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IMPACT OF VARYING COMMUNITY NETWORKS ON DISEASE

INVASION
⇤

STEPHEN KIRKLAND† , ZHISHENG SHUAI‡ , P. VAN DEN DRIESSCHE§ , AND

XUEYING WANG¶

Abstract. We consider the spread of an infectious disease in a heterogeneous environment
modeled as a network of patches. We focus on the invasibility of the disease, as quantified by the
corresponding value of an approximation to the network basic reproduction number, R0, and study
how changes in the network structure a↵ect the value of R0. We provide a detailed analysis for two
model networks, a star and a path, and discuss the changes to the corresponding network structure
that yield the largest decrease in R0. We develop both combinatorial and matrix analytic techniques,
and we illustrate our theoretical results by simulations with the exact R0.
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1. Introduction. Advanced science and technology have made our world an in-
creasingly connected place. Globalization and urbanization bring not only benefits
but also attendant consequences such as the spread of emerging and re-emerging infec-
tious diseases. Historically, plague, cholera, and influenza have resulted in millions of
human deaths, and insight into the spread and control of these diseases has shaped our
modern society, particularly in medicine and public health. Recent emerging diseases
such as HIV/AIDS, SARS, Ebola, and COVID-19 highlight the need for scientific
investigations of disease spread via transport networks [43]. As disease vectors (e.g.,
mosquitoes and ticks) can also be carried via human/goods transport, the outbreak
and spread of vector-borne diseases such as dengue, Lyme disease, malaria, West Nile
virus, yellow fever, and Zika virus have exhibited strong spatio-temporal patterns
[15, 22, 26, 37, 40, 41, 42, 47] (also see the recent special issues [31, 39]); this is partly
due to the interplay between disease epidemiology and vector ecology. Spatio-temporal
patterns have also been observed for many waterborne diseases caused by pathogenic
micro-organisms such as bacteria and protozoa that are transmitted in water/river
networks [3, 20, 33, 38, 45, 46]. One of the main scientific challenges is to determine
the connection between disease risk and the change of network structures (as a conse-
quence of human behavior and/or environmental uncertainty). Recent studies using
statistical data from climate, environmental, and disease surveillance have shown in-
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consistent and geographically variable results. For example, a discrepancy in the
correlation with precipitation has appeared in the literature of waterborne diseases:
a significant positive association between heavy rainfall and waterborne diseases is
often observed [9, 13, 16, 23, 32] (also see the review paper [30]), while increased
prevalence of waterborne diseases has also been reported as an unexpected conse-
quence of drought [6] and the anthropogenic protection against annual flooding [10].
Although detailed discussions of this discrepancy, as a consequence of human behavior
and/or climate change, have been surveyed in [4, 29], rigorous scientific explanations
and theoretical insights are lacking, due to the complexity and multiple time scales.

Many existing studies in the literature have focused on the aggregation of disease
dynamics at each geographical region (or patch) via a static movement (or commu-
nity) network and emphasized either the situation where the time scale of the dispersal
among patches is much faster than the scale of patch demography/disease dynamics,
or with the focus on the monotonicity of disease invasibility with respect to dispersal
speed or travel frequency; see, for example, [1, 8, 17, 18, 19, 44]. Recently, a general re-
sult on the spectral monotonicity of a perturbed Laplacian matrix in [12] has provided
theoretical insight on the aggregation. Specifically, for a square matrix A = Q� µL,
where Q = diag{qk} is a diagonal matrix encoding within-vertex (within-patch) popu-
lation/disease dynamics, and L is a Laplacian matrix describing population dispersal
among patches in a heterogeneous environment (of n patches), the monotonicity and
convexity of the spectral abscissa of A, s(A), with respect to dispersal speed µ, are

established: ds(A)
dµ  0 and d2s(A)

dµ2 � 0. The limiting behavior with a faster time scale

of population/disease dynamics is similar to the decoupled (no movement) system,
s(A) = max{qk}, while the limiting behavior with a faster time scale of dispersal
is the u-weighted average, s(A) =

Pn
k=1 ukqk, where u = (u1, u2, . . . , un)> is the

normalized right null vector of L. As pointed out in [12], these results also are re-
lated to the reduction principle in evolutionary biology [2, 25] and the evolution of
dispersal in patchy landscapes [27]. For many heterogeneous infectious disease mod-
els, the network basic reproduction number R0, a threshold determining whether the
disease dies out or persists, can be approximated as the u-weighted average of the

individual patch reproduction numbers R(k)
0 , R0 =

Pn
k=1 ukR(k)

0 , when the disper-
sal among geographic regions is faster than the disease/population dynamics; see,
e.g., [17, 44] for waterborne diseases, [12, 19, 21] for general diseases of susceptible-
infectious-susceptible (SIS) or susceptible-infectious-recovered (SIR) type, and [8] for
the analogue in a continuous spatial landscape.

