−1]i j give the expected time spent in patch i starting from patch j
under the transient Markov process generated by G. The first term X−1 in the Laurent
series for G−1 has identical columns proportional to u. To lowest order, then, the
expected residence times under the transient process are proportional to the stationary
distribution of the unperturbed, regular Markov process. As the columns of X−1 are
identical, to lowest order the time spent in each patch is independent of the starting
patch. The second term in the Laurent series X0 then provides a measure of the
deviation in expected residence times between the regular (unperturbed) and transient
(perturbed) Markov processes. These deviations depend upon the initial conditions.

The entries of X0 are related both to the network structure, as well as to the pathogen
decay rates δi . To see the connection with network structure, consider the special case
where the pathogen decay rates are equal for all patches. In this case, X0 corresponds to
the group inverse of L (see Sect. 3.2.1 and Appendix B). Meyer (1975) shows that the
group inverse contains all the information associated with the classical fundamental
matrix of a Markov process. In particular, for a regular Markov process the entries of
the group inverse can be interpreted as the deviation from the expected time spent in
patch i , due to starting from j :

L#
i j = lim

T →∞
[
(Expected time spent in i starting from j) − T ui

]
. (27)

In the general situation where the decay rates differ between patches, the group
inverse and X0 no longer coincide, and the entries of X0 depend upon the values of δi .
The entries of X0 can be interpreted analogously to (27), taking into account different
decay rates:

[X0]i j = (Expected time spent in i starting from j) − 1

δ̂
ui + O(ε). (28)

The term (1/δ̂)u corresponds to the expected residence times in each patch to lowest
order, and reflects averaging according to the unperturbed regular Markov process.
There is no dependence of this term on the initial conditions, and the reciprocal of the
mean decay rate 1/δ̂ corresponds to the expected time to absorption. The generalized
group inverse X0 then gives a next order correction to the residence times that takes
the initial conditions into account.

The effect of these residence time fluctuations on R0 can be seen by taking the
first two terms of the Laurent series (13), viewing the X0 term as a perturbation, and
computing the corresponding perturbation in the dominant eigenvalue R̂0 of the one
term approximation:
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R0 ≈ ρ

((
1

δ
X−1 + 1

dW
X0

)
diag

{
qkrk

dk + αk + γk

})

≈ ρ

(
1

δ
X−1 diag

{
qkrk

dk + αk + γk

})
+ 1

dW

n∑
i, j=1

si j

[
X0 diag

{
qkrk

dk + αk + γk

}]

i j

= R̂0 + 1

dW

n∑
i, j=1

si j [X0]i j
q j r j

d j + α j + γ j
, (29)

where si j is the sensitivity of R̂0 to the i, j entry of X−1 diag{ qi ri
di +αi +γi

}. Using the
dominant eigenvectors u and w (25) to compute these sensitivities (e.g. Horn and
Johnson 1985, p. 372) gives

si j = wi u j

〈w, u〉
= 1

〈w, u〉
qiri

di + αi + γi
u j . (30)

Combining (29) and (30) gives

R0 − R̂0 ≈ 1

dW

n∑
i, j=1

1

〈w, u〉
qiri

di + αi + γi

q j r j

d j + α j + γ j
[X0]i j u j . (31)

It is instructive to consider the sum in (31) in more detail. Note that 〈w, u〉
= ∑n

j=1
q j r j

d j +α j +γ j
u j . Let

z j = q jr j

d j + α j + γ j
u j , (32)

Ei [X0] = 1

〈w, u〉
n∑

j=1

[X0]i j z j . (33)

For fixed i, Ei [X0] is a weighted average of the entries in row i of X0. The weights
in this average are given by z j , the product of the patch transmissibility of j times the
expected time spent in j according to the unperturbed Markov process. The sum in
(31) then becomes

n∑
i, j=1

1

〈w, u〉
qiri

di + αi + γi

q j r j

d j + α j + γ j
[X0]i j u j

=
n∑

i=1

qiri

di + αi + γi

n∑
j=1

1

〈w, u〉 [X0]i j z j

=
n∑

i=1

qiri

di + αi + γi
Ei [X0]

