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a b s t r a c t 

Syphilis is caused by the bacterium Treponema pallidum subspecies pallidum , and is a sexually transmit- 

ted disease with multiple stages. A model of transmission of syphilis in an MSM population (there has 

recently been a resurgence of syphilis in such populations) that includes infection stages and treatment 

is formulated as a system of ordinary differential equations. The control reproduction number is calcu- 

lated, and it is proved that if this threshold parameter is below one, syphilis dies out; otherwise, if it is 

greater than one, it is shown that there exists a unique endemic equilibrium and that for certain special 

cases, this equilibrium is globally asymptotically stable. Using data from the literature on MSM popula- 

tions, numerical methods are used to determine the variation and robustness of the control reproduction 

number with respect to the model parameters, and to determine adequate treatment rates for syphilis 

eradication. By assuming a closed population and no return to susceptibility, an epidemic model is ob- 

tained. Final outbreak sizes are numerically determined for various parameter values, and its variation 

and robustness to parameter value changes is also investigated. Results quantify the importance of early 

treatment for syphilis control. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Various sexually transmitted diseases are caused by bacteria;

or example, Neisseria gonorrhoeae causes gonorrhea [26] , and

reponema pallidum subspecies pallidum causes syphilis [21] . T.

allidum is classified as a spirochetes (family Spirochaetaceae ),

nd measures 6–20 μm in length and 0.18 μm in diameter [25] .

t cannot be successfully continually cultured in vitro outside of

he mammalian host; thus for experimental purposes, T. pallidum

s usually first obtained from inoculated rabbits. This slows the

esearch process and has been suggested as the greatest setback

n terms of syphilis research [21] . 

In humans, an untreated syphilis infection progresses through

ultiple stages. After infection, the exposed (infected but not

et infectious) stage lasts an average 28 days [13] . The primary

tage is characterized by a single chancre at the source of inoc-

lation ( i.e. , where T. pallidum penetrated dermal microabraisons

r mucous membranes) appearing after the exposed period. This

ainless chancre eventually heals, and the individual progresses to

he secondary stage [21,34] after an average of 46 days [13] . The

econdary stage is characterized by multiple symptoms, most of
∗ Corresponding author. Tel.: +1 2505807394. 
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hich are nonspecific ( i.e. , sore throat, muscle aches, etc.). Most

econdary infections of syphilis also result in copper colored skin

esions that tend to be universally distributed. This rash heals after

 few weeks, and the individual progresses to latency [21,34] after

n average of about 15 weeks [13] . The latency period of syphilis is

ivided into two stages: the early latent stage, and the late latent

tage. Early latency represents the first year of latency; late latency

epresents the remainder, until progression to the tertiary stage

n 1–46 years [21,34] . The tertiary stage can have multiple pre-

entations, ranging from cardiovascular syphilis to neurosyphilis.

rogression to the tertiary stage is poorly understood; only about

0% of untreated cases progress from latency to the tertiary stage

21] . Disease caused mortality also occurs at this stage [34] . 

Fortunately, treatment for syphilis does exist. For treatment

uccess, usually in the primary, secondary, and early latent stage, a

ingle dose of Benzanthine penicillin G, 2.4 mU is administered;

hereas for patients in the late latent stage, treatment is more

trenuous, namely three doses of 2.4 mU at 1 week intervals of

enzanthine penicillin G are administered [34,43] . While treatment

n the tertiary stage is available, not only is it much more intensive

han in previous stages, it often is not as successful [34] . Moreover,

he damage ( i.e. , neurological for neurosyphilis) caused by ter-

iary syphilis cannot be undone. For appropriate treatment, accu-

ate diagnosis of syphilis and the presenting stage is needed; Smith

t al. [36] identified appropriate proteins as diagnostic candidates.

t is also important to mention that a human vaccine for syphilis

http://dx.doi.org/10.1016/j.mbs.2016.03.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
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does not currently exist on the market, but Cameron and Lukehart

[5] outline the needs and potential prospects for a vaccine. 

Throughout the 1990s, there had been a decrease in overall

cases of syphilis worldwide [15] . In the early 20 0 0s, the homosex-

ual male population (hereafter referred to as the MSM population)

has seen resurgence of syphilis; see, for e.g. , Heffelfinger et al. [15] ,

Read et al. [30] , Simms et al. [33] and Stolte et al. [37] . Moreover,

specific outbreaks in MSM communities have been identified and

quantified; see, for e.g. , Hopkins et al. [16] for study on an out-

break in Ireland; Hourihan et al. [17] for one in East London and

Weerakoon et al. [42] for details of syphilis cases in Melbourne.

While syphilis itself can be a debilitating disease if not treated

early ( i.e. , allowed to progress to its later stages), it has also been

linked to more susceptibility for infection by other serious sexually

transmitted diseases such as the Human Immunodeficiency Virus

(HIV); see Karp et al. [19] , Lynn and Lightman [23] and Tuite et al.

[38] . Clearly, control of syphilis is of importance. 

Some deterministic mathematical models of syphilis have been

formulated and analyzed. Garnett et al. [13] introduced a model

that includes the stages of syphilis but does not differentiate

between early and late latency. They also include treatment,

but treated individuals in the primary and secondary stages do

not go into a treated class but return directly to susceptibility;

treated individuals in latency and in the tertiary stage flow into

the same ‘immune’ class, from which individuals then return

to susceptibility. Pourbohloul et al. [29] formulated an ordinary

differential equations (ODE) model with 210 differential equations

to model heterosexual syphilis transmission in East Vancouver

where they combine the later stages of syphilis but partition the

population into multiple groups based on sex, sexual activity and

age. The results of published mathematical models of syphilis up

to 2008 are reviewed in Fenton et al. [12] . More recently, Milner

and Zhao [24] presented an ODE model based on partial immunity

and vaccination (assuming a successful vaccine is developed), and

showed that there exists backward bifurcation for some parameter

values. Their model includes removed classes that contain indi-

viduals that have recovered from infection, those that removed

themselves from susceptibility, and those that were vaccinated.

Recently, Tuite et al. [39] considered an agent based model for the

MSM population in Toronto, and concluded that more frequent

screening of high-risk males is more effective in reducing syphilis

than screening a larger population. 

As pointed out by a reviewer, a very recent multistage model

for syphilis is formulated and analyzed by Iboi and Okuonghae

[18] . Their model includes early and late latent stages as well as

individuals who acquire transitory (natural) immunity following

successful treatment in an infectious or latent stage. Loss of

transitory immunity is shown to allow the possibility of backward

bifurcation. If this loss is ignored and individuals in the early

latent stage do not revert to the infectious stages, then Iboi and

Okuonghae provide a complete global analysis, calculating a basic

reproduction number threshold that determines whether syphilis

dies out or becomes endemic in the population. 