In this paper, we investigate the impact of varying community networks on disease
invasion in a heterogeneous environment. Our motivation comes from the spread of
a waterborne disease, such as cholera, in a heterogeneous network [17, 44], in which
the pathogen (the bacterium Vibrio cholerae) travels within a hydrological landscape
(e.g., a river network) or the spread of directly transmitted diseases for which the host
moves between regions [1]. If the network structure changes, our goal is to determine
how this a↵ects the network basic reproduction number R0 for the spatial spread of
the disease. The quantity R0 is important as it usually determines a threshold for
disease extinction (when R0 < 1) or persistence (when R0 > 1) and gives guidance
for disease control strategies.

First, we consider a toy model of a 4-node path graph network with counter-
intuitive numerical results showing opposite monotonicity of R0 corresponding to
a bypass from upstream to downstream (e.g., due to flooding). For the reader’s
convenience, in supplementary material section (A) we include the model and re-
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1168 KIRKLAND, SHUAI, VAN DEN DRIESSCHE, AND WANG

lated results from [17, 44]. As depicted in Figure 1, we consider the spread of a
pathogen (e.g., cholera) on a path network of 4 patches (vertices) with vertices 1,
2, 3, 4 sequentially located along a river, where vertex 1 is upstream and vertex 4
is downstream. We assume that each nonzero movement rate, mij from vertex j to
vertex i, on the path has value 1. As shown in [17, 44] the associated next genera-
tion matrix takes the form K = FV

�1 = DqG
�1
W DrG

�1
I , where F is the matrix of

new infections, V is the matrix of transitions, Dq = diag{qi}, GW = diag{�i} + L,
Dr = diag{ri}, and GI = diag{µi}. Here the parameters qi, �i, ri, and µi are the
linearized indirect transmission rate (from pathogen to host), pathogen decay rate,
pathogen shedding rate, and decay rate of infectious host individuals in patch i, re-
spectively (i = 1, 2, 3, 4). The matrix L is the 4⇥ 4 Laplacian matrix associated with
M , i.e., L = diag{

P
j 6=i mji} �M , where M = (mij) with mij � 0 representing the

pathogen/host dispersal from patch j to patch i. Then the exact network basic repro-
duction number is R0 = ⇢(FV

�1) = ⇢(DqG
�1
W DrG

�1
I ), where ⇢ denotes the spectral

radius. For simplicity, we set ri/µi = 1, �i = 1 in each patch, with the base qi value
taken to be q = 0.195. In this case, the basic reproduction number in patch i is equal
to qi. We consider two scenarios in which the network has a “hot spot,” i.e., a vertex

i at which the linearized indirect transmission rate qi (or, equivalently, R(i)
0 ) is higher

than those of the other vertices, and an arc that bypasses the hot spot. In the first
case (see the left plot in Figure 1), the hot spot is assumed to be located at vertex 2,
with an additional bypass downstream from vertex 1 to vertex 3 included, specifically,
q1 = q3 = q4 = q, q2 = 10q, and

L =

0

BB@

1 +m31 �1 0 0
�1 2 �1 0

�m31 �1 2 �1
0 0 �1 1

1

CCA .

In the second case (see the right plot in Figure 1), the hot spot is located at vertex
3, and a new bypass from vertex 2 to vertex 4 is included with q1 = q2 = q4 = q,
q3 = 10q, and

L =

0

BB@

1 �1 0 0
�1 2 +m42 �1 0
0 �1 2 �1
0 �m42 �1 1

1

CCA .

In both cases the hot spot is bypassed, in the same direction, but the e↵ects on
R0 are markedly di↵erent, as shown in Figure 1. Although symmetric movement is
used in the simulations for Figure 1, the inclusion of a small amount of advection
(i.e., changing the subdiagonal entries to a common value slightly less than �1 to
reflect the upstream-downstream movement) gives the same monotone properties of
R0. Similar behavior also occurs in the simulations of other patch disease models,
such as the directly transmitted disease (SIS) model in [1]; see the supplementary
material for R0. These unexpected behaviors motivate our investigation of the e↵ect
of network structure on R0.

The remainder of the article is organized as follows. Some preliminary results
are provided in section 2. Two di↵erent methods, one combinatorial and the other
algebraic, are employed to investigate the impact of varying community networks on
disease invasion (sections 3 and 4, respectively). Applications to specific networks are
illustrated in section 5 and include an explanation of the counterintuitive numerical
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Fig. 1. With the hot spot at 2, R0 decreases as m31 increases (left plot); with the hot spot at
3, R0 increases as m42 increases (right plot).

results above. Disease control strategies involving varying the community network
are considered in section 6, and concluding remarks are given in section 7.

2. Preliminaries. From consideration of a system of ordinary di↵erential equa-
tions governing the dynamics of cholera under the assumptions that humans become
infected through contact with pathogens in the contaminated water and that the water
movement is faster than the pathogen decay rate, it has been established [17, 44] that
R0 is approximated (from the exact value given by the spectral radius of the next
generation matrix) by a linear combination of the basic reproduction numbