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Abstract The spread of an infectious disease may depend on the population size.
For simplicity, classic epidemic models assume homogeneous mixing, usually stan-
dard incidence or mass action. For standard incidence, the contact rate between any
pair of individuals is inversely proportional to the population size, and so the basic
reproduction number (and thus the initial exponential growth rate of the disease) is
independent of the population size. For mass action, this contact rate remains constant,
predicting that the basic reproduction number increases linearly with the population
size, meaning that disease invasion is easiest when the population is largest. In this
paper, we show that neither of these may be true on a slowly evolving contact network:
the basic reproduction number of a short epidemic can reach its maximum while the
population is still growing. The basic reproduction number is proportional to the spec-
tral radius of a contact matrix, which is shown numerically to be well approximated by
the average excess degree of the contact network. We base our analysis on modeling
the dynamics of the average excess degree of a random contact network with constant
population input, proportional deaths, and preferential attachment for contacts brought
in by incoming individuals (i.e., individuals with more contacts attract more incoming
contacts). In addition, we show that our result also holds for uniform attachment of
incoming contacts (i.e., every individual has the same chance of attracting incoming
contacts), and much more general population dynamics. Our results show that a dis-
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ease spreading in a growing population may evade control if disease control planning
is based on the basic reproduction number at maximum population size.

Keywords Dynamic contact network · Basic reproduction number · Excess degree

Mathematics Subject Classification 92D30

1 Introduction

Real populations are heterogeneous, some people have many friends and contacts and
some people only have a few, and there are births, deaths and possibly migrations.
However, detailed knowledge, let alone real-time knowledge, of this heterogeneity is
hard if not impossible to aquire. Furthermore, even with such knowledge, a mathemat-
ical analysis using all the available information would be challenging to say the least.
Therefore, classical disease models make a number of simplifications that, given the
right circumstances, lead to very useful results.

One of the key simplifications of classical disease models is to assume a homo-
geneous population, where the probability of an individual to pair up with any other
individual is the same, although this probability may change over time. With the mass
action assumption, the contact rate per pair is constant, and thus the contact rate of
an individual to the whole population increases linearly with the population size. An
alternative assumption is standard incidence, which assumes that the contact rate of
an individual to the whole population remains constant when the population changes.
Thus the contact rate between any pair of individuals must decrease inversely propor-
tional to the population size. See, e.g., Hethcote (2000) for a detailed discussion on
these assumptions.

The basic reproduction number R0 represents the average number of secondary
infections causedby a typical infectious individual introduced into awholly susceptible
population. In general, a disease can spread in a population if and only if R0 > 1,
giving a disease threshold. The mass action assumption implies that R0, and thus the
initial disease growth rate, increases linearly with population size; and the standard
incidence assumption implies that R0 is constant when the population size changes.
Classical models seldom predict thatR0 is a non-monotonic function of the population
size.

A more realistic model for contact heterogeneity is a contact network, which is a
graph with nodes representing individuals and edges representing contacts between
individuals. Homogeneous mixing is then represented by a complete graph. Thus
classical disease models are special cases of network disease models. Even though
the exact contact network is difficult to observe, network statistics, such as the degree
(the number of neighbors of a node) distribution, are sometimes collectable; see,
e.g., Pourbohloul et al. (2005). Networks that are represented only by their degree
distribution can be represented by graphs generated by the configuration model (also
called the Molloy and Read model, see Molloy and Reed 1995): Given a number
of individuals (nodes) and a degree distribution Pk (the probability that a random
node has degree k), for each node, draw an integer degree k from the distribution
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Pk , and assign k “stubs” to the node; then uniformly randomly pick two “stubs”
without replacement and connect them to form an edge; repeat this edge formation
until no such edges can be formed. To avoid self-loops and multiple edges, drop such
edges from the generated network. A network generated by this process typically has
negligible clustering (triangles) and negligible degree correlation (correlation between
the degrees of the nodes on the opposite ends of a random edge).