We focus our modeling on an MSM population because of the

resurgence of syphilis in such groups. In Section 2 , we formulate

an ODE model for an MSM population that includes all the stages

of syphilis (including exposed, early and late latency), as well as

treatment in the latent and infectious stages. Due to different num-

bers of contact, we assume that the infectivity rates in the pri-

mary and secondary infectious stages may be different. Then in

Section 3 we calculate the control reproduction number R c for our

model, which is shown to be a threshold parameter. In Section 4 ,

we address the stability of the disease-free equilibrium, and in

Section 5 , we show that, for certain parameter values, there exists

an endemic equilibrium. We also discuss stability of this equilib-

rium for various epidemiologically meaningful cases. In Section 6 ,
e give baseline parameter values and perform numerics for our

odel, including sensitivity analysis by Latin Hypercube Sampling.

inal size calculations (assuming constant population) are pre-

ented in Section 7 . Finally, in Section 8 , we draw our conclusions.

. Formulation of a syphilis model 

We first split an MSM population into eleven classes with the

umbers in each class given as follows: S denotes susceptible

ales, E denotes exposed males, I 1 denotes infectious males who

re in the primary stage of syphilis, I 2 denotes infectious males

ho are in the secondary stage of the infection, L 1 denotes males

ho are in the early latent stage, L 2 denotes males who are in the

ate latent stage, and X denotes males who are in the tertiary (and

nal) stage of syphilis. The classes T 1 , T 2 , T 3 and T 4 denote effec-

ively treated males from the primary, secondary, early latency,

nd late latency stages of infection, respectively. We assume a

onstant recruitment � into the susceptible class, and m denotes

he human natural death rate. We assume that only individuals

n the primary and secondary stage of the infection are infectious,

nd the infectivity rates are denoted β1 , β2 , for the primary and

econdary stage, respectively. Note here that β i , i = 1 , 2 , is equal

o the probability of transmission from one contact between an

ndividual in S and in I i , times the number of contacts per day

er individual. Bilinear incidence is assumed, that is, an average

ale in I i makes β i N contacts with other males in the population

er unit time, and the probability that such a contact is with a

usceptible male is S 
N . We also assume that treatment only occurs

or individuals in I 1 , I 2 , L 1 , L 2 , at rates τ 1 , τ 2 , τ 3 , τ 4 , respectively

nd these effectively treated individuals return to susceptibility at

ates δ1 , δ2 , δ3 , δ4 , respectively. Since our model is for an MSM

opulation, this return could be due to risky behavior or to loss

f immunity. The average incubation time before developing the

isease is denoted by 1 
η . We assume that the disease progresses

rom the primary stage to the secondary stage at rate γ 1 , from the

econdary stage to the early latent stage at rate γ 2 , from the early

atent stage to late latent stage at rate γ 3 , and from the late latent

tage to the tertiary stage at rate γ 4 . We also consider death due

o disease only in the final (tertiary) stage of the infection, where

denotes the death rate due to syphilis of individuals in X . A

ummary of the parameters used is presented in Table 1 . 

We formulate the dynamics of the model changing with time

s a system of ordinary differential equations, as seen in (1) . 

dS 

dt 
= � − mS − (β1 I 1 + β2 I 2 ) S + δ1 T 1 + δ2 T 2 + δ3 T 3 + δ4 T 4 

dE 

dt 
= (β1 I 1 + β2 I 2 ) S − (η + m ) E 

dI 1 
dt 

= ηE − (γ1 + τ1 + m ) I 1 

dI 2 
dt 

= γ1 I 1 − (γ2 + τ2 + m ) I 2 

dL 1 
dt 

= γ2 I 2 − (γ3 + τ3 + m ) L 1 

dL 2 
dt 

= γ3 L 1 − (γ4 + τ4 + m ) L 2 

dT 1 
dt 

= τ1 I 1 − (δ1 + m ) T 1 

dT 2 
dt 

= τ2 I 2 − (δ2 + m ) T 2 

dT 3 
dt 

= τ3 L 1 − (δ3 + m ) T 3 

dT 4 
dt 

= τ4 L 2 − (δ4 + m ) T 4 (1)

nd 

dX 

dt 
= γ4 L 2 − (α + m ) X (2)
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Table 1 

Parameters in our model. The units of all (except �, β1 , β2 ) are per day. 

Parameter Definition 

� Recruitment (number per day) 

m Natural death rate 

η Incubation rate 

γ 1 Progression rate from primary stage to secondary stage 

γ 2 Progression rate from secondary stage to early latent stage 

γ 3 Progression rate from early latent stage to late latent stage 

γ 4 Progression rate from late latent stage to tertiary stage 

β1 Infectivity rate, males in primary stage to susceptibles (per number per day) 

β2 Infectivity rate, males in secondary stage to susceptibles (per number per day) 

τ 1 Treatment rate of males in primary stage 

τ 2 Treatment rate of males in secondary stage 

τ 3 Treatment rate of males in early latency 

τ 4 Treatment rate of males in late latency 

δ1 Rate of return to susceptibility from treatment in primary stage ∗

δ2 Rate of return to susceptibility from treatment in secondary stage ∗

δ3 Rate of return to susceptibility from treatment in early latency ∗

δ4 Rate of return to susceptibility from treatment in late latency ∗

α Death rate in tertiary stage 
∗This could be due to recovery and return to risky behavior 

S E I1 I2 L1 L2

X

T1 T2 T3 T4

mS mE mI1 mI2 mL

mX

mT1 mT2 mT3 mT4

mL2

β1I1S

+β2I2S

ηE γ1I1 γ2I2 γ3L1

γ4L2

τ1I1 τ3L1 τ4L2τ2I2

Λ

αX

δ1T1

δ2T2

δ3T3

δ4T4

Fig. 1. Flowchart of model. 
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ote that since the variable X does not appear in (1) , it suffices

o determine the dynamics of (1) , and then those of (2) follow.

etting N denote the population that determines the disease

ynamics ( i.e. , N = S + E + I 1 + I 2 + L 1 + L 2 + T 1 + T 2 + T 3 + T 4 ), it

ollows from (1) that 

 

′ = � − mN − γ4 L 2 ≤ � − mN (3)

hus, (3) implies that lim sup t→∞ 

N(t) ≤ �
m 

. Therefore the feasible

egion 

= 

{ 

( S, E, I 1 , I 2 , L 1 , L 2 , T 1 , T 2 , T 3 , T 4 ) ∈ R 

10 
+ | S + E 

+ I 1 + I 2 + L 1 + L 2 + T 1 + T 2 + T 3 + T 4 ≤ �

m 

} 

s positively invariant with respect to (1) . The flowchart in Fig. 1

ives a visualization of Model (1) . 
. Calculation of the control reproduction number 

Note that P 0 = (S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) with S 0 = 

�
m 

is the

isease-free equilibrium of (1) . Taking the infected classes 

(E, I 1 , I 2 , L 1 , L 2 , T 1 , T 2 , T 3 , T 4 ) 

e follow the next generation matrix approach; see Diekmann and

eesterbeek [11] and van den Driessche and Watmough [41] . We

rst calculate the Jacobian matrix at P 0 , J ( P 0 ), and write J(P 0 ) =
 − V to obtain 

