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A mathematical model is formulated for the transmission and spread of cholera in a heterogeneous host
population that consists of several patches of homogeneous host populations sharing a common water
source. The basic reproduction numberR0 is derived and shown to determine whether or not cholera dies
out. Explicit formulas are derived for target/type reproduction numbers that measure the control strategies
required to eradicate cholera from all patches.
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1. Introduction

Cholera is a bacterial disease caused by Vibro cholerae, an aquatic bacterium that occurs in
brackish water, estuaries and contaminated water. Cholera can be transmitted directly via person-
to-person contact (direct transmission), or indirectly through ingestion of contaminated water
(indirect transmission). V. cholerae can produce toxic proteins in the intestine of an infected host
leading to watery diarrhoea, which sheds pathogen into the environment and contaminates the
water. Symptoms of infected individuals are mostly mild, but can be extremely severe in some
cases, several outbreaks in Haiti [14,22,30] and Zimbabwe [20] leading to rapid death due to
dehydration if left untreated. Recent severe outbreaks in [5,20,22,30] highlight the global burden
of cholera in public health. For example, the contamination of the Artibonite River, the common
water source for villagers along this river, triggered the Haiti cholera outbreak in October 2010
[21]; as of 8 February 2014, the number of reported cholera cases in Haiti is 699,197, with 8549
deaths [18].
Several mathematical models have been proposed to understand the transmission of cholera

[6,13,26,28,29], while more complicated heterogeneous models have been used to investigate
the spatial cholera spread due to human and water movement [4,8,20,22,30]. The interplay
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between human and water movement often makes the model analysis very challenging due to
the complexity and large scale of these heterogeneous cholera models. Thus it is difficult to apply
these model studies to address spatial differences in the force of infection and effective disease
control/intervention strategies.Amulti-patchmodel has recently been proposed in [24] to address
specifically the effect of a common water source on the transmission of cholera in a heteroge-
neous host population. Rigorous analysis has been carried out in [24] to show how heterogeneity
affects the cholera invasibility in terms of the basic reproduction number R0 and the efficacy of
intervention measures.
In this paper we propose a new multi-patch cholera model that incorporates general nonlinear

incidence functions for both direct and indirect cholera transmission in a heterogenous host
population that shares a common water source. Our model includes and extends the model in [24]
where mass action incidence is assumed for both transmission pathways. The proposed model
can be regarded as a coupled system on a star network where the hub vertex corresponds to the
commonwater source and the leaf vertices correspond to the patcheswhere host live. For example,
baris in Bangladesh, a country where cholera remains endemic [17], refer to multiple household
structures in which groups of related families live and often share the same water source [1,10]. In
this situation, each bari represents a patch and thus a leaf vertex in the network, while the common
water source represents the hub vertex in the network. It is of significance to investigate whether
or not cholera can invade such a star network and how public health authority could implement
effective cholera control strategies. To address the first question, the basic reproduction number
R0 is derived and shown to completely determine the global disease dynamics. Specifically, if
R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable and cholera dies out
from all patches; while ifR0 > 1, then there exists a unique endemic equilibrium that is globally
asymptotically stable and cholera persists at an endemic level in all patches. The proofs of these
global stability results utilize a new matrix-theoretic approach [27, Section 2] to the construction
of Lyapunov functions (for the disease-free equilibrium) and a graph-theoretic approach (for
the endemic equilibrium) recently developed in a series of papers [11,12,16,27]. For the second
question, the star network structure allows the derivation of explicit formulas for target/type
reproduction numbers [14,23,25] that can be used to measure the disease control and intervention
strategies needed to eradicate cholera from all patches.
The paper is organized as follows. The new cholera model is formulated in Section 2. Equilibria

analysis and the basic reproduction number are given in Section 3. In Section 4 the global dynam-
ics of the proposed model are established. Various cholera control strategies and target/type
reproduction numbers are investigated in Section 5. The paper concludes with a discussion in
Section 6.