≡
n∑

i=1

�R(i), (34)
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Fig. 2 Network schematic of two 3 × 3 grids, connected by a single “bridge” patch

giving from (31)

R0 ≈ R̂0 + 1

dW

n∑
i=1

�R(i). (35)

Each patch i contributes a correction term �R(i) given by the product of the patch
transmissibility of i with Ei [X0]. Using (28), Ei [X0] is a weighted average of the
deviations from the expected time spent in i due to starting from j . These latter weights,
given in (32), also involve the patch transmissibilities. There are thus three parts to
each �R(i): (1) the importance of patch i , as measured by the patch transmissibility;
(2) fluctuations from the expected time spent at i , due to transients associated with the
initial conditions; (3) the relative importance of the different possible starting points
(in terms of patch transmissibility, together with the likelihood of occurrence of each
starting point).

4.3 Meta-communities and the generalized group inverse

The interpretation of X0 in terms of deviations of expected residence times from
u (28) suggests that X0 can be used to identify sets of vertices that form natural
groupings (‘meta-communities’). Let S be a set of vertices such that [X0]i j is large
for all i, j ∈ S. Then flows starting in S tend to stay in S, and thus we say that
S forms a meta-community within the network. Meta-communities arise when there
are bottlenecks to mixing between S and the remaining vertices in the network. For
example, consider the network shown in Fig. 2 consisting of two nearly disconnected
components, connected through a narrow bridge. The bridge serves as a bottleneck to
mixing, and thus [X0]i j is large and positive for i, j on the same side of the bridge,
compared with large and negative for vertices on opposite sides of the bridge (see
Sect. 5.3 for an illustration).

The placement of disease “hot spots” with respect to these meta-communities affects
R0. From the preceding discussion of (34)–(35), placing disease hot spots together
within a meta-community tends to facilitate disease invasion. This is considered further
in Sect. 5.3.

5 Examples

Let us make the results from the preceding sections concrete by considering some
examples.
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a

b c

Fig. 3 a Network schematic of a 3 × 3 grid with nearest neighbor connections. Shaded patches have patch
R0 values of 3, while non-shaded patches have patch R0 = 0.7. Shaded patches have 1/δi = 30 days,
while non-shaded patches have 1/δi = 7 days. All patches have a 3 day infectious period, case fatality rate
of 0.01, a 50 year expected lifespan, and linearized incidence qi = 0.1835 per day and shedding ri = 0.1835
per milliliter per day. b Approximations for R0 for the domain, by including only the X−1 term (dashed
line), through X0 (blue asterisks), and through X1 (red squares). The true domain R0 corresponds to the
solid black line. c Quality of the approximation from using the first 22 terms of the Laurent series (through
X20). The approximation is excellent up to the radius of convergence (color figure online)

5.1 Convergence of the Laurent series, quality of the approximation, and balanced
networks

Theorem 4.1 of Langenhop (1971) gives convergence of the Laurent series in a punc-
tured neighborhood of zero. The size of this neighborhood, and the quality of the
approximation to the domain R0 from using a finite number of terms of the series
(13), depends upon the specific network considered. Figure 3a shows one sample
network, consisting of a 3 × 3 grid with equal connections between non-diagonal
neighbors. This is an example of a balanced network, defined as a network where the
net outflow is equal to the net inflow for each patch (Moon 1970). Balanced networks
can be viewed as a generalization of symmetric networks: symmetric networks such
as Fig. 3a are necessarily balanced, but asymmetric networks can be balanced as well.
For balanced networks, the network risks ui are equal for all i (i.e. ui = 1/n; see
Appendix A), and from (24) the lowest order approximation to R0 is simply the arith-
metic mean of the patch transmissibilities qiri/(di + αi + γi ) times the reciprocal of
the mean of the pathogen decay rates δi .
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Figure 3b shows the true value of the domain R0 computed directly from (2) over
a range of ε values, compared with the approximate R0 values obtained from using
one, two, and three terms in the Laurent series (computed from Propositions 1, 2 and
equation (21)). The lowest order approximation R̂0 (dashed line) is reasonable for
ε values through 10−1. Including additional terms X0 (blue) and X1 (red) improves
the approximation, extending the range of ε where the approximation is reasonable to
O(1). The radius of convergence here can be computed from (23) as ε = 1.04. For
this example, then, accurate approximations to R0 can be obtained up to the radius of
convergence from using only the first few terms of the Laurent series. Note, however,
that the true value of R0 varies relatively little for ε less than the radius of convergence.