F = 

(
F 11 0 3 ×6 

0 6 ×3 0 6 ×6 

)
, where F 11 = 

( 

0 β1 S 0 β2 S 0 
0 0 0 

0 0 0 

) 

nd V = 

(
V 11 0 5 ×4 

V 21 V 22 

)
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where 

 11 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

(η + m ) 0 0 0 0 

−η κ1 0 0 0 

0 −γ1 κ2 0 0 

0 0 −γ2 κ3 0 

0 0 0 −γ4 κ4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

 21 = ( 0 4 ×1 D 4 ×4 ) , D 4 ×4 = diag(−τi ) , and V 22 = diag(δi + m ) ,

with κ i = γi + τi + m for i = 1 , ..., 4 . Since F V −1 is a matrix with

rank 1, the control reproduction number 

R c = ρ(F V 

−1 ) 

= 

β1 S 0 η

(η + m )(γ1 + τ1 + m ) 

+ 

β2 S 0 γ1 η

(γ1 + τ1 + m )(γ2 + τ2 + m )(η + m ) 

= R c 1 + R c 2 (4)

Note that η
η+ m 

is the probability of surviving the E class, 1 
γi + τi + m i 

is the average time in I i , for i = 1 , 2 . Also, 
γi 

γi + τi + m i 
is the probabil-

ity of surviving ( i.e. , not dying and not treated) I i , for i = 1 , 2 . The

formula for R c is the sum of the contributions from the primary

stage R c 1 and from the secondary stage R c 2 . Since L 1 and L 2 in-

dividuals are not infectious, τ 3 and τ 4 do not come into R c ; thus

R c does not depend on the treatment rates of individuals in the

latency stages of the disease. 

The following remark draws attention to some observations on

the effect of τ 1 and τ 2 (which are the parameters that may be

controlled by public health measures) on R c . 

Remark 1. If τ 2 → ∞ , R c → R c 1 . Setting τ 2 → ∞ represents

treatment immediately upon the completion of the first stage

of syphilis; thus biologically, the control reproduction number

must only depend on the transmission of infection from indi-

viduals in I 1 to S (as none remain in I 2 ). If τ 1 → ∞ , then it

is clear that R c → 0 , thus meaning that if every single male is

treated upon entry in I 1 , the disease would not be transmitted

further. 

The effect of ignoring the short incubation period of syphilis is

given in the next remark. 

Remark 2. If η → ∞ , i.e. , the incubation period is ignored,

then R c → 

β1 S 0 
γ1 + τ1 + m 

+ 

β2 S 0 γ1 
(γ1 + τ1 + m )(γ2 + τ2 + m ) 

as η
η+ m 

, the probabil-

ity of surviving incubation, tends to 1. If in addition β1 =
β2 , then R c agrees with the effective reproduction number

in [18, Eq. (3)] . 

4. Disease free equilibrium and stability 

As mentioned in Section 3 , Model (1) has a disease-free equi-

librium P 0 = (S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) . The following theorem ad-

dresses the global stability of this equilibrium. 

Theorem 3. If R c < 1 , then the disease-free equilibrium P 0 is globally

asymptotically stable in the feasible region 	. 

Proof. Algebraic operation gives 

 

−1 F = 

(
0 A 12 A 13 0 0 0 0 0 0 

)
(5)
ith 

 1 ,i +1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

βi S 0 
η + m 

ηβi S 0 
(η + m ) κ1 

ηγ1 βi S 0 
(η + m ) κ1 κ2 

ηγ1 γ2 βi S 0 
(η + m ) κ1 κ2 κ3 

ηγ1 γ2 γ3 βi S 0 
(η + m ) κ1 κ2 κ3 κ4 

ητ1 βi S 0 
(η + m ) κ1 σ1 

ηγ1 τ2 βi S 0 
(η + m ) κ1 κ2 σ2 

ηγ1 γ2 τ3 βi S 0 
(η + m ) κ1 κ2 κ3 σ3 

ηγ1 γ2 γ3 τ4 βi S 0 
(η + m ) κ1 κ2 κ3 κ4 σ4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

or i = 1 , 2 , where κi = (γi + τi + m ) and σi = (δi + m ) for i = 1 , ..., 4 .

Since V −1 F is reducible, we construct a Lyapunov function Q as

n Theorem 5.1 of Shuai and van den Driessche [35] by identify-

ng a left Perron eigenvector w 

T of V −1 F for the eigenvalue R c ,

amely, 

( 0 w 2 w 3 0 0 0 0 0 0 ) V 

−1 F 

= R c ( 0 w 2 w 3 0 0 0 0 0 0 ) 

his gives 

 c w 2 = w 2 
ηβ1 S 0 

(η + m )(γ1 + τ1 + m ) 

+ w 3 
ηγ1 β1 S 0 

(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 

 c w 3 = w 2 
ηβ2 S 0 

(η + m )(γ1 + τ1 + m ) 

+ w 3 
ηγ1 β2 S 0 

(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 

 solution to the above system is w 2 = 1 and w 3 = 

β2 
β1 

, and so 

 

T = 

(
0 1 

β2 

β1 
0 0 0 0 0 0 

)
ow, as in [35] , let Q = w 

T V −1 x, where 

 = 

(
E I 1 I 2 L 1 L 2 T 1 T 2 T 3 T 4 

)T 

imple calculations lead to 

 = 

(
η

(η + m )(γ1 + τ1 + m ) 

+ 

β2 

β1 

ηγ1 

(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 

)
E 

+ 

(
1 

(γ1 + τ1 + m ) 
+ 

β2 

β1 

γ1 

(γ1 + τ1 + m )(γ2 + τ2 + m ) 

)
I 1 

+ 

(
β2 

β1 

1 

γ2 + τ2 + m 

)
I 2 

ifferentiating Q along solutions of the system (1) and rearranging

eads to 

 

′ = 

(
ηβ2 γ1 S 

(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 
+ 

ηβ1 S 

(η + m )(γ1 + τ1 + m ) 
− 1 

)
I 1

+ 

β2 

β1 

(
ηβ1 S 

(η + m )(γ1 + τ1 + m ) 

+ 

ηβ2 γ1 S 

(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 
− 1 

)
I 2 (6)
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ince S ≤ S 0 (because N ≤ S 0 = 

�
m 

), 

 

′ ≤
(

ηβ2 γ1 S 0 
(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 

+ 

ηβ1 S 0 
(η + m )(γ1 + τ1 + m ) 

− 1 

)
I 1 

+ 

β2 

β1 

(
ηβ1 S 0 

(η + m )(γ1 + τ1 + m ) 

+ 

ηβ2 γ1 S 0 
(η + m )(γ1 + τ1 + m )(γ2 + τ2 + m ) 

− 1 

)
I 2 

sing (4) 

 

′ ≤ (R c − 1) I 1 + 

β2 

β1 

(R c − 1) I 2 

hus, if R c < 1 , Q 

′ ≤ 0 and by an application of LaSalle’s invariance

rinciple [22] , since the singleton { P 0 } is the largest invariant sub-

et of 	 where Q 

′ = 0 , P 0 is globally asymptotically stable if R c < 1 .

rom (2) , it follows that X → 0 also. �

emark 4. Since global asymptotic stability of P 0 follows from

heorem 3 if R c < 1 , it becomes interesting to calculate values

f τ 1 and τ 2 for which this occurs. First, if τ1 > 

η
η+ m 

(β1 S 0 +
β2 S 0 γ1 

γ2 + τ2 + m 

) − γ1 − m, then R c < 1 and the disease will be eventu-

lly eradicated. If η
η+ m 

(β1 S 0 + 

β2 S 0 γ1 
γ2 + τ2 + m 

) < γ1 + m, then treatment

f individuals in I 1 is not necessary as τ1 = 0 results in R c < 1 .

econd, if R c 1 < 1 , then τ2 > 

β2 γ1 
(γ1 + τ1 + m )(η+ m ) 

S 0 η
−β1 

− γ2 − m results in

 c < 1 and thus in eventual eradication of the disease. Otherwise,

f R c 1 > 1 , there is no such τ 2 value that will result in disease

radication, and thus it is necessary to treat individuals in the pri-

ary stage. 