2. Model

In this section we formulate a new mathematical model for cholera transmission and spread in
a heterogeneous host population that shares a common water source. The heterogeneous host
population is divided into n patches, depending on either their geographic location or their social
network structure [10]. The classic susceptible-infectious-recovered compartmental model is used
to model the disease dynamics within patches; infectious individuals can shed the pathogen
into the common water source and susceptible individuals can be infected via either direct con-
tact with infectious individuals or ingestion of contaminated water in the common source. Let
Sj(t), Ij(t),Rj(t) denote the number of humans in patch j (1 ≤ j ≤ n) who are susceptible to, infec-
tious with, and recovered from cholera at time t, respectively, andW(t) denote the concentration
of V. cholerae at time t in the common water source. The proposed multi-patch cholera model
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92 Z. Shuai and P. van den Driessche

takes the following form:

S′
j = !j − fj(Sj, Ij) − gj(Sj,W) − djSj, j = 1, . . . , n,

I ′j = fj(Sj, Ij) + gj(Sj,W) − (dj + αj + γj)Ij, j = 1, . . . , n,

W ′ = −δW +
n∑

k=1
hk(Ik)

(1)

and

R′
j = γjIj − djRj, j = 1, . . . , n. (2)

The disease transmission diagram for model (1)–(2) is depicted in Figure 1, and the parameters
are summarized in the following list:

!j > 0: constant recruitment into patch j
dj > 0: natural death rate in patch j
αj ≥ 0: mortality rate due to the disease in patch j
γj > 0: recovery rate of infectious individuals in patch j
δ > 0: removal rate of pathogen in the common water source
fj(Sj, Ij) ≥ 0: incidence function for direct transmission in patch j
gj(Sj,W) ≥ 0: incidence function for indirect transmission in patch j
hj(Ij) ≥ 0: pathogen shedding function in patch j

Figure 1. Disease transmission diagram for multi-patch cholera model (1)–(2).
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Functions fj, gj, hj, 1 ≤ j ≤ n, are assumed to be continuous and sufficiently smooth so that solu-
tions to Equations (1) and (2) with nonnegative initial conditions exist and are unique. The
following assumptions are also assumed throughout the paper:

(H1) fj(Sj, Ij) ≥ 0 and fj(Sj, 0) = fj(0, Ij) = 0 for all Sj, Ij ≥ 0;
(H2) gj(Sj,W) ≥ 0 for all Sj,W ≥ 0, and gj(Sj,W) = 0 iff Sj = 0 or W = 0;
(H3) hj(Ij) ≥ 0 for all Ij ≥ 0, and hj(Ij) = 0 iff Ij = 0.

Assumptions (H1)–(H3) ensure that solutions of Equations (1) and (2) startingwith nonnegative
initial conditions stay nonnegative for all t > 0.
The multi-patch cholera model (1)–(2) includes as a special case the model (31) in [24] in

which the incidence functions fj, gj take the form of mass action, and shedding functions hj are
linear, namely,

fj(Sj, Ij) = βjSjIj, gj(Sj,W) = λjSjW , hj(Ij) = ξjIj, (3)

with constants βj, λj, ξj > 0. In the literature, other choices for the incidence functions are used,
such as the saturating incidence gj(Sj,W) = λjSj(W/(κ +W)) with constants λj, κ > 0 [6,13].
Since the variables Rj do not appear in the equations of (1), it suffices to first study the dynamics

of Equation (1), and the dynamics of Rj then follow directly from Equation (2). LetNj = Sj + Ij +
Rj denote the size of the human population in patch j, j = 1, . . . , n. Adding the first two equations
of (1) and the one in Equation (2) together yields

N ′
j = !j − djNj − αjIj ≤ !j − dNj,

and thus lim supt→∞ Nj(t) ≤ !j/dj for all j. In particular, lim supt→∞ Sj(t) + Ij(t) ≤ !j/dj and
lim supt→∞ Ij(t) ≤ !j/dj. Set )k = max0≤Ik≤!k/dk {hk(Ik)} and ) = ∑n

k=1 )k . It follows that

W ′ ≤ −δW +
n∑

k=1
)k = −δW + ).

This implies that lim supt→∞ W(t) ≤ )/δ. Therefore, the feasible region

* =
{
(S1, I1, . . . , Sn, In,W) ∈ R2n+1

+

∣∣∣∣Sj + Ij ≤ !j

dj
, 1 ≤ j ≤ n, W ≤ )

δ

}

is positively invariant with respect to Equation (1).

3. Equilibria and basic reproduction number

System (1) admits a unique disease-free equilibrium, which lies in ∂*, the boundary of *,
P0 = (S01 , 0, . . . , S0n , 0, 0) with S0j = !j/dj, 1 ≤ j ≤ n. There are no other equilibria on ∂*. A
possible endemic equilibrium P∗ = (S∗

1 , I∗1 , . . . , S∗
n , I∗n ,W∗) ∈ int(*) might exist; the existence

and uniqueness of P∗ are discussed in Section 4.
Assume for all j = 1, . . . , n,

(H4)

lim
x→0+

fj(S0j , x)
x

= pj ≥ 0, lim
x→0+

gj(S0j , x)
x

= qj > 0, and lim
x→0+

hj(x)
x

= rj > 0.
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94 Z. Shuai and P. van den Driessche

It can been verified that pj = ∂fj(S0j , 0)/∂Ij, qj = ∂gj(S0j , 0)/∂W , and rj = h′
j(0)when fj, gj, hj are

differentiable. For example, when incidence functions take the form of mass action and shedding
functions are linear, i.e., fj, gj, hj satisfy Equation (3), it follows that

pj = βjS0j , qj = λjS0j , and rj = ξj. (4)

Following the next-generation matrix method [31], let

x = (I1, . . . , In,W)T (5)

denote the disease compartments, and the two (n+ 1) × (n+ 1) matrices

F =

⎡

⎢⎢⎢⎢⎢⎣

p1 0 · · · 0 q1
0 p2 · · · 0 q2
...

. . .
...

0 0 · · · pn qn
0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
and V =

⎡

⎢⎢⎢⎢⎢⎣

ν1 0 · · · 0 0
0 ν2 · · · 0 0
...

. . .
...

0 0 · · · νn 0
−r1 −r2 · · · −rn δ

⎤

⎥⎥⎥⎥⎥⎦
, (6)

with νj := dj + αj + γj for all j, denote the new infection and disease transition matrices, respec-
tively. Note that the pathogen shedding is regarded as a disease transition in the next-generation
matrix method. Hence, by Diekmann et al. [7], van den Driessche andWatmough [31], the basic
reproduction number R0 of Equation (1) is defined as the spectral radius, denoted by ρ, of the
nonnegative next-generation matrix FV−1. Since the last row of F consists of only zero entries,
the spectral radius of FV−1 is determined by the n× n block. Therefore,

R0 = ρ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
ν1

+ q1r1
δν1

q1r2
δν2

· · · q1rn
δνn

q2r1
δν1

p2
ν2

+ q2r2
δν2

· · · q2rn
δνn

...
...

. . .
...

qnr1
δν1

qnr2
δν2

· · · pn
νn

+ qnrn
δνn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

It follows from Theorem 2 in [31] that the disease-free equilibrium P0 of Equation (1) is locally
asymptotically stable if R0 < 1, whereas it is unstable if R0 > 1. The global stability of P0 is
established in Section 4.
Note that the matrix in Equation (7) can be written as

diag
{
p1
ν1
, . . . ,

pn
νn

}
+

[q1
δ
, . . . ,

qn
δ

]T
·
[
r1
ν1
, . . . ,

rn
νn

]

and the second term above is a matrix of rank 1. Hence, when each patch is similar (in terms of
its population size, etc.) so that pj = p and νj = ν for all j (i.e. each patch has the same direct
transmission rate and the same removal rate of infectious individuals), the basic reproduction
number has an explicit expression

R0 = p
ν

+ 1
δν

n∑

j=1
qjrj.

The first term corresponds to the direct transmission while the second term sums up the indirect
transmission through the water in all patches.
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4. Global dynamics

In this section the global dynamics of system (1) are established under biologically reason-
able assumptions by constructing suitable Lyapunov functions. Specifically, the matrix-theoretic
approach using Perron eigenvectors in [27, Section 2] is applied to prove the global stability of
the disease-free equilibrium (Theorem 4.1) while the graph-theoretic approach in [11,12,16,27]
is used to establish the global stability of the endemic equilibrium (Theorem 4.2).
The following assumptions on incidence and shedding functions fj, gj, hj are needed to estab-

lish the global stability of the disease-free equilibrium, indicating that nonlinear system (1) is
dominated by its linearization.

(A1) fj(Sj, Ij) ≤ pjIj for all 0 ≤ Sj ≤ S0j , Ij ≥ 0, j = 1, . . . , n;
(A2) gj(Sj,W) ≤ qjW for all 0 ≤ Sj ≤ S0j ,W ≥ 0, j = 1, . . . , n; and
(A3) hj(Ij) ≤ rjIj for all Ij ≥ 0, j = 1, . . . , n.

It can be easily verified that assumptions (A1) and (A2) hold for both mass action and saturating
incidence functions, and assumption (A3) holds for the linear shedding function.

Theorem 4.1 Suppose the assumptions (H1)–(H4) hold. Then the following statements hold for
system (1).

(i) IfR0 ≤ 1 and (A1)–(A3) hold, then the disease-free equilibrium P0 is globally asymptotically
stable in *.

(ii) If R0 > 1, then P0 is unstable, system (1) is uniformly persistent and admits at least one
endemic equilibrium P∗ in int(*).

Proof Let x,F,V be defined as in Equations (5) and (6). By assumption (H4), the (n+ 1)×
(n+ 1)matrixV−1F is nonnegative and irreducible. Letw denote a positive left Perron eigenvector
of V−1F, that is, wTV−1F = ρ(V−1F)wT = R0wT. Since Sj ≤ S0j in * and assumptions (A1)–
(A3) hold, x′ ≤ (F − V)x. By Theorem 2.1 in [27], L = wTV−1x is a global Lyapunov function
for (1). Furthermore, L can be used to prove the global stability of P0, as shown in Theorem 2.2
and the remark following this in [27]. Specifically,

L′ = wTV−1x′ ≤ wTV−1(F − V)x = (R0 − 1)wTx ≤ 0, ifR0 ≤ 1. (8)

It can be verified that the largest invariant subset of*whereL′ = 0 is the singleton {P0}. Therefore,
by LaSalle’s invariance principle [15], P0 is globally asymptotically stable in *.
When R0 > 1 and x > 0, (R0 − 1)wTx > 0. The continuity, assumption (H4), and a similar

evaluation as Equation (8) imply that L′ > 0 in a small neighbourhood of P0 in int(*). Thus the
instability of P0 and the uniform persistence of Equation (1) follow similarly as in the proof of
Theorem 2.2 in [27]. The existence of P∗ follows from the uniform persistence and the positive
invariance of the compact set *; see, for example, the proof of Theorem 2.2 in [27]. !

Now considerR0 > 1, and let P∗ = (S∗
1 , I∗1 , . . . , S∗

n , I∗n ,W∗) denote an endemic equilibrium of
Equation (1), where S∗

j , I∗j ,W∗ are positive and satisfy the following equilibrium equations:

!j = fj(S∗
j , I

∗
j ) + gj(S∗

j ,W
∗) + djS∗

j , j = 1, . . . , n, (9)
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96 Z. Shuai and P. van den Driessche

νjI∗j = fj(S∗
j , I

∗
j ) + gj(S∗

j ,W
∗), j = 1, . . . , n, (10)

δW∗ =
n∑

k=1
hk(I∗k ). (11)

Assume that as in [8, Theorem 6.1]

(B1) there exist a family of functions .j : (0,!j/dj] → R+, j = 1, 2, . . . , n, such that for all
1 ≤ j ≤ n, Sj, Ij,W > 0,

(Sj − S∗
j )(.j(Sj) − .j(S∗

j )) > 0, Sj ̸= S∗
j ;

(
fj(Sj, Ij).j(S∗

j )

fj(S∗
j , I∗j ).j(Sj)

− 1

) (

1−
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

)

≤ 0;

and
(
gj(Sj,W).j(S∗

j )

gj(S∗
j ,W∗).j(Sj)

− 1

) (

1−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗

)

≤ 0;

(B2) for all Ij > 0, 1 ≤ j ≤ n,

(
hj(Ij)
hj(I∗j )

− 1

) (

1−
hj(I∗j )Ij
hj(Ij)I∗j

)

≤ 0.

If functions fj(Sj, Ij), gj(Sj,W), hj(Ij) are monotone increasing with respect to Sj, Ij,W , and
fj(Sj, Ij)/Ij, gj(Sj,W)/W , hj(Ij)/Ij are monotone decreasing in Ij and W , then assumptions (B1)–
(B2) are satisfied. Both mass action and saturating incidence functions satisfy (B1) with identity
functions .j, while the linear shedding function satisfies (B2).

Theorem 4.2 Suppose the assumptions (H1)–(H4) and (B1)–(B2) hold. If R0 > 1, then the
endemic equilibrium P∗ of Equation (1) is unique and globally asymptotically stable in int(*).

Proof We prove the global stability of P∗ by constructing a suitable Lyapunov function, and
thus the uniqueness of P∗ holds. Define

Dj =
∫ S∗

j

Sj

.j(ζ ) − .j(S∗
j )

.j(ζ )
dζ + Ij − I∗j − I∗j ln

Ij
I∗j
, j = 1, . . . , n

and

Dn+1 = W −W∗ −W∗ ln
W
W∗ .
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Differentiating Dj along Equation (1) and using the equilibrium equations (9) and (10) yield

D′
j =

(
1−

.j(S∗
j )

.j(Sj)

)
(fj(S∗

j , I
∗
j ) + gj(S∗

j ,W
∗) + djS∗

j − fj(Sj, Ij) − gj(Sj,W) − djSj)

+
(
1−

I∗j
Ij

) (

fj(Sj, Ij) + gj(Sj,W) − fj(S∗
j , I

∗
j )
Ij
I∗j

− gj(S∗
j ,W

∗)
Ij
I∗j

)

= − dj
.j(Sj)

(Sj − S∗
j )(.j(Sj) − .j(S∗

j ))

+ fj(S∗
j , I

∗
j )

(
fj(Sj, Ij).j(S∗

j )

fj(S∗
j , I∗j ).j(Sj)

− 1

) (

1−
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

)

+ fj(S∗
j , I

∗
j )

(

3−
.j(S∗

j )

.j(Sj)
−
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
−
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

)

+ gj(S∗
j ,W

∗)

(
gj(Sj,W).j(S∗

j )

gj(S∗
j ,W∗).j(Sj)

− 1

) (

1−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗

)

+ gj(S∗
j ,W

∗)

(

3−
.j(S∗

j )

.j(Sj)
−

gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ − Ij
I∗j

+ W
W∗

)

≤ fj(S∗
j , I

∗
j )

(

3−
.j(S∗

j )

.j(Sj)
−
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
−
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

)

+ gj(S∗
j ,W

∗)

(

3−
.j(S∗

j )

.j(Sj)
−

gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ − Ij
I∗j

+ W
W∗

)

.

The last inequality follows from the three inequalities in assumption (B1). Similarly, differentiating
Dn+1 along (1) yields

D′
n+1 =

(
1− W∗

W

)
(−δW +

n∑

k=1
hk(Ik)) =

(
1− W∗

W

) n∑

k=1

(
−hk(I∗k )

W
W∗ + hk(Ik)

)

=
n∑

k=1
hk(I∗k )

(
hk(Ik)
hk(I∗k )

− 1
) (

1− hk(I∗k )Ik
hk(Ik)I∗k

)

+
n∑

k=1
hk(I∗k )

(
2− hk(Ik)W∗

hk(I∗k )W
− hk(I∗k )Ik
hk(Ik)I∗k

+ Ik
I∗k

− W
W∗

)

≤
n∑

k=1
hk(I∗k )

(
2− hk(Ik)W∗

hk(I∗k )W
− hk(I∗k )Ik
hk(Ik)I∗k

+ Ik
I∗k

− W
W∗

)
,

where the second equality follows from the equilibrium equation (11) and the last inequality
follows from the assumption (B2). The coefficients in the inequalities for derivatives ofDj andDn+1
define anonnegative (n+ 1) × (n+ 1)matrixA = [aij],which represents the disease transmission
cycles in the network.A network here can bemathematically regarded as aweighed digraph (G,A),
which consists of n+ 1 vertices labelled 1, 2, . . . , n+ 1 with 1, . . . , n corresponding to patches
and n+ 1 to the common water source. In (G,A), an arc (i, j) from vertex j to vertex i exists if
and only if aij > 0, and its weight is aij whenever it exists; see appendix for more information
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98 Z. Shuai and P. van den Driessche

on weighed digraphs. Specifically, the entries of A satisfy ajj = fj(S∗
j , I∗j ), aj,n+1 = gj(S∗

j ,W∗),
an+1,j = hj(I∗j ), for 1 ≤ j ≤ n, and zero otherwise. The weighed digraph (G,A) is depicted in
Figure 2(a), and can be regarded as the disease transmission diagram (Figure 1) evaluated at the
endemic equilibrium P∗. Following the graph-theoretic approach in [27] (also see [11,12,16]), a
Lyapunov function D̃ for Equation (1) can be constructed using a linear combination of Dj and
Dn+1; that is, D̃ = ∑n

j=1 cjDj + cn+1Dn+1. The coefficients cj in the linear combination are given
by the sum of weights of all spanning trees in (G,A) rooted at vertex j. Direct calculations show
that

cj =
hj(I∗j )

gj(S∗
j ,W∗)

n∏

k=1
gk(S∗

k ,W
∗), 1 ≤ j ≤ n,

and

cn+1 =
n∏

k=1
gk(S∗

k ,W
∗).

Figure 2. Weighted digraphs (a) (G,A), (b) (G,K) have the same vertex and arc sets, but different weights for each arc.
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Note that all coefficients cj, 1 ≤ j ≤ n+ 1, in D̃ have the common factor
∏n

k=1 gk(S∗
k ,W∗), thus

we could construct another Lyapunov functionD from D̃ by dividing by the common factor; that is

D =
n∑

j=1

hj(I∗j )
gj(S∗

j W∗)
Dj + Dn+1.

is a Lyapunov function for Equation (1). In fact,

D′ ≤
n∑

j=1

hj(I∗j )
gj(S∗

j ,W∗)

[

fj(S∗
j , I

∗
j )

(

3−
.j(S∗

j )

.j(Sj)
−
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
−
fj(S∗

j , I∗j ).(Sj)Ij
fj(Sj, Ij).(S∗

j )I∗j

)

+gj(S∗
j ,W

∗)

(

3−
.j(S∗

j )

.j(Sj)
−

gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ − Ij
I∗j

+ W
W∗

)]

+
n∑

k=1
hk(I∗k )

(
2− hk(Ik)W∗

hk(I∗k )W
− hk(I∗k )Ik
hk(Ik)I∗k

+ Ik
I∗k

− W
W∗

)

=
n∑

j=1

fj(S∗
j , I∗j )hj(I∗j )

gj(S∗
j ,W∗)

(

3−
.j(S∗

j )

.j(Sj)
−
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
−
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

)

+
n∑

j=1
hj(I∗j )

(

5−
.j(S∗

j )

.j(Sj)
−

gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
−
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ − hj(Ij)W∗

hj(I∗j )W
−
hj(I∗j )Ij
hj(Ij)I∗j

)

≤ 0,

where the last inequality follows from the arithmetic geometric mean inequalities

.j(S∗
j )

.j(Sj)
+
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
+
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j

≥ 3 3

√
.j(S∗

j )

.j(Sj)
·
fj(Sj, Ij)I∗j
fj(S∗

j , I∗j )Ij
·
fj(S∗

j , I∗j ).j(Sj)Ij
fj(Sj, Ij).j(S∗

j )I∗j
= 3

and
.j(S∗

j )

.j(Sj)
+

gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
+
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ + hj(Ij)W∗

hj(I∗j )W
+
hj(I∗j )Ij
hj(Ij)I∗j

≥ 5 5

√
.j(S∗

j )

.j(Sj)
·
gj(Sj,W)I∗j
gj(S∗

j ,W∗)Ij
·
gj(S∗

j ,W∗).j(Sj)W
gj(Sj,W).j(S∗

j )W∗ · hj(Ij)W
∗

hj(I∗j )W
·
hj(I∗j )Ij
hj(Ij)I∗j

= 5.

It can be verified that the largest invariant set where D′ = 0 is the singleton {P∗}. Therefore,
by LaSalle’s invariance principle [15], P∗ is globally asymptotically stable and thus unique in
int(*). !