Predictions from network models may differ from those of classical models, for
example, SIS and SIR effective degree network models have different disease thresh-
olds due to different R0 expressions (Lindquist et al. 2010), and a scale-free network
(one on which Pk ∝ k−α for α > 0) has no disease threshold (Pastor-Satorras and
Vespignani 2002; Chatterjee and Durrett 2009). For SIR disease dynamics on a static
random network generated by a configuration model, R0 is equal to the probability of
disease transmission along a random edge (T ) times the average excess degree (〈ke〉),
i.e., the degree of a node found by following a random edge less one (the edge that
is followed); see, eg., Newman (2002a), Volz (2008), Miller (2011), Lindquist et al.
(2010). That is,

R0 = T 〈ke〉. (1)

To understand this, consider a newly infected node that was infected by one of its
neighbors (i.e., the node is found by following an edge from an infected neighbor).
Because it cannot infect the neighbor who infected it, the number of neighbors that this
newly infected node can infect is its degree minus one; see the mathematical definition
of 〈ke〉 for a random contact network in (7) in Sect. 2.

We consider a short epidemic on a slowly evolving network, so that the network can
be considered static for the duration of the epidemic. We assume that on the network
the contact rate along edges remains constant, analogously to mass action. When the
population grows, new nodes are added to the population, and new edges are formed
between the incoming nodes and the original nodes.When nodes leave the population,
they also take away their edges. In fact, since each incoming node increases the total
degree in the network by twice its degree, and each leaving node decreases the total
degree also by twice its degree, for a growing network that approaches equilibrium, the
total degree approaches equilibrium twice as fast as the number of nodes does. Thus, it
is possible that the average degree in the network reaches a maximum then decreases.
In this paper, we investigate the possibility that, on a contact network, the disease
invasion risk as measured by the basic reproduction number reaches a maximum then
decreases. Note that here we ignore the stochasticity of the disease spread process, i.e.,
ignore the probability that a disease may not invade the network due to stochasticity
even if the basic reproduction number is greater than unity.

On a growing network, the disease dynamics are difficult to model as there are
changes in degree distribution, and also degree correlation may be introduced. For
simplicity, here we consider SIR type diseases such as a strain of influenza where an
individual can be susceptible (S), infectious (I) or have recovered (R) with subsequent
lifelong immunity. For some diseases (e.g., a strain of influenza, measles), birth, death
and migration can usually be ignored during an epidemic due to the vast difference in
time scales, since these diseases act on individuals on the time scale of days while birth
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and death rates influence populations on the time scale of decades. For such diseases,
the network can be regarded as static during an epidemic. Unfortunately, even on a
static network, the basic reproduction number cannot be simply formulated as (1)
because such a network typically has degree correlation; see, e.g., Britton et al. 2011,
Section 3.3.3. Rather, we need to assume that the degrees i and j of nodes connected
by a random edge have a joint distribution Pi j , so that

R0 = Tρ(C), (2)

where ρ is the spectral radius operator, and C is the “contact matrix” with i j entry

Ci j = ( j − 1)
Pi j

∑
k Pik

. (3)

This is equivalent to Equation (7) in Newman (2002b) in which the matrix A loses
stability through a 0 eigenvalue. Ball et al. 2013, Equation (15) extend this contact
matrix to include households. The value ofR0 in (2) becomes much harder than (1) to
evaluate even if the dynamics of Pi j can be modeled. If the degrees of the two nodes
of a random edge are independent, then (1) and (2) are equal, since in this case the
joint distribution matrix P = [Pi j ] has rank 1; see Appendix 2.

The dynamics of (2) on a slowly evolving network are difficult to study. For simplic-
ity, in our analysis we use (1) as an approximation for the basic reproduction number
on evolving networks. We formulate our model on the dynamics of the average excess
degree in Sect. 2, and in Sects. 3 and 4 we discuss two scenarios on how new edges
brought in by incoming nodes are attached to existing nodes. In particular, we prove
that the basic reproduction number can indeed increase to a maximum, then decrease
while the population increases. In Sect. 5, we show numerically that the approxima-
tion of ρ(C) by 〈ke〉 is good for these two scenarios. In Sect. 6, we show that our
result on the basic reproduction number holds for more general population dynamics
on networks. Concluding remarks are given in Sect. 7.

2 Model

Because the disease time scale is assumed to bemuch smaller than the network dynam-
ics time scale, and (1) is used to approximate the basic reproduction number, the
dynamics of R0 is only determined by the dynamics of the degree distribution of the
network, specifically, the dynamics of the average excess degree 〈ke〉.

To model the network dynamics, we classify the nodes by their degree. For k ≥ 0,
let Nk be the class of nodes with degree k, and let Nk(t) be the number of nodes in
this class at time t (for simplicity, we drop the time dependence). Here we develop a
model for the dynamics of Nk based on our network rewiring model in Lindquist et al.
(2009). This part of our model is similar to the population dynamics of the model in
Jin et al. 2014, equation (15).

New individuals have a degree distribution πk , and enter the population at rate λ,
so that the rate at which they enter the Nk class is λπk . As they come in, they bring in
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∑
k kλπk = λ�newedges per unit time,where � = ∑

k kπk is the average degree of the
incoming nodes. Let Ak(t) be the probability that a new edge is attached to any specific
degree k node. Therefore, these new edges attach to nodes of Nk with an expected rate
λ�AkNk , and cause these nodes to leave Nk and enter Nk+1. Similarly, Nk−1 nodes
have an edge attached and thus move to Nk with an expected rate λ�Ak−1Nk−1.

The death rate of each individual is μ, so that the rate at which nodes die in class
Nk is μNk . Due to the death of neighboring nodes, the number of k + 1 degree nodes
is reduced and these nodes become k degree nodes at rateμ(k+1)Nk+1. For the same
reason, k degree nodes become k − 1 degree nodes at rate μkNk .

Putting the above together with the assumption N−1 = A−1 = 0 gives for k ≥ 0:

d

dt
Nk = λπk + λ�(Nk−1Ak−1 − Nk Ak) − μNk + μ[(k + 1)Nk+1 − kNk] . (4)

The total population is N = ∑
k Nk , which satisfies

d

dt
N =

∑

k

d

dt
Nk = λ − μN . (5)

The total degree (twice the total number of edges) is L = ∑
k kNk , which satisfies

d

dt
L =

∑

k

k
d

dt
Nk = 2λ� − 2μL . (6)

The average excess degree is defined as (see, e.g., Newman 2002a)

〈ke〉 =
∑

k(k − 1)kNk
∑

k kNk
=

∑
k(k − 1)kNk

L
. (7)

Note that 〈ke〉 does not depend on the degree correlation on a random network, because
the probability that a random edge leads to a degree k node (and thus has an excess
degree k − 1) is kNk/L . A formal proof is given in Appendix 1 with a model that
properly accounts for degree correlation.

Our goal is to model the dynamics of 〈ke〉. Differentiate (7) with respect to time,
and substitute in (4) and (6),

d

dt
〈ke〉 =

∑
j j ( j − 1) d

dt N j

L
−

d
dt L

∑
j j ( j − 1)N j

L2

= 1

L

∑

j

j ( j − 1)λπ j + μ

L

∑

j

j ( j − 1)( j + 1)(N j+1 − N j )

+ λ�

L

∑

j

j ( j − 1)(N j−1A j−1 − N j A j ) − 2λ� − 2μL

L
〈ke〉

=λ�

L
(Eλ + 2 〈ka〉) −

(
2λ�

L
+ μ

)

〈ke〉 , (8)
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where

Eλ =
∑

k k(k − 1)πk

�

is the average excess degree of an incoming node, and 〈ka〉 = ∑
k k Ak Nk is the

average degree of a randomly selected node for the attachment of a new edge.
For (6) and (8) to be meaningful, we assume �, Eλ, and the initial conditions L(0)

and 〈ke〉 (0) to be finite. To close our model, the probabilities Ak need to be defined.
Here we consider two special cases, preferential attachment and uniform attachment,
and we discuss them separately in the following two sections.

3 Preferential attachment

Preferential attachment assumes that a new edge is attached to an existing node with
a probability proportional to its degree (see, e.g., Albert and Barabási 2002); in other
words, famous people become famous quicker. Thus,

Ak = k

L
. (9)

Then, (4) can be written as

d

dt
Nk = λπk + λ�

L
[(k − 1)Nk−1 − kNk] + μ(k + 1)(Nk+1 − Nk). (10)

In addition,

〈ka〉 =
∑

k k
2Nk

L
= 〈ke〉 + 1.

Thus, (8) becomes

d

dt
〈ke〉 = λ�

L
(Eλ + 2) − μ 〈ke〉. (11)

The system (6) and (11) has a unique equilibrium that satisfies

2λ� − 2μL∗ = 0,

λ�

L∗ (Eλ + 2) − μ 〈ke〉∗ = 0,

that is, L∗ = λ�/μ = N∗� where N∗ = λ/μ is the equilibrium population size, and
〈ke〉∗ = Eλ + 2.
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Fig. 1 Phase plot of the
solutions of (12) for different
initial conditions x0, y0 ∈ (0, 1).
The y value is proportional to
the basic reproduction number
R0. The maximum average
excess degree 〈ke〉 occurs on the
dashed curve xy = 1. Above the
bold solution curve the initial
conditions satisfy (13)
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To analyze the dynamics of (6) and (11), non-dimensionalize the system with the
transformation τ = μt , L = L∗x and 〈ke〉 = 〈ke〉∗ y, giving

dx

dτ
= 2 − 2x, (12a)

dy

dτ
= 1

x
− y. (12b)

The phase plot of this simple system is illustrated in Fig. 1 for different initial condi-
tions.

This system is solvable analytically. With the initial condition x(0) = x0, (12a)
gives

x(τ ) = 1 + (x0 − 1)e−2τ ,

which can then be substituted in (12b), and with y(0) = y0,

y(τ ) = 1 + (y0 − 1)e−τ + 1

2

√
1 − x0 e

−τ log
(eτ − √

1 − x0)(1 + √
1 − x0)

(eτ + √
1 − x0)(1 − √

1 − x0)
.

Note that, with x0 < 1, x(τ ) monotonically increases to x = 1. On the other hand, dy
dτ

is positive for 1 < xy and negative for 1 > xy. Thus, with y0 < 1, y(τ ) may either
increase monotonically and reach a maximum on xy = 1 then decrease to y = 1,
or increase monotonically to y = 1. Consequently, the behavior of y(τ ) is uniquely
determined by the sign of dy

dτ
near the equilibrium. As τ → ∞,

dy

dτ
= −

[

(y0 − 1) + 1

2

√
1 − x0 log

1 + √
1 − x0

1 − √
1 − x0

]

e−τ + o(e−τ ).
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Hence, if

√
1 − x0
2

log
1 + √

1 − x0
1 − √

1 − x0
> 1 − y0, (13)

then y(τ ) reaches its equilibrium y = 1 from above ( dydτ
< 0 at y = 1). Thus y(τ )

reaches its maximum with y > 1 and then decreases to y = 1. If the above inequality
is reversed, then y(τ ) increases monotonically to y = 1.

Note that the equilibrium degree distribution N∗
k could be determined from (10) at

equilibrium with L = L∗, which is a linear system of equations with a tridiagonal
coefficient matrix.

4 Uniform attachment

Uniform attachment assumes that the new edges brought in by the incoming nodes
are uniformly attached to a node independent of its degree, i.e.,

Ak = 1

N
.

Then

d

dt
Nk = λπk + μ(k + 1)[Nk+1 − Nk] + λ�

N
[Nk−1 − Nk]. (14)

Thus, (8) becomes

d

dt
〈ke〉 = λ�

L
(Eλ + 2 〈k〉) −

(
2λ�

L
+ μ

)

〈ke〉 . (15)

Note that the dynamics of 〈ke〉 depends on that of 〈k〉, which is determined by

d

dt
〈k〉 = d

dt

(
L

N

)

=
(
2λ�

L
− μ

)

〈k〉 − λ

L
〈k〉2 . (16)

The system (6), (15), and (16) determines the dynamics of 〈ke〉. This system has
a unique positive equilibrium L∗ = λ�/μ, 〈k〉∗ = �, and 〈ke〉∗ = (Eλ + 2�)/3. Let
L = L∗x , 〈ke〉 = 〈ke〉∗ y, 〈k〉 = 〈k〉∗ z, and τ = μt . The non-dimensionalized system
is

dx

dτ
= 2 − 2x,

dy

dτ
= Eλ + 2�z

x 〈ke〉∗ −
(
2

x
+ 1

)

y,

dz

dτ
=

(
2

x
− 1

)

z − z2

x
.
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This system is also solvable with initial conditions x(0) = x0, y(0) = y0, z(0) = z0,
giving

x(τ ) = 1 + (x0 − 1)e−2τ ,

z(τ ) = 1 + (x0 − 1)e−2τ

1 + (x0/z0 − 1)e−τ
,

y(τ ) =
[

−6�x0(x
2
0 + x0z

2
0 − 3x0z0 − z30 − 2z20) log

eτ + x0/z0 − 1

x0/z0

+ 6�x0z0(x0 + z20 − 2z0)(e
τ − 1) + 3�z20(z0 − x0)(e

2τ − 1)