. Endemic equilibrium and stability 

We now address the existence of an endemic equilibrium (EE)

ith a positive number of males in each class. 

heorem 5. If R c > 1 , then the disease persists. More-

ver, if R c > 1 , there exists a unique endemic equilibrium

 

∗ = (S ∗, E ∗, I ∗1 , I 
∗
2 , L 

∗
1 , L 

∗
2 , T 

∗
1 , T 

∗
2 , T 

∗
3 , T 

∗
4 ) . 

roof. Using the Lyapunov function Q of Theorem 3 and (6) , Q 

′ >
 in a neighborhood of P 0 provided R c > 1 . Then as in Theorem

.2 of Shuai and van den Driessche [35] , since P 0 is the only equi-

ibrium on the boundary of 	 and is isolated, the instability of P 0 
mplies uniform persistence if R c > 1 . The uniqueness of the en-

emic equilibrium follows by setting each derivative equal to zero

n (1) . Straightforward calculations result in 

 

∗ = 

η + m 

β1 η
γ1 + τ1 + m 

+ 

β2 ηγ1 

(γ1 + τ1 + m )(γ2 + τ2 + m ) 

= 

S 0 
R c 

nd it follows that 

E ∗ = 

�

η + m − A 

(
1 − 1 

R c 

)
, I ∗1 = 

η

γ1 + τ1 + m 

E ∗

I ∗2 = 

γ1 

γ2 + τ2 + m 

I ∗1 , L 
∗
1 = 

γ2 

γ3 + τ3 + m 

I ∗2 , L 
∗
2 = 

γ3 

γ4 + τ4 + m 

L ∗1 

 

∗
1 = 

τ1 

δ1 + m 

I ∗1 , T 
∗

2 = 

τ2 

δ2 + m 

I ∗2 , T 
∗

3 = 

τ3 

δ3 + m 

L ∗1 , T 
∗

4 = 

τ4 

δ4 + m 

L ∗2 

here 

 = 

δ2 τ2 γ1 η

(δ2 + m ) κ2 κ1 

+ 

δ1 τ1 η

(δ1 + m ) κ1 

+ 

δ3 τ3 γ2 γ1 η

(δ3 + m ) κ3 κ2 κ1 

+ 

δ4 τ4 γ3 γ2 γ1 η

(δ4 + m ) κ4 κ3 κ2 κ1 
t  
nd κi = γi + τi + m, i = 1 , ..., 4 . The denominator of E ∗ is positive,

hus if R c > 1 then E ∗ > 0, and it follows that if R c > 1 then

 

∗
1 
, I ∗

2 
, L ∗

1 
, L ∗

2 
, T ∗

1 
, T ∗

2 
, T ∗

3 
, T ∗

4 
> 0 . From (2) , it follows that X 

∗ > 0. �

The following remark draws observation to the effects of the

reatment rates of the early and late latent classes, τ 3 and τ 4 , on

he endemic equilibrium. 

emark 6. If τ 3 → ∞ , it follows that L ∗1 → 0 , L ∗2 → 0 , and X 

∗ →
. However, 

τ3 
κ3 

→ 1 , thus the denominator of E ∗ becomes smaller,

nd E ∗ becomes larger. This implies that I ∗1 and I ∗2 also grow. If τ 4 

 ∞ , it follows that L ∗
2 

→ 0 , and X 

∗ → 0. Similarly to the pre-

ious case, 
τ4 
κ4 

→ 1 , thus the denominator of E ∗ becomes smaller,

nd once again E ∗ becomes larger; but now, I ∗1 , I 
∗
2 and also L ∗1 be-

ome larger. Thus, increasing τ 3 and τ 4 can lead to increases in

ndividuals in the primary and secondary stages of the infection.

his exemplifies the need for early treatment ( i.e. , in the primary

nd secondary stages), as the goal is to reduce the number of in-

ectious individuals ( i.e. , individuals in the primary and secondary

tages of the disease). 

Theorems 3 and 5 imply that R c is a sharp threshold, with

yphilis dying out if R c < 1 , but becoming endemic if R c > 1 . We

ow focus on the dynamical behavior of Model (1) for R c > 1 .

onsider the case with � = m = τ1 = τ2 = τ3 = γ4 = β2 = 0 and η
 ∞ . Then, Model (1) behaves as an SIR 1 R 2 R 3 R 4 S epidemiologi-

al model, where I 2 acts as the first, L 1 as the second, L 2 as the

hird, and T 4 as the fourth removed subclass. This model has been

tudied in Hethcote et al. [14] (and again mentioned in Bodine

t al. [2] ) and found to have periodic solutions about the endemic

quilibrium for some parameter values. Taking parameter values
γ1 
50 = γ2 = γ3 = τ4 = δ4 = 

1 
100 , β1 = 1 . 34 γ1 , giving R c = 3 . 048 , we

ave numerically verified periodic solutions for our model. Thus,

lobal asymptotic stability of the endemic equilibrium for Model

1) for all parameter values with R c > 1 is impossible. We remark 

hat Breban et al. [4] examined the hypothesis that syphilis epi-

emics cycle, but concluded that CDC syphilis data show no evi-

ence of this. 

However, for R c > 1 , global asymptotic stability of the endemic

quilibrium (EE) can be proved in some special cases. The follow-

ng three theorems address this, each with different assumptions,

hat may be appropriate in some situations. In the first two results

here γ 2 > 0 ( i.e. , the disease progresses to the latent stages), if

he variables in (1) are globally asymptotically stable, the global

tability of X 

∗ follow from (2) . 

The first of these theorems addresses global stability of the en-

emic equilibrium under the condition that δ1 = δ2 = δ3 = δ4 = 0 .

iologically, this represents the case that treated individuals do

ot return to susceptibility. This could be due to recovery and the

doption of safe behavior. For example, from data in San Francisco,

einfection with syphilis in an MSM population (without HIV coin-

ection) is only 2% within a year [27] . 

heorem 7. Suppose that δ1 = δ2 = δ3 = δ4 = 0 . If R c > 1 , then the

ndemic equilibrium P ∗ is globally asymptotically stable in int ( 	) . 

roof. With the theorem assumptions, Model (1) becomes 

dS 

dt 
= � − mS − (β1 I 1 + β2 I 2 ) S 

dE 

dt 
= (β1 I 1 + β2 I 2 ) S − (η + m ) E (7) 

dI 1 
dt 

= ηE − (γ1 + τ1 + m ) I 1 

dI 2 
dt 

= γ1 I 1 − (γ2 + τ2 + m ) I 2 

he L 1 , L 2 , T 1 , T 2 , T 3 , T 4 equations uncouple from the sys-

em, and thus their behavior follows from the behavior of (7) .
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model with constant population. �
Consider D 1 = S − S ∗ − S ∗ln ( S 
S ∗ ) + E − E ∗ − E ∗ ln ( E 

E ∗ ) , D 2 = I 1 − I ∗1 −
I ∗1 ln ( 

I 1 
I ∗
1 
) and D 3 = I 2 − I ∗2 − I ∗2 ln ( 

I 2 
I ∗
2 
) . Differentiating along solutions

of the system (7) and using the inequality 1 − x ≤ −ln x for x > 0

lead to 

D 

′ 
1 = 

(
S − S ∗

S 

)
dS 

dt 
+ 

(
I 1 − I ∗1 

I 1 

)
dI 1 
dt 

= − m (S − S ∗) 2 

S 
+ β1 S 

∗I ∗1 

(
2 − S ∗

S 
+ 

I 1 
I ∗
1 

− SI 1 E 
∗

S ∗I ∗
1 
E 

− E 

E ∗

)

+ β2 S 
∗I ∗2 

(
2 − S ∗

S 
+ 

I 2 
I ∗
2 

− SI 2 E 
∗

S ∗I ∗
2 
E 

− E 

E ∗

)

≤ β1 S 
∗I ∗1 

(
I 1 
I ∗
1 

− ln 

(
I 1 
I ∗
1 

)
− E 

E ∗
+ ln 

(
E 

E ∗

))

+ β2 S 
∗I ∗2 

(
I 2 
I ∗
2 

− ln 

(
I 2 
I ∗
2 

)
− E 

E ∗
+ ln 

(
E 

E ∗

))
= a 12 G 12 + a 13 G 13 where a 12 = β1 S 

∗I ∗1 , a 13 = β2 S 
∗I ∗2 

D 

′ 
2 = 

(
I 1 − I ∗1 

I 1 

)
dI 1 
dt 

= ηE ∗
(

E 

E ∗
− EI ∗1 

E ∗I 1 
− I 1 

I ∗
1 

+ 1 

)

≤ ηE ∗
(

E 

E ∗
− ln 

(
E 

E ∗

)
− I 1 

I ∗
1 

+ ln 

(
I 1 
I ∗
1 

))
= a 21 G 21 where a 21 = ηE ∗

D 

′ 
3 = 

(
I 2 − I ∗2 

I 2 

)
dI 2 
dt 

= γ1 I 
∗
1 

(
I 1 
I ∗
1 

− I 1 I 
∗
2 

I ∗
1 
I 2 

− I 2 
I ∗
2 

+ 1 

)

≤ γ1 I 
∗
1 

(
I 1 
I ∗
1 

− ln 

(
I 1 
I ∗
1 

)
− I 2 

I ∗
2 

+ ln 

(
I 2 
I ∗
2 

))
= a 32 G 32 where a 32 = γ1 I 

∗
1 

Since G 12 + G 21 = 0 and G 13 + G 21 + G 32 = 0 , an application of The-

orems 3.3 and 3.5 of [35] , gives the Lyapunov function D = c 1 D 1 +
c 2 D 2 + c 3 D 3 , where c 1 = a 21 a 32 , c 2 = a 12 a 32 + a 32 a 13 and c 3 = a 13 a 21 .

The use of this Lyapunov function for (1) along with LaSalle’s in-

variance principle [22] completes the proof of the global asymp-

totic stability of the EE P ∗ if δ1 = δ2 = δ3 = δ4 = 0 and R c > 1 . �

Sometimes data on primary and secondary syphilis are com-

bined [6,10] , so in our model with γ 2 → ∞ , I 1 denotes these in-

fectious men. Assuming that the time scale for the loss of immu-

nity from T 3 and T 4 is large compared with that from T 1 , we take

δ3 = δ4 = 0 , and in addition we ignore the exposed class in the

next result. 

Theorem 8. Suppose that η, γ 2 → ∞ and δ3 = δ4 = 0 . If R c =
β1 S 0 

γ1 + τ1 + m 

> 1 , then the EE P ∗ is globally asymptotically stable in

int( 	). 

Proof. Setting η, γ 2 → ∞ (giving E, I 2 = 0 ) and δ3 = δ4 = 0 , sys-

tem (1) becomes 

dS 

dt 
= � − mS − β1 I 1 S + δ1 T 1 

dI 1 
dt 

= β1 I 1 S − (γ1 + τ1 + m ) I 1 

dT 1 
dt 

= τ1 I 1 − (δ1 + m ) T 1 (8)
ince all other variables do not appear in (8) , the behavior of them

ollow directly from (8) . Now, as in [20] and [40] , consider N 1 =
 + I 1 + T 1 , and thus N 

∗
1 

= S ∗ + I ∗
1 

+ T ∗
1 

and 

dN 1 

dt 
= � − mN 1 − γ1 I 1 

ow consider the following equivalent system: 

dN 1 

dt 
= � − mN 1 − γ1 I 1 

dI 1 
dt 

= β1 I 1 (N 1 − I 1 − T 1 ) − (γ1 + τ1 + m ) I 1 

dT 1 
dt 

= τ1 I 1 − (m + δ1 ) T 1 

et D 1 = 

1 
2 (N 1 − N 

∗
1 
) 2 , D 2 = I 1 − I ∗

1 
− I ∗ln ( 

I 1 
I ∗
1 
) and D 3 = 

1 
2 (T 1 − T ∗

1 
) 2 .

ifferentiating along solutions and after rearrangements, 

 

′ 
1 = −m (N 1 − N 

∗
1 ) 

2 − γ1 (I 1 − I ∗1 )(N 1 − N 

∗
1 ) ≤ −γ1 (I 1 − I ∗1 )(N 1 − N 

∗
1 ) 

= a 12 G 12 where a 12 = γ1 

 

′ 
2 = β1 [(I 1 − I ∗1 )(N 1 − N 

∗
1 ) − (I 1 − I ∗1 ) 

2 − (I 1 − I ∗1 )(T 1 − T ∗1 )] 

≤ β1 (I 1 − I ∗1 )(N 1 − N 

∗
1 ) − β1 (I 1 − I ∗1 )(T 1 − T ∗1 ) 

= a 21 G 21 + a 23 G 23 where a 21 = a 23 = β1 

 

′ 
3 = γ1 (I 1 − I ∗1 )(T 1 − T ∗1 ) − (m + δ1 )(T 1 − T ∗1 ) 

2 

≤ γ1 (I 1 − I ∗1 )(T 1 − T ∗1 ) 