Whenmass action incidence functions fj, gj and linear shedding functions hj are chosen as given
in Equation (3), system (1) includes themodel (31) in [24] as a special case, and thusTheorems 4.1
and 4.2 establish, for the first time, the complete global disease dynamics of the model in [24].
Namely, if the basic reproduction numberR0 in Equation (7) with pj, qj, rj as given in Equation (4)
is not above one, then the disease-free equilibrium is globally asymptotically stable and cholera
dies out from all patches, whereas ifR0 is above one, then there is a unique endemic equilibrium
that is globally asymptotically stable and cholera persists at an endemic level in all patches.
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100 Z. Shuai and P. van den Driessche

5. Cholera control strategies: calculating target reproduction numbers

The basic reproduction numberR0 has been shown to determine whether cholera can invade a star
network in which individuals share a common water source. In order to eradicate cholera from the
network, various control and intervention strategies, such as oral cholera vaccine [2], and water,
sanitation, and hygiene interventions [9], might be used to reduce the disease transmission and
pathogen shedding in the network and thus decrease the control reproduction number below one.
The implicit formula (7) for the basic reproduction number makes it difficult for public health
authorities to quantify these disease control strategies. It turns out that the type reproduction
numbers defined in [14,23] can be used to measure the effort required to eradicate an infectious
disease from a heterogeneous host population when control is targeted at a particular or several
host types. The target reproduction numbers [25] extend such numbers to disease control targeting
contacts between types. These target/type reproduction numbers often have explicit formulas and
can also serve as a sharp threshold determining whether or not the disease dies out. In this section
we calculate these reproduction numbers for various cholera control strategies on the star network.
In order to keep and apply the star network structure of system (1), let

F̃ =

⎡

⎢⎢⎢⎢⎢⎣

p1 0 · · · 0 q1
0 p2 · · · 0 q2
...

. . .
...

0 0 · · · pn qn
r1 r2 · · · rn 0

⎤

⎥⎥⎥⎥⎥⎦
and Ṽ =

⎡

⎢⎢⎢⎢⎢⎣

ν1 0 · · · 0 0
0 ν2 · · · 0 0
...

. . .
...

0 0 · · · νn 0
0 0 · · · 0 δ

⎤

⎥⎥⎥⎥⎥⎦
.

Since F − V = F̃ − Ṽ , it can be verified thatR0 = ρ(FV−1) as given in Equation (7) and R̃0 =
ρ(F̃Ṽ−1) agree at the threshold value 1. Let

K = F̃Ṽ−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
ν1

0 · · · 0
q1
δ

0
p2
ν2

· · · 0
q2
δ

...
. . .

...
0 0 · · · pn

νn

qn
δ

r1
ν1

r2
ν2

· · · rn
νn

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the weighted digraph associated withK is a star graph of n+ 1 vertices (e.g. see Figure 1
in [24]). The hub vertex is labelled as n+ 1, corresponding to the common water source, while
each leaf vertex is labelled as j, with 1 ≤ j ≤ n, corresponding to patch j. Let (G,K) be theweighed
digraph associated withK ; see Figure 2(b). Note that the two weighted digraphs (G,K) and (G,A)

defined in the proof of Theorem 4.2 have the same vertex and arc sets, but different weights for
each arc.
Vaccination: Assume that vaccine is employed in patch j, then the type reproduction number

Tj = eTj PjK(I − K + PjK)−1ej, with ej being the jth unit vector in Rn+1 and Pj the (n+ 1)×
(n+ 1) projection matrix (i.e. the (j, j) entry of Pj is 1 and all other entries are zero), can be
used to estimate vaccine coverage provided ρ(K − PjK) < 1. That is, if a proportion more than
1− 1/Tj of the host population in patch j acquires immunity from the vaccine, then cholera
can be eradicated from all patches. If ρ(K − PjK) > 1, then Tj is not defined as the disease
cannot be eradicated by targeting only hosts in patch j. A new combinatorial formula for Tj in

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

en
tra

l F
lo

rid
a]

 a
t 1

1:
42

 2
0 

D
ec

em
be

r 2
01

7 



Journal of Biological Dynamics 101

[19, Theorem 5.3] involves cycles of (G,K), and can be applied to the star network structure of
(G,K), giving

Tj = pj
νj

+ qjrj
δνj

· 1
1− lj

,

where

lj =
n∑

k=1
k ̸=j

qkrk
δνk

· 1
1− pk/νk

. (12)

Here pj/νj is the weight of the loop (i.e. the arc (j, j)) at leaf vertex j, qjrj/δνj is the weight of the
cycle consisting of the hub vertex and leaf vertex j, and lj corresponds to the cycles that do not
contain the leaf vertex j.
Water treatment: Assume that water treatment is applied to the common water source, then the

type reproduction number Tn+1 = eTn+1Pn+1K(I − K + Pn+1K)−1en+1 has the following explicit
expression (applying the new formula in [19, Theorem 5.3])

Tn+1 =
n∑

k=1

qkrk
δνk

· 1
1− pk/νk

.