5.2 Spanning trees and network risk: inflow versus outflow

For networks that are not balanced, the stationary distribution u is not uniform, and
thus the network risk differs between vertices. It is of interest to identify vertices with
high network risk, as these vertices may contribute the most weight in the expression
for R̂0 (24). We use two toy examples here to illustrate that high network risk is
associated with vertices with large net inflow.

5.2.1 River

Consider the network shown in Fig. 4: the four patches are arrayed in a line, with flow
occurring only between neighboring patches, at rate a to neighbors on the right, and
rate b to those on the left. The flow rate is biased, with a > b. The network is thus a
caricature of flow on a river, with the downstream direction to the right.

For the simple network as in Fig. 4 with n patches arrayed in a line, the rooted
spanning trees (and thus the network risks) can be computed explicitly. When rooted at
vertex k, each vertex has a single spanning tree oriented inwards towards the root, with
k − 1 downstream edges (weight a) and n − k upstream edges (weight b). The weight

of the in-tree rooted at k is then ak−1bn−k , giving uk = ak−1bn−k∑n
i=1 ai−1bn−i . Comparing

the network risks of adjacent patches gives uk+1
uk

= a
b , with network risk increasing

downstream.

Fig. 4 Cartoon one dimensional
directed flow. Flow rate of a to
the right (“downstream”), and
rate b to the left (“upstream”).
Shaded patches denote disease
hot spots. Top figure shows a
network with a disease hot spot
located upstream, and bottom
figure shows a network with
disease hot spot located
downstream
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a b c

Fig. 5 Star arrangement. a Flow diagram. Flow rate from periphery to center at rate a, and from center to
periphery at rate b. b Spanning tree rooted at the center. c Spanning tree rooted at a periphery patch. In b
and c, arcs point to the root vertex

Suppose now that there are two types of patches: disease “hot spots” with high
patch transmissibilities qiri/(di +αi +γi ) or long pathogen lifetimes 1/δi , and non-hot
spots with small values for these quantities. How does the placement of hot spots in the
network affect the domain R0? From the preceding calculation, the further downstream
a hot spot is located, the greater the value of R̂0. From (29), for sufficiently large dW ,
the X−1 term in the Laurent series dominates, R0 approaches R̂0, and thus R0 is
maximized with furthest downstream placement of a hot spot. In the situation where
there is a single disease hot spot, the best case scenario (i.e. lowest R0) corresponds to
putting the hot spot in the furthest upstream position (Fig. 4, top), and the worst case
scenario (highest R0) corresponds to the hot spot located in the furthest downstream
position (Fig. 4, bottom). It is thus the vertex with the largest inflow that contributes
most greatly to disease spread, as opposed to the vertex with the greatest outflow.

5.2.2 Star

Figure 5 shows a star arrangement for the network: n peripheral patches surround a
single, central (hub) patch. Flow from the periphery into the center occurs at rate a,
and flow in the opposite direction from center to the periphery at rate b. The rooted
spanning trees for center and periphery are shown in Fig. 5b, c, respectively, giving
weight an−1b for trees rooted at the periphery, and weight an when rooted at the center.
The network risk for the center patch is then

ucenter = a

a + nb
. (36)

In the case where a � nb, inflow to the center dominates, the center network risk
is nearly one, and the ability of disease to invade is largely determined by the center
patch parameters. On the other hand, when nb � a, outflow dominates and the center
network risk is small. In this case it is the parameters of the periphery that determine
invasibility.
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5.3 Bottlenecks to mixing, meta-communities, and disease hot spots

As mentioned in Sect. 4, the generalized group inverse X0 can be used to identify
groups of vertices in which flow tends to be trapped. These groups thus form meta-
communities reflecting network substructure, and the placement of disease hot spots
with respect to these meta-communities affects R0. Here we illustrate this with an
example corresponding to the balanced network shown in Fig. 2, consisting of two
3 × 3 grids, each with symmetric nearest neighbor connections as in the preceding
paragraph, but connected to one another by a single patch acting as a bridge. For any
balanced network, the network risks ui are equal, and the lowest order approximation
R̂0 is independent of hot spot placement. Any dependence of R0 on hot spot location
thus reflects higher order terms in the Laurent series.