= a 32 G 32 where a 32 = γ1 

n application of Theorems 3.3 and 3.5 of [35] results in the

yapunov function D = c 1 D 1 + c 2 D 2 + c 3 D 3 where c 1 = c 3 = β1 and

 2 = γ1 , and this function, along with an application of LaSalle’s

nvariance principle [22] , proves the global asymptotic stability of

(N 

∗
1 , I 

∗
1 , T 

∗
1 ) . Under the above assumptions, the global asymptotic

tability of (S ∗, I ∗1 , T 
∗

1 ) for (8) and thus of P ∗ for (1) follows provided

 c > 1 . �
Another possible case is if the disease does not progress to its

econdary stage, thus γ1 = 0 and our model becomes an SEI 1 T 1 S

odel. This could model the case of complete surveillance and

reatment in the primary stage. Enhanced surveillance is currently

nderway in several locations, for e.g. in inner Sydney, Australia

3] and in China [7] . More specifically with regards to an MSM

opulation, the Los Angeles County started a social marketing cam-

aign to increase surveillance of syphilis within the MSM commu-

ity [28] . The next theorem addresses global stability of the en-

emic equilibrium under these conditions, and we also assume

onstant population size, thus the variables can be regarded as

ractions of the population. 

heorem 9. Suppose � = m, and γ1 = 0 . If R c > 1 , then

(S ∗, E ∗, I ∗
1 
, T ∗

1 
) is globally asymptotically stable in int ( 	) . 

roof. Since γ1 = 0 , system (1) becomes 

dS 

dt 
= m − mS − β1 I 1 S + δ1 T 1 

dE 

dt 
= β1 I 1 S − (η + m ) E 

dI 1 
dt 

= ηE − (τ1 + m ) I 1 

dT 1 
dt 

= τ1 I 1 − (δ1 + m ) T 1 

learly, this is just like an SEIRS epidemiological model having con-

tant population size and with the T 1 acting as the R class. Thus,

n application of Theorems 6 and 7 in [8] completes the proof.

hese theorems utilize well chosen Lyapunov functions and com-

ound matrices to show asymptotic global stability of an SEIRS
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Table 2 

Baseline parameter values for MSM populations as 

estimated from various sources in the literature, all 

normalized to be per day. 

Parameter Value ( 1 

day 
) Reason 

m 0.0 0 0 0498 1 
m 

= 55 years 

� 0.0 0 0 0498 � = m 

η 0.0476190 1 
η = 28 days [13] 

γ 1 0.0217391 1 
γ1 

= 46 days [13] 

γ 2 0.0092593 1 
γ2 

= 108 days [13] 

β1 0.0353888 [16,32] 

β2 0.0353888 [16,32] 

τ 1 0.010 0 0 0 0 Estimated guess 

τ 2 0.010 0 0 0 0 Estimated guess 
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Table 3 

Elasticity indices as calculated for the baseline parameter 

values given in Table 2 . 

Parameter Value ( 1 

day 
) Elasticity index 

β2 0.0353888 0 .5296001 

β1 0.0353888 0 .4703999 

τ 1 0.010 0 0 0 0 −0 .3145748 

τ 2 0.010 0 0 0 0 −0 .2742752 

γ 2 0.0092593 −0 .2539586 

γ 1 0.0217391 −0 .1542582 

η 0.0476190 0 .00139283 

Table 4 

Ranges of all parameters that we assume to fol- 

low uniform distributions. Units of γ i are per day, 

and units of β i are per number per day, for i = 

1 , 2 . 

Parameter Upper limit Lower limit 

γ 1 
1 

14 
1 

84 

γ 2 
1 

90 
1 

120 

β1 0.3 × 0.07222 0.7 × 0.07222 

β2 0.3 × 0.07222 0.7 × 0.07222 
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. Numerics: sensitivity and control measures 

.1. Elasticity indices 

With the goal of quantifying disease control, we calculate the

lasticity indices of each parameter present in R c . This lineariza-

ion allows us to see which parameter variation has the great-

st impact on R c when all other parameters are at baseline val-

es. These indices have been used in other epidemiological models

see, for e.g. , Chitnis et al. [9] and Saad-Roy et al. [31] ) and are

enoted as 

R c 
p = 

∂R c 

∂ p 
× p 

R c 

here p is a parameter. Computing this for the parameters present

n R c , gives 

R c 

β1 
= 

R c 1 

R c 
, ϒR c 

β2 
= 

R c 2 

R c 
, ϒR c 

γ1 
= − γ1 

γ1 + τ1 + m 

+ 

R c 2 

R c 
, 

R c 
γ2 

= −R c 2 

R c 

γ2 

γ2 + τ2 + m 

, ϒR c 
τ1 

= − τ1 

γ1 + τ1 + m 

, 

R c 
τ2 

= −R c 2 

R c 

τ2 

γ2 + τ2 + m 

, and ϒR c 
η = 

m 

η + m 

Baseline disease parameter values are estimated from various

ources in the literature on syphilis in MSM populations. For our

aseline parameters, m is calculated based on an average time in

he MSM population of 55 years, and for simplicity, we assume

hat � = m , thus recruitment is equal to death, and so num-

ers in each class can be thought of as fractions. Parameter β i , i =
 , 2 , is the probability of transmission from a male in the I i class

imes the number of his partners, all normalized per day, thus

i = 0 . 49 × 0 . 07222 since 0.49 is the probability of transmission

32, Table III] and 0.07222 is the average number of partners per

ay per male [16, Table 2] . In this calculation, β i is probably under-

stimated, as we consider that an individual has only one contact

er partner. However this may not be the case, and repeated expo-

ure to the same infected partner would increase likelihood of suc-

essful transmission of the disease. Data is lacking on the values of

i , i = 1 , 2 , so we assume β1 = β2 . The average primary incubation

eriod is taken as 1 
η = 28 days , the average times in the primary

tage and secondary stage as 1 
γ1 

= 46 days and 

1 
γ2 

= 3 . 6 months ,

ll obtained from data in Garnett et al. [13] . Using the baseline

arameters as given in Table 2 , R c 1 = 1 . 11 and R c 2 = 1 . 25 giving

 c = 2 . 36 , and we compute the elasticity indices given above, pre-

enting the results in Table 3 . Note that every elasticity index is

ign determined except for ϒR c 
γ1 

; for this index, if (τ1 + m ) R c 2 >

1 R c 1 , namely β2 (m + τ1 ) − β1 (γ2 + τ2 + m ) > 0 , then ϒR c 
γ1 

> 0 ;

therwise if β2 (m + τ1 ) − β1 (γ2 + τ2 + m ) < 0 , then ϒR c 
γ1 

< 0 as in

able 3 . The calculations in Table 3 indicate the importance of

arly treatment and the need to have good estimates of β i , i = 1 , 2 ,

hich have the largest elasticity indices. 
.2. Effect of treatment rates on R c 

Since τ 1 and τ 2 are the parameters in R c that may be

ontrolled if syphilis is identified early, it is interesting to see

hat happens to R c as these two parameters are varied. More-

ver, the aim is to predict values of τ 1 and τ 2 that would re-

ult in disease eradication; i.e. , to bring R c below 1 in accor-

ance with Theorem 3 . This expands on the comments stated in

emarks 1 and 4 , as these considered appropriate values of τ i ,

 = 1 , 2 , for fixed τ j , j = 1 , 2 , j � = i . In order to consider treatment

ates, we first need to fix other parameters at their baseline values

s estimated from data found in the literature; see Table 2 . 