+(Eλ + 2�)z30(e
3τ − 1) + 3x0y0z

3
0 〈ke〉∗

] 1

3z30 〈ke〉∗ [e3τ + (x0 − 1)eτ ] .

Expand dy
dτ

(τ ) as a Taylor polynomial in e−τ ,

dy

dτ
(τ ) = �(x0/z0 − 1)

〈ke〉∗ e−τ + O(e−2τ ).

Note that x0 = L0/L∗ and z0 = 〈k0〉 /� = L0/(N0�), so that x0/z0 = N0/N∗ where
N∗ = λ/μ is the equilibrium population size. Thus, x0/z0 ≤ 1 for a growing network
(i.e., N0 < N∗). This implies that dy

dτ
(τ ) < 0 as the orbits of the system approach

the equilibrium, i.e., y(t) decreases to equilibrium. Hence, in the case of a growing
network, the average excess degree (and thus R0) always increases to a maximum
then decreases to the equilibrium.

5 Numerical simulations

In this section, we first show numerically that (1) is a good approximation to (2).
Note that a model for the joint distribution of the degrees of the nodes connected by a
random edge, Pi j , on a growing random network is developed as (19) in Appendix 1,
and is shown numerically to precisely capture the average dynamics of the underlying
stochastic process (see Fig. 4). We thus solve this model numerically, and use the
resulting Pi j (t) to compute R0 using (2) and (3). This basic reproduction number is
then compared numerically to the approximation (1), with the relation

〈ke〉 =
∑

i, j

(i − 1)Pi j ,

derived from (7), (20) and (21). Figure 2 shows such comparisons on an evolving
network with a constant immigration (or birth) rate and a constant per-capita death
rate. For both preferential attachment (Sect. 3) and uniform attachment (Sect. 4) of
the new edges brought in by incoming nodes to existing nodes, the two values follow
exactly the same trend. Even though Fig. 2 only shows the comparison of a single set
of disease and population parameters, it represents the qualitative behavior of (1) and
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Fig. 2 The average excess degree 〈ke〉 and the dominant eigenvalue of the contact matrix C as functions
of time on an evolving network. The initial network has 2000 nodes and a Poisson degree distribution with
a mean 3. The incoming nodes have degrees 2 or 5 with equal probabilities. The population has a constant
immigration rate λ = 1000, and a constant per capita death rate μ = 0.05

(2) across multiple sets of parameters that we tested. Thus the dynamics of (1) are a
good approximation to the dynamics of (2).

In fact, Fig. 2 also shows that, for the set of parameters given, both 〈ke〉 and ρ(C)

(and thus R0) increase to a maximum then decrease to an equilibrium, and this is true
for both the preferential attachment and the uniform attachment. This indeed agrees
with the predictions of our model in Sects. 3 and 4.

To show that the underlying stochastic disease spread process shows the same
behavior, we conduct 100 runs of stochastic simulations on a growing random network
with preferential attachment. We use the Gillespie method (Gillespie 1976, 1977) for
the simulation, namely, the new nodes are assumed to arrive as a Poisson process with
rate λ (and thus the waiting time for arrival are independently exponentially distributed
with mean 1/λ), each arriving node has a degree randomly drawn from a distribution
{πk}, and for each of the edges of the incoming node, it is randomly attached to an
existing node with a probability proportional to the degree of the existing node. Each
node has a lifetime independently exponentially distributedwith a rateμ, andwhen the
node dies, it takes away all its edges. To simulate the disease spread process, initially