The single bridge patch serves as a bottleneck to mixing between the two 3 × 3
blocks. This bottleneck is reflected in the entries of X0, with large positive [X0]i j

values for i, j within the same block, and large negative values for i, j in different
blocks, as shown in Fig. 6a, b. Each 3 × 3 block thus comprises a meta-community.
To see how hot spot placement with respect to these meta-communities affects R0,
consider �R(i) from (34, 35) for a disease hot spot. The contribution of a given patch
�R(i) to R0 is proportional to the patch transmissibility, and thus hot spots (patches
with high patch transmissibility) are especially important in determining the ability of
disease to invade the network. The expression for �R(i) involves a weighted average
of row i of X0, with weights corresponding to z j (32, 33). For a balanced network,
the z j are proportional to the patch transmissibilities. Whether disease hot spots are
clustered together or not is therefore important for R0: placing two hot spots in the
same meta-community increases �R(i) and thus R0, whereas placing hot spots in
different meta-communities decreases R0.

Three different configurations for disease hot spots are shown in Fig. 7a–c: (a) four
hot spots clustered together in a corner, on the same side of the bridge, (b) three hot
spots clustered together, with the fourth hot spot located on the other side of the bridge,
and (c) two hot spots apiece on either side of the bridge. The domain R0 values for
these configurations are shown in the bottom of Fig. 7 as a function of ε. As expected,
clustering the hot spots together on the same side of the bridge (as in configuration
(a)) gives higher domain R0 values than splitting the hot spots on either side of the
bridge (configuration (c)), with configuration (b) intermediate between the two. Note
that this ordering holds for all ε values. The relative effect of clustering on R0 depends
upon the value of ε, as can be seen in Fig. 8a. The largest relative change in R0 when
comparing clustered vs. non-clustered hot spot locations occurs for intermediate ε

values, with peak change in R0 of over 40 % between configurations Fig. 7a, c.
Both the extent of the bottleneck as well as the disparity in patch transmissibilities

between hot spots and non-hot spots affect the difference in R0 between configurations
Fig. 7a and Fig. 7c. Decreasing the flow to the bridge patch between the two 3 × 3
blocks results in a more severe bottleneck to mixing, more clearly defined meta-
communities according to X0, and thus a more marked difference in R0 between
Fig. 7a and Fig. 7c, as shown in Fig. 8b. The effect of clustering hot spots together
within a meta-community on R0 likewise becomes more marked as the difference in
patch transmissibilities between hot spots to non-hot spots increases. Increasing the
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a

b

Fig. 6 The zeroth order term X0 in the Laurent series corresponding to the configuration shown in Fig. 2,
with pathogen decay rate δi = 1/30 day−1 for all patches. Patches left of the bridge are labeled 1 through
9, and to the right of the bridge 10 through 18. a Entries of X0. Grayscale corresponds to value of the entry,
with lighter shades corresponding to higher values. b Plot of the sign of [X0]i j . Positive values shown in
white, negative values in black

ratio of hot spot to non-hot spot patch transmissibilities both increases the domain R0
(Fig. 8c) as well as the relative effect of clustering of the hot spots (Fig. 8d).