With the other parameter values fixed as in Table 2 , we vary τ 1 

nd τ 2 from their baseline values of 0.01 and calculate the change

n R c as defined in (4) . The results are given in Fig. 2 (a), and plot-

ing the contour lines of this graph gives Fig. 2 (b). 

Fig. 2 (a) and (b) illustrate the effect of both τ 1 and τ 2 on R c 

hile all other parameters are at baseline values. However, param-

ter baseline values are estimates found in the literature, and these

re inexact values depending on location and sampling techniques.

Fixing m and � at their baseline value, to help identify the

obustness of R c to the baseline parameters, we sample the γ 1 ,

2 , β1 , β2 , η parameter space using Latin Hypercube Sampling

LHS) maximin criteria, see, for e.g. , Blower et al. [1] and refer-

nces therein. We then compute R c at all these parameter values

or fixed values of τ 2 and a range of τ 1 , and generate box plots at

ach τ 1 value. We assume that 1 
η ∼ Gamma (α = 1 . 5 , β = 18 . 6 6 67) ,

ince Singh and Romanowski [34] state that the range of 1 
η (we

ake this as the 95% confidence interval) is 3–90 days. We assume

hat γ 1 , γ 2 , β1 , β2 follow uniform independent distributions, with

heir ranges presented in Table 4 . These ranges are estimated from

ata presented in [34] , or (for the infectivity rates), estimated us-

ng approximately symmetric intervals about the baseline value as

ean. For fixed τ 2 , we present different curves of R c as a function

f τ 1 . This presentation is chosen as τ 1 and τ 2 values depend on

he public health initiatives and not on the biology of the disease.

ig. 3 confirms that our baseline parameters are relatively accurate,

specially for larger treatment rates. Interestingly, this figure also

llustrates that with lower treatment rates, values of R c vary more

nd have more outliers present (see Appendix). These outliers are

robably due to low γ 1 values present for certain data points cho-

en by LHS, as very low γ and τ values would greatly increase
1 1 
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Fig. 2. (a) Values of R c as τ 1 and τ 2 are varied within a feasible region. The blue circular marker represents the baseline values of τ 1 and τ 2 . The red plane represents 

R c = 1 . (b) Contour curves of the values of R c as τ 1 and τ 2 are varied within a feasible region. The dashed red line represents R c = 1 . (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Values of R c as of function of τ 1 for fixed τ 2 . The black line represents the R c values at the baseline values for the parameters γ 1 , γ 2 , β1 , β2 , m, �, η. The box 

plots represent 250 parameter points obtained by LHS maximin criteria for γ 1 , γ 2 , β1 , β2 and η, based on their associated probability distributions. The red dotted line 

is at R c = 1 ; values of R c below this result in disease eradication. Note that outliers are omitted, and that the R c scales changes from (b) to (c). The outside lines in the 

boxplots represent the first and third quartiles while the middle line represents the median, and the bottom and top whiskers respectively represent the smallest value 

within 1 st quartile − 1 . 5 × inter-quartile range (IQR) and the largest value within 3 rd quartile + 1 . 5 × IQR . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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 c . In conjunction with Fig. 2 treatment rates needed for disease

ontrol can be estimated. 

. Final size calculations 

The previous sections dealt with an open population with re-

ruitment and death, and thus if R c > 1 Model (1) admits an en-

emic equilibrium with positive values for all of the population

lasses. Now, however, we ignore recruitment and death ( i.e. , � =
 = α = 0 ), as well as return to susceptibility after treatment ( i.e. ,

i = 0 , i = 1 , ..., 4 ) giving an epidemic model instead of an endemic

ne. Taking a time scale of about 12–18 months for an epidemic,

he late latent and tertiary stages can be ignored, and T 3 becomes

 terminal class. Thus, we can study the final disease outbreak size

f syphilis as predicted from our model, given that the population

s a closed one and there is no return to susceptibility after treat-

ent. Model (1) then becomes 

dS 

dt 
= −(β1 I 1 + β2 I 2 ) S 

dE 

dt 
= (β1 I 1 + β2 I 2 ) S − ηE 

dI 1 
dt 

= ηE − (γ1 + τ1 ) I 1 

dI 2 
dt 

= γ1 I 1 − (γ2 + τ2 ) I 2 

dL 1 
dt 

= γ2 I 2 − τ3 L 1 

dT 1 
dt 

= τ1 I 1 

dT 2 
dt 

= τ2 I 2 

dT 3 
dt 

= τ3 L 1 (9) 

hus, R c = 

β1 S(0) 
γ1 + τ1 

+ 

β2 S(0) γ1 
(γ1 + τ1 )(γ2 + τ2 ) 

where S (0) is the fraction of sus-

eptible individuals at time t = 0 . This control reproduction num-

er now represents the epidemic threshold; as in the proof of

heorem 3 , syphilis dies out if R c < 1 ; whereas if R c > 1 , then

here is an epidemic with final size given below. Note that since
he total population N F S = S + E + I 1 + I 2 + L 1 + T 1 + T 2 + T 3 is con-

tant, the populations in each class can be thought of as a fraction

uch that N F S = 1 . 

heorem 10. As t → ∞ in system (9) , the disease burns out;

.e. , I 1 (∞ ) = I 2 (∞ ) = L 1 (∞ ) = 0 . Moreover, S ( ∞ ), T 1 ( ∞ ), T 2 ( ∞ ) and

 3 ( ∞ ) are nonnegative constants such that S(∞ ) + T 1 (∞ ) + T 2 (∞ ) +
 3 (∞ ) = 1 . The final size relations with τ 1 , τ 2 > 0 are given by 

ln S(∞ ) = −R c (γ1 + τ1 )(γ2 + τ2 ) 

γ1 γ2 

T 3 (∞ ) 

ln S(∞ ) = −β2 γ1 + β1 (γ2 + τ2 ) 

γ1 τ2 

T 2 (∞ ) 

ln S(∞ ) = −β1 

τ1 

T 1 (∞ ) − β2 

τ2 

T 2 (∞ ) 

 − S(∞ ) = T 1 (∞ ) + T 2 (∞ ) + T 3 (∞ ) 

roof. Consider S + E. From (9) , it follow that d 
dt 

(S + E) = −ηE.

hus, S + E is a monotonically nonincreasing function, as E ( t )

0 by definition. But 0 ≤ S + E ≤ 1 , so S + E is bounded.

y the monotone convergence theorem, this implies that

im t→∞ 

(S(t) + E(t)) = c ∈ [0 , 1] . But then it follows that

im t→∞ 

d 
dt 

(S(t) + E(t)) = lim t→∞ 

(−ηE(t)) = 0 , so clearly

im t→∞ 

E(t) = 0 , and lim t→∞ 

(S(t) + E(t)) = lim t→∞ 

S(t) = c =
(∞ ) ∈ [0 , 1] since 0 ≤ S ( t ) ≤ 1 for all t . A similar approach with

rst the S, E, I 1 equations, then with the S, E, I 1 , I 2 , T 1 equations,

nd lastly with the S, E, I 1 , I 2 , L 1 , T 1 , T 2 equations results in

 1 (∞ ) = I 2 (∞ ) = L 1 (∞ ) = 0 and in T 1 ( ∞ ), T 2 ( ∞ ), T 3 ( ∞ ) being

onnegative constants. Since these are nonnegative constants, and

 F S = 1 it follows that S(∞ ) + T 1 (∞ ) + T 2 (∞ ) + T 3 (∞ ) = 1 . Notice

hat 

 1 = ln S + 

β1 

γ1 

I 2 + 

R c (γ1 + τ1 )(γ2 + τ2 ) 