123



Disease invasion risk in a growing population 675

0

500

1000

1500

2000

2500

0.0 2.5 5.0 7.5 10.0

time after disease introduction

in
fe
ct
io
us

in
di
vi
du

al
s

curve
at beginning
at equilibrium

Fig. 3 Epidemic curves on a growing random contact network, for a disease introduced at the beginning
of population growth (solid curve), and for a disease introduced at the population equilibrium (dashed
curve). Time t = 0 corresponds to the time of disease introduction. Both curves are the average of 100
runs of stochastic simulations with the same disease parameters and contact network. The parameters of the
network dynamics are the same as in Fig. 2 with preferential attachment. The transmission rate is β = 0.15,
the infectious period is exponentially distributed with mean 1/γ = 5, with I0 = 50 initially infectious
individuals

we introduce the disease by uniformly picking I0 = 50 nodes and labeling them
infectious while labeling the remaining nodes susceptible. The infected nodes contact
each neighbor independently with a waiting time exponentially distributed with mean
1/β, and upon contact, if the neighbor is susceptible, the neighbor is labeled infectious.
Each infectious node, upon becoming infectious, is assigned an infectious period that
is independently exponentially distributed with mean 1/γ , at which time it is labeled
recovered. There is a small probability that edge attachments lead to multiple edges
or self loops. However, this probability approaches 0 as the network size approaches
∞. Thus, multiple edges can be ignored.

We consider two scenarios, in one the disease is introduced at the beginning of the
growth for the network, and in the other the disease is introduced when the growth
of the network reaches its equilibrium. Figure 3 shows the results of the ensemble
average of 100 simulations for each scenario. It can be seen that a disease introduced
during the early population growth phase spreads faster than a disease introduced at the
population equilibrium with the same parameters. Note that, if the network dynamics
are ignored, then the exponential growth rate is

r = β 〈ke〉 − β − γ,

which is a linear function of 〈ke〉. This growth rate can be derived from the Volz-Miller
model (Miller 2011).

6 More general demographics

With more general demographics for a population that stabilizes, assume that the
number of new individuals coming into the population per unit time b(N ) and the
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death rate of an individual d(N ) are independent of their degrees. The dynamics of
the population size then becomes

d

dt
N = b(N ) − d(N )N . (17)

In the special case that b(N ) and d(N ) are constants, i.e., b(N ) = λ and d(N ) = μ,
this reduces to (5).

With the assumptions that an incoming node has degree k with probability πk , and
its k edges are randomly attached to a degree i node with probability Ai , the dynamics
for Nk have the same form as (4), with λ replaced by b(N ) and μ replaced by d(N ).
Thus

d

dt
L = 2b(N )� − 2d(N )L .

Assume that N (t) → N∗ as t → ∞. Let λ = b(N∗) and μ = d(N∗), then L →
N∗� = λ�/μ. Linearizing b(N ) and d(N ) about N∗, the dynamics for Nk can be
written as

d

dt
Nk = F + O(N − N∗) (18)

where F is the right hand side of (4). Thus, our model (4) is an approximation to the
dynamics of (18) near the population equilibrium N∗, i.e., the qualitative behaviors
of the two models are the same near N = N∗. Therefore, the behavior near L∗ and
〈ke〉∗ is similar to that of (6) and (8), implying that 〈ke〉 (and thus R0) may increase
to a maximum then decrease to the equilibrium value.

7 Discussion

We show that a growing population modeled by a random contact network can have
a higher risk of disease invasion during the growth phase than at equilibrium and
maximum population size, specifically, the basic reproduction number may be larger
during the growth phase when the population size is smaller than the equilibrium size.
This finding is in contrast to classical epidemic models where the basic reproduction
number is largest at the maximum population size. Since contact networks are gener-
ally more realistic than the fully-linked networks of classical epidemic models, it can
be expected that real world networks show this phenomenon as well. Thus in situa-
tions of rapid population growth, such as during a refugee crisis or a resource boom,
comparatively more resources for disease management are necessary as compared to
an established city even if the overall sanitation and other factors are similar.

Our approximation shows that the greater than classical (superlinear) increase of
the basic reproduction number is caused by a rapid increase in the average excess
degree of the growing contact network, since on a random contact network it is the
average excess degree that determines the basic reproduction number of a disease with
lifetime acquired immunity. This can be understood by considering that an infectious
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node (except the few index cases) itself was infected by one of its neighbors through
an edge, so that the number of secondary infections is determined by its degree less
one (the edge to the neighbor who infected it). For any given disease, a large average
excess degree implies a large basic reproduction number.