6 Discussion

The analysis in this paper highlights the fundamental role of rooted spanning trees and
the generalized group inverse of the Laplacian in determining the ability of disease to
invade a network of communities.
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a b c

d

Fig. 7 Comparison of domain R0 for different hot spot arrangements, shown in a–c. Hot spots (shaded)

have patch reproduction values of Rhigh
0 = 10, non-hot spots have Rlow

0 = 0.7. All patches have

pathogen decay rate δi = 1/30 day−1, infectious period 1/γi = 3 days, case fatality ratio = 0.01, life
expectancy = 50 years. Patch transmissibility is adjusted to give the desired patch reproduction numbers
for hot spots/non-hot spots. The domain reproduction number approaches R̂0 = 2.6579 as ε → 0

The rooted spanning trees inform how to average across the network in a manner
that respects the network structure, resulting in a lowest order approximation to R0;
see (24). As these spanning trees are oriented inward towards the root vertex, there is
an important distinction between inflow and outflow in the community network setting
considered here. Due to the inward edge orientation, vertices with large amounts of
inflow relative to outflow tend to have large network risks, and thus contribute dis-
proportionately to R0. This is illustrated in the river and star examples from Sect. 5.
In the language of Kleinberg (1999), “hubs” and “authorities” thus contribute very
differently to R0. The situation here is also different than previous work on sexu-
ally transmitted diseases and highly sexually active core groups (Hethcote and Yorke
1984). A common assumption in modeling core groups is to assume that high activity
rates of the core translate into both high transmission (outflow) as well as high con-
traction (inflow) of the disease (e.g. discussed in Galvani and May 2005), resulting
in a disproportionate increase in R0 due to the core group. This need not hold in the
community network setting: a vertex may have both large inflow as well as large out-
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a b

c d

Fig. 8 a Relative difference in domain R0 values between configurations in Fig. 7a, c, as a function of ε. b
Relative difference in R0 between configurations in Fig. 7a, c, as the flow to the bridge patch is varied. The
parameter ε is fixed at 0.1. c Effect of increasing heterogeneity between hot spots and non-hot spots on R0.
Configuration matches Fig. 7a. The ratio of patch risks qi ri /(di + αi + γi ) between hot spots and non-hot
spots is varied (x-axis), while keeping R̂0 fixed at 2.6579. The parameter ε is fixed at 0.1; other parameters
correspond to those given in Fig. 7a. d Relative difference between domain R0 values for configurations
in Fig. 7a, c. As the disparity in patch risk increases between hot spots and non-hot spots, the effect of
clustering the hot spots together becomes more marked

flow, but if the network is balanced, then to lowest order all vertices contribute equally
to R0 (e.g. consider Fig. 5 with a = b).

Higher order corrections to R0 involve the generalized group inverse X0 of the
Laplacian matrix, which can be interpreted in terms of deviations of expected resi-
dence times from the stationary distribution used in the preceding average; see (28).
These deviations depend both upon the network structure as well as the pathogen
decay rates, and can reveal groupings of the vertices into meta-communities. As the
examples presented in Sect. 5 illustrate, the location of disease hot spots with respect
to these meta-communities can be important for disease invasibility. Many different
community detection algorithms exist for identifying substructure within a network
(Newman 2010). The connection between R0 and X0 indicates that when invasibility
is a primary concern, an algorithm based on X0 is a natural approach to take. As X0
depends both upon the network structure as well as the pathogen decay rates δi , com-
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munity detection algorithms based on X0 will combine both structural and dynamic
features of the network.

One of the insights from our study of the generalized group inverse in relation to
R0 is that clustering hot spots together facilitates disease invasion in community net-
works. It is interesting to compare this with the extensive literature on disease spread
in networks of individuals. For example, Keeling (1999) shows that increasing the
clustering coefficient of a network (roughly speaking the likelihood that two of your
friends are themselves friends; See, for example, Newman and Barabasi 2006; New-
man et al. 2001; Watts and Strogatz 1998) decreases the ability of a disease to invade,
due to spatial correlations leading to smaller numbers of susceptibles encountered by
infectious individuals. Considering networks at different levels of resolution may thus
provide different insights into disease dynamics.