Isolation: Assume that isolation has been used to reduce the direct person-to-person con-
tact in patch j and thus reduce the entry (j, j) of K . Then the target reproduction number
Tjj = ρ(PjKPj(I − K + PjKPj)−1) can be calculated explicitly as (using a new combinatorial
formula in [19, Theorem 4.1])

Tjj = pj
νj

· 1
1− (qjrj/δνj) · (1/(1− lj))

with lj given in Equation (12).
Sanitation: Assume that hygienic disposal of human faeces is applied in patch j, targeting the

(n+ 1, j) entry of K . Then the corresponding target reproduction number Tn+1,j = ρ(Pn+1KPj
(I − K + Pn+1KPj)−1) has the explicit expression

Tn+1,j = qjrj
δνj

· 1
1− pj/νj

· 1
1− lj

,

with lj given in Equation (12).
Provisionof cleanwater: Provisionof cleanwater in patch j can reduce the indirect transmission,

targeting the (j, n+ 1) entry of K . It turns out, by Theorem 4.1 in [25], that

Tj,n+1 = Tn+1,j = qjrj
δνj

· 1
1− pj/νj

· 1
1− lj

,

since the star network (G,K) contains cycles of length 1 (loops) and length 2 only, and thus is
weight-balanced.
Since target reproduction numbers T calculated above stay the same side of one as the basic

reproduction number R0 (see, for example, [25, Theorem 2.1]), each of them also serves as a
sharp threshold determining whether or not the disease dies out. Hence, Corollary 5.1 follows
immediately from Theorems 4.1 and 4.2.
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102 Z. Shuai and P. van den Driessche

Corollary 5.1 Suppose the assumptions (H1)–(H4) hold. Let T be any target reproduction
number calculated above.

(i) If T ≤ 1 and (A1)–(A3) hold, then the disease-free equilibrium P0 is globally asymptotically
stable in *.

(ii) If T > 1 and (B1)–(B2) hold, then the endemic equilibrium P∗ is globally asymptotically
stable in int(*).

6. Discussion

In this paper a new multi-patch model is formulated to model the transmission and spread of
cholera in a heterogeneous host population that shares a common water source. The heteroge-
neous host population is categorized as patches of homogeneous host populations. The proposed
model incorporates nonlinear incidence for both direct and indirect transmission, and thus can
be adapted to model other waterborne diseases such as typhoid fever. The basic reproduction
numberR0 is derived and shown to determine whether or not cholera can invade such a network.
Various target/type reproduction numbers are explicitly calculated to measure cholera control and
intervention strategies. Integrated with suitable surveillance data for cholera and other waterborne
diseases, these studies might assist public health authorities to make better evaluations of cholera
prevention and control policies.
Studies in this paper highlight the importance of understanding infectious disease transmission

networks, e.g. the star network for cholera transmission diagram in Figure 1 and the companion
networks of the same type in Figure 2. These network structures often can be used to analyse
disease dynamics (e.g. the construction of Lyapunov functions using Figure 2(a) in Section 4),
but also evaluate disease control strategies (e.g. derivations of target reproduction numbers using
Figure 2(b) in Section 5). Further investigation is required to determine in general how a disease
transmission diagram relates to its companion networks used in disease dynamic analysis and
control strategy evaluation.
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Appendix. Notation and terminology from graph theory

Let G = (G,A) be a weighted digraph with n vertices labelled 1, 2, . . . , n with A = [aij] ≥ 0 the n× n weight matrix is
constructed in the following way: an arc (j, i) with weight aij from initial vertex j to terminal vertex i exists if and only if
aij > 0. A digraph is strongly connected if, for any ordered pair of distinct vertices i, j, there exists a directed path from i
to j (and also from j to i). A weighted digraph (G,A) is strongly connected if and only if the weight matrix A is irreducible
[3]. A subdigraphH of G is spanning ifH and G have the same vertex set. The weight of a subdigraphH is the product
of the weights on all its arcs. A connected subdigraph T of G is a tree if it contains no cycles, directed or undirected. A
tree T is rooted at vertex j, called the root, if j is not a terminal vertex of any arc, and each of the remaining vertices is a
terminal vertex of exactly one arc. We refer the reader to [32] for additional notation in graph theory.
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