We develop a model for the time evolution of the average excess degree including
recruitment and death, with the edges of incoming nodes preferentially attached to
existing nodes (in other words, a new node links to an existing node with a probability
that is proportional to the degree of the existing node). Our model shows that the
average degree of the network evolves to the average degree of the incoming nodes
(�), and that the average excess degree evolves to the average excess degree (Eλ)

of the incoming nodes plus two. If the initial average excess degree is smaller than
the equilibrium value, the average excess degree on such a growing network can
either increase monotonically to equilibrium, or first increase beyond equilibrium then
decrease to equilibrium. The latter happens if the initial network has either a small
number of edges or a large average excess degree. For such networks, the maximum
average excess degree increases with the increase of the ratio between initial and
equilibrium average excess degrees (y0), andwith the decrease of the ratio of the initial
and equilibrium numbers of edges (x0). Interestingly, this condition only depends on
the initial values but not on the degree distribution of the incoming nodes. For more
general demographics, as long as the population approaches a positive equilibrium,
the above phenomenon is observed close to the equilibrium.

Our model verifies that recruitment and death can cause degree correlation (Fig. 4).
Specifically, preferential attachment causes disassortative mixing, i.e., nodes with a
small number of neighbors tend to connect to high degree nodes. For the recruit-
ment and death taken in our model, the average excess degree is not affected by this
correlation.

The average degree 〈k〉 = L/N can have a maximum during the growth phase
because the number of edges grows twice as fast to equilibrium as the population
size (see (5) and (6)), and thus has qualitatively the same behavior as the average
excess degree. The dynamics of the average degree does not depend on the attachment
scheme. This suggests that this behavior of 〈ke〉 may happen for other attachment
schemes for the edges of incoming nodes. We show that this is true for all growing
networks in the case of uniform attachment.

In summary, we show that the maximum basic reproduction number can appear
during the growth phase of a contact network, and furthermore show that this is not
restricted to the assumed attachment scheme or population dynamics (as long as the
population approaches a positive equilibrium). Compared to the classical notion that
the disease invasion risk increases linearly with the population size, we find that the
risk of disease invasion in a growing population manifests itself much earlier, i.e.,
when the population size is still relatively small. Consequently, response planning
should make population growth an integral part of the factors considered.

Our model ignores the probability that the disease dies out before causing an epi-
demic even if the basic reproduction number R0 > 1. This effect is also an important
factor of the disease invasion risk, and requires further investigation on a growing
network.
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Appendix 1: Accounting for degree correlation

Stochastic simulations show that population dynamics may introduce degree corre-
lation; see Fig. 4. Specifically, for preferential attachment, where the probability of
attaching to a degree k node is proportional to k, the contacts become more disas-
sortative (low degree nodes are more likely to connect with high degree nodes). To
properly account for this degree covariance, we need to track the probability that a
degree i node connects with a degree j node. For i, j ≥ 1, let Ei j be the number of
edges that connects two nodes with degrees i and j at time t .

The number of new edges brought in per unit time by new nodes with degree i is
λiπi , and they attach to nodes with j − 1 edges with probability A j−1N j−1, forming
an edge in the Ei j class. At the same time, if a new edge attaches to a degree j node,
the degree of the node becomes j + 1, and thus Ei j edges become Ei, j+1 edges with
rate λ�Ai Ei j . Similarly, Ei, j−1 edges become Ei j edges with rate λ�A j−1Ei, j−1.
Furthermore an Ei j edge can be formed if an edge of an incoming degree j node
attaches to a node with degree i − 1, while the existing Ei−1,m edges of this degree
i − 1 node enter the Eim class.

Due to the death of either node of an Ei j edge, this edge disappears with rate
2μ. Alternatively, a neighbor of either of the nodes of an Ei j edge can die, with rate
(i − 1)μ and ( j − 1)μ, respectively, and cause this Ei j edge to move to Ei−1, j and
Ei, j−1, respectively.