The modeling framework considered here is reasonably flexible: apart from being
strongly connected, no restrictions are placed on the network, and minimal assump-
tions are made on the disease incidence and shedding functions. Our original motiva-
tion was for waterborne diseases such as cholera, for which data on water networks
is important. Water network data can be used to compute the network risk associated
with different communities. The results presented here suggest that for disease control
efforts, particular attention should be paid to communities with high network risk. In
some settings, these networks may not be strongly connected (for example, in rivers
with strong currents), while in others, flow in both directions between nodes may be
important (e.g. wetlands, tidal rivers). Tracer studies may be useful for assessing the
degree of flow between locations (Variano et al. 2009). On the other hand, the rooted
spanning trees and generalized group inverse are fundamental features of networks,
and we expect our results on how these quantities combine with patch characteris-
tics to affect invasibility will extend to other settings besides waterborne disease. For
example, DeVille and Peskin (2012) find that “in-hubs” play a much larger role than
“out-hubs” in driving bursts in stochastic neural networks, analogous to our results
for the hub and periphery example considered in Sect. 5.
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Appendix A: Graph-theoretic background

For the convenience of the reader, we present some definitions and standard results
from graph theory used throughout the paper. Further information can be found in
graph theory textbooks such as West (2001). We include also a statement of the matrix
tree theorem for weighted, directed graphs. A proof can be found in Moon (1970).

A directed graph (digraph) G = (V, E) consists of a set V = {1, 2, . . . , n} of
vertices and a set E = E(G) of directed arcs (i, j) from vertex i to vertex j . A
directed graph G is weighted if each arc ( j, i) is assigned a positive weight mi j ;

123



Disease invasion on community networks 1089

the weighted, directed graph is denoted as (G, M), with nonnegative weight matrix
M = [mi j ] and mi j > 0 if and only if ( j, i) ∈ E(G). For example, the weight matrix
M may correspond to the movement matrix in the community network, and thus the
weighted directed graph (G, M) corresponds to the community network. A directed
graph is strongly connected if for any ordered pair of vertices, there exists a directed
path from one to the other. A weighted directed graph (G, M) is strongly connected if
and only if the weight matrix M is irreducible (Berman and Plemmons 1979).

A rooted spanning tree (in-tree) T is a subgraph of G on n vertices such that
T is connected with no cycles, and has a root vertex such that every directed path
between a non-root vertex and the root is oriented towards the root. The weight of a
rooted spanning tree is the product of all arcs in the rooted spanning tree. To illustrate,
consider the star graph shown in Fig. 5, with arc weights a from periphery to center,
and b from center to periphery. Figure 5b shows the single spanning in-tree rooted at
the center. This tree possesses n arcs with weight a, giving a tree weight of an . Each
peripheral vertex roots a single spanning in-tree, shown in Fig. 5c. Trees rooted at the
periphery have n − 1 arcs with weight a and a single arc with weight b, giving a tree
weight of an−1b.

Let (G, M) be a weighted, directed graph. The Laplacian matrix L of the graph is
then defined as:

L =

⎛
⎜⎜⎜⎝

� j �=1m j1 −m12 . . . −m1n

−m21 � j �=2m j2 . . . −m2n
...

...
. . .

...

−mn1 −mn2 . . . � j �=nm jn

⎞
⎟⎟⎟⎠ . (37)

Note that each of the columns of L sum to zero, implying both that L is singular,
and that the cofactors of L are the same within each column. The matrix tree theorem
states that any cofactor corresponding to column k of L is equal to the sum of the
weights of the spanning in-trees rooted at vertex k. For a proof see Moon (Section 5.5
and Theorem 5.5, Moon 1970).

Theorem 2 (Matrix Tree Theorem)
Let (G, M) be a weighted, directed graph, and let L be the Laplacian matrix of

(G, M). Let ckk denote the (k, k) cofactor of L. Then the cofactors of L are related to
the rooted spanning trees of G by the following:

ckk =
∑

T ∈Tk

∏
( j,i)∈E(T )

mi j , (38)

where Tk is the set of all spanning in-trees rooted at vertex k, E(T ) is the arc set of
rooted spanning in-tree T , and mi j the weight of the arc from j to i .