S(0) γ1 γ2 

(L 1 + T 3 ) 

 2 = ln S + 

β1 

γ1 

I 2 + 

β2 γ1 + β1 (γ2 + τ2 ) 

γ1 τ1 

T 2 

 3 = ln S + 

β1 

τ1 

T 1 + 

β2 

τ2 

T 2 (10) 

re all first integrals for (9) ; i.e. , 
dJ i 
dt 

= 0 for i = 1 , 2 , 3 . 
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Fig. 5. Values of the final disease outbreak size 1 − S(∞ ) as of function of τ 1 for fixed τ 2 . The black curve represents 1 − S(∞ ) values at the baseline values for the parame- 

ters γ 1 , γ 2 , β1 , β2 . The box plots represent 250 parameter points obtained by LHS maximin criteria for these parameters, based on their associated probability distributions. 

The nonlinear equations for the final size relations are solved using the nleqslv of R. The outside lines on the boxplots represent the first and third quartiles, while the middle 

line represents the median; the bottom and top whiskers represent the smallest value within 1 st quartile − 1 . 5 × IQR and the largest value within 3 rd quartile + 1 . 5 × IQR 

respectively, and outliers are omitted from this plot. 
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Using the final size relationships above, the final size 1 − S(∞ )

of the outbreak is obtained, in the case that a few infectious

individuals are introduced into a completely susceptible popula-

tion; thus, we assume that E(0) = I 1 (0) = I 2 (0) = L 1 (0) = T 1 (0) =
T 2 (0) = T 3 (0) ≈ 0 . Since very few infectious individuals are intro-

duced to a susceptible population, S (0) ≈ 1. Thus, (10) results in

the system of four equations in four unknowns as given in the the-

orem statement. �

Solving the final size relations given in Theorem 10 using pa-

rameter values presented in Table 2 , S(∞ ) = 0 . 12547 , T 1 (∞ ) =
0 . 27553 , T 2 (∞ ) = 0 . 31102 and T 3 (∞ ) = 0 . 28798 . However, as pre-

viously mentioned, since the values of τ 1 and τ 2 may be con-

trolled, we generate surface and contour plots of 1 − S(∞ ) (which

represents the final outbreak size). The values of 1 − S(∞ ) as τ 1 ,

τ 2 are varied are given in Fig. 4 . 

Fig. 4 illustrates how the final disease outbreak size 1 − S(∞ )

changes as τ 1 and τ 2 are varied, while all other parameters are

kept at baseline values (presented in Table 2 ). However, these pa-

rameter values are estimates; thus, using LHS maximin criteria (as

in the previous section), we perform uncertainty analyses. We as-

sign probability distributions to parameters, as previously done,

and use LHS maximin criteria to obtain 250 samples from the fea-

sible parameter region. Then, since we are especially interested

in how 1 − S(∞ ) changes as τ 1 varies ( i.e. , the impact of early

treatment on the epidemic), we compute 1 − S(∞ ) at each sam-

ple point for fixed τ 1 values, and generate box plots at subsequent

τ 1 values to illustrate the distribution of the sample points. This

is presented in Fig. 5 . Note that no data points are presented for

τ1 = 0 or τ2 = 0 because the final size equations require that both

τ 1 , τ 2 > 0. Fig. 5 (b) and (c) show values of τ 1 , τ 2 for syphilis

eradication; see also Fig. 4 , and confirm the importance of treat-

ment in the primary stage. Although there is considerable variation

in the final size values, Fig. 5 confirms that our baseline parameter

values are reasonable. 

8. Concluding remarks 

We first formulated an ODE model for the transmission of

syphilis by the bacterium Treponema pallidum subspecies pallidum

in an MSM population. We separated the males based on their

stage of infection, and included the primary, secondary, early la-

tency, late latency, and the tertiary stages of syphilis. We also in-
orporated treated classes at all stages except the tertiary one. We

hen proceeded to calculate the control reproduction number R c ,

hich is a threshold parameter for our model. If R c < 1 , we proved

hat the disease-free equilibrium is globally asymptotically stable;

hat is, the disease dies out. Otherwise, if R c > 1 , the disease per-

ists and admits a unique endemic equilibrium. We showed that

or any fixed parameter values, there always exists a treatment rate

or the primary stage that results in disease eradication; however

his may not be the case for the secondary stage. Moreover, if the

reatment rates in the later stages of the disease ( i.e. , early and late

atency) are higher, then the endemic equilibrium has more indi-

iduals present in the primary and secondary stages, which is the

pposite of public health aims. While we show that global asymp-

otic stability for all parameter values is impossible, for certain pa-

ameter restrictions (for various possible biological cases) we prove

he global asymptotic stability of this endemic equilibrium with R c 

cting as a sharp threshold. 

We then proceeded to various numerical approaches. First, we

omputed elasticity indices of R c for each parameter, to determine

ocal behavior of R c at the baseline parameters, estimated from

he literature. We also investigated the effect of treatment rates in

he primary and secondary stages on R c , and this provided possi-

le treatment rates that would lead to the eradication of syphilis,

iven that the baseline estimates are accurate. We also investigated

he robustness of R c to our baseline values by using Latin Hy-

ercube Sampling maximin criteria to sample the parameter space

or all disease parameters in R c with fixed treatment rates. This

howed that, while variation was present, our baseline estimates

ere reasonably accurate. 

Lastly, we modified our endemic model into an epidemic one;

hat is, we assumed the population was closed and there was no

eturn to susceptibility. With this model, the disease eventually

ies out, and we numerically simulated the final outbreak size for

arying treatment rates. Graphical results illustrated the greater

enefit of increasing treatment in the primary stage compared to

hat of increasing treatment in the secondary stage. This reinforces

esults from our endemic model showing that early treatment is

mportant to control syphilis in an MSM population. This conclu-

ion agrees with those found from other models in the literature,

or example, Garnett et al. [13] and Iboi and Okuonghae [18] . Thus

eliable diagnostic tests to detect syphilis in its primary stage are

rucial to disease control. 
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Fig. 6. Values of R c as of function of τ 1 for fixed τ2 = 0 . 05 . These graphs are identical to Fig. 3 (f), however (a) has outliers present. These outliers represent values that lie 

outside the whiskers. Note the scale change in R c from Fig. 3 (f) to include all outliers. 
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ppendix 

As mentioned in Section 6 , using LHS lower treatment rates

n the primary stage give more outliers for R c . These outliers are

hown in Fig. 6 (a), with Fig. 6 (b) given for comparison. 
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