Putting the above together with the assumption N−1 = A−1 = 0 gives for i, j ≥ 1

d

dt
Ei j =iλπi N j−1A j−1 + jλπ j Ni−1Ai−1 + μ

[
i Ei+1, j + j Ei, j+1

−(i − 1 + j − 1)Ei j
] + λ�[Ai−1Ei−1, j + A j−1Ei, j−1 − (Ai + A j )Ei j ]

− 2μEi j . (19)

Initially
∑

i Ei j = j N j for all j , since the number of edges from a degree j node
is j N j , and the same quantity using Ei j notation is

∑
i Ei j . As a consistency check,

we need to show that these two formulations are equivalent for all positive time. This
can be verified by calculating

d

dt

∑

i

Ei j =
∑

i

iλπi N j−1A j−1 + jλπ j

∑

i

Ni−1Ai−1

+ μ
∑

i

[i Ei+1, j + j Ei, j+1 − (i + j)Ei j ]

+ λ�
∑

i

[Ai−1Ei−1, j + A j−1Ei, j−1 − (Ai + A j )Ei j ]
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= λ jπ j + μ

[

j
∑

i

Ei, j+1 − ( j + 1)
∑

i

Ei j

]

+ λ�

[

A j−1

(
∑

i

Ei, j−1 + N j−1

)

− A j

∑

i

Ei j

]

,

and with (4),

d

dt

(
∑

i

Ei j − j N j

)

= μj

[
∑

i

Ei, j+1 − ( j + 1)N j+1

]

−μ( j + 1)

(
∑

i

Ei j − j N j

)

+ λ�A j−1

[
∑

i

Ei, j−1 − ( j − 1)N j−1

]

− λ�A j

(
∑

i

Ei j − j N j

)

.

Thus, for each j , as it holds initially at time t = 0,

∑

i

Ei j = j N j (20)

holds for all time t .

Degree correlation

With Ei j , the joint distribution of the degrees of the two nodes connected by a random
edge, Pi j , can be defined as

Pi j = Ei j
∑

u,v Euv

= Ei j

L
(21)

where L is the total degree of the network. The degree correlation between a node of
degree ki and a node of degree k j connected by a single edge isCor[ki , k j ] = Cov[ki ,k j ]

σ 2 ,

where σ 2 = Var[ki ] is the variance of the excess degree distribution, and

Cov[ki , k j ] = 〈
(ki − 〈ki 〉)(k j − 〈

k j
〉
)
〉 ;
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Fig. 4 Degree correlation caused by preferential attachment, comparison of 100 runs of stochastic simu-
lations with the degree correlation formula given in (22). The network and model parameters are the same
as in Fig. 3

see, e.g., (Newman 2002b). For our model this can be computed as

Cov[ki , k j ] =
∑

i, j

i j Pi j −
⎛

⎝
∑

i, j

i Pi j

⎞

⎠

2

. (22)

Figure 4 shows that (22) agrees with stochastic simulations.

Average excess degree

The average degree of a neighbor is

〈kN 〉 =
∑

i, j j Ei j
∑

i, j Ei j
=

∑
j j (

∑
i Ei j )

∑
j (

∑
i Ei j )

.

Because
∑

i Ei j = j N j ,

〈kN 〉 =
∑

j j
2N j

∑
j j N j

=
∑

j j
2N j

L
.

Therefore, the average excess degree is

〈ke〉 = 〈kN 〉 − 1 =
∑

j j ( j − 1)N j

L
.

This shows that, even though the population dynamics may introduce degree cor-
relation in Ei j , this correlation does not change the formula for the average excess
degree.
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Appendix 2: The basic reproduction number on networks with no
assortativity

Under the assumption that the degrees of the two nodes of a random edge are
independent, the joint distribution matrix of the two degrees P = [Pi j ] = Pi Pj ,
where Pi = ∑

j Pi j = i Ni/L is the probability that a random node found by fol-
lowing a random edge has degree i , for i, j = 0, 1, . . . ,m − 1 where m is the
largest degree of the network. Note that the matrix P has rank 1. Let the matrix
M = diag{1/P1, 1/P2, . . . , 1/Pm}, and K = diag{0, 1, 2, . . . ,m − 1}, then the con-
tact matrix C = [Ci j ] defined by (3) can be written as C = MPK , which also has rank
1. Thus, (2) becomes

ρ(C) = ρ(MPK) = Trace(MPK) =
∑

i

(i − 1)Pi =
∑

i

(i − 1)
i Ni

L
= 〈ke〉 .

That is, (1) and (2) are equivalent if the degrees of the two nodes of a random edge
are independent.
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