A direct consequence of the matrix tree theorem is a relationship between ker L
and the rooted spanning trees of G. This is pointed out, for example, in Lemma 2.1
of Guo et al. (2006). Consider the vector of cofactors c = (c11, . . . , cnn)T . Then
(Lc)i = det L = 0 for i = 1, . . . , n, so c belongs to ker L . The dimension of
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the nullspace of L is equal to the number of connected components of G, so for
strongly connected digraphs, L has a one dimensional nullspace spanned by c. For
strongly connected digraphs, there is at least one in-tree rooted at each vertex, and
thus the entries of c are all positive for digraphs with non-negative arc weights. Let
ui = cii/

∑n
j=1 c j j , and let u = (u1, . . . , un)T . Then u provides a basis vector for

ker L , with all positive entries and normalized so that
∑n

i=1 ui = 1.
A weighted directed graph (G, M) is balanced if the net inflow is equal to the net

outflow at each vertex, i.e. for each i,
∑

j �=i mi j = ∑
j �=i m ji . For balanced commu-

nity networks, both the row sums and column sums of L are equal to zero, giving that
all cofactors of L are equal. This in turn implies that all entries of u are equal to 1/n
for balanced networks.

Appendix B: X0 and the group inverse

In the equal pathogen decay case, G = (L + ε I d). The resolvent expansion for
matrices of this form is considered by Rothblum (1981), who shows that the zeroth
order term in the series is given by the Drazin inverse of L . For matrices of index 1,
the Drazin inverse is equal to the group inverse (e.g. Ben-Israel and Greville 2003,
Chapter 4). As pointed out by Schweitzer and Stewart (1993), X0 in the general
case is a generalization of the Drazin (here, group) inverse. It is interesting to con-
sider the relationship between X0 in Proposition 2 and the group inverse in more
detail.

The group inverse of a square matrix M of index 1 is the unique matrix M# that
satisfies the following three conditions (Ben-Israel and Greville 2003, Section 4.4):

M M# M = M, (39)

M# M M# = M#, (40)

M M# = M# M. (41)

The matrix X0 in Proposition 2 satisfies conditions (39) and (40) with M = L ,
but in general not (41). In the language of generalized inverses, X0 is said to be a
“{1, 2}-inverse” of L (Ben-Israel and Greville 2003).

We first show that X0 acts as a right inverse of L on range L .

Lemma 5 Let X0 be given as in Proposition 2. Then

L X0x =
{

x, x ∈ range L
0, x ∈ R1,0.

Proof Let x ∈ range L . As L : N1,0 → range L a bijection (Theorem 1(c)), there
exists y ∈ N1,0 such that Ly = x . Then

L X0x = L X0 Ly

= Ly

= x . (42)
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Finally, note that X0 sends R1,0 to 0 (Theorem 1(e)), and thus L X0x = 0 for all
x ∈ R1,0. �	

We can now show that X0 is a {1, 2}-inverse of L , and determine where X0 and the
group inverse coincide.

Proposition 3 Let X0 be given as in Proposition 2. Then X0 is a {1, 2}-inverse of L
(i.e. satisfies conditions (39) and (40)), and commutes with L on N1,0 ∩ range L.

Proof For any x ∈ R

n , take x = y + z, where y ∈ N1,0 and z ∈ ker L . From
Proposition 2,

X0 Lx = X0 L(y + z)

= X0 Ly

= y. (43)

Multiplying on the left by L then gives

L X0 Lx = Ly

= L(y + z)

= Lx, (44)

and thus X0 satisfies (39).
Similarly, for any x ∈ R

n take x = ỹ + z̃, where ỹ ∈ range L and z̃ ∈ R1,0. Using
Lemma 5,

X0 L X0x = X0 L X0(ỹ + z̃)

= X0 ỹ

= X0(ỹ + z̃)

= X0x, (45)

so X0 satisfies (40).
Finally, consider x ∈ N1,0 ∩ range L . As x ∈ range L , Lemma 5 gives x = L X0x .

But x ∈ N1,0 as well, so property (e) in Theorem 1 gives x = X0 Lx , and thus X0 and
L commute on N1,0 ∩ range L . �	

Proposition 3 shows that X0 and the group inverse coincide on N1,0 ∩ range L . Of
course, this intersection may be trivial. In the case where D = I d (i.e. equal pathogen
decay rates), N1,0 = range L , and X0 = (I d − X−1 D)(L − X−1 D)−1 is equal to the
group inverse of L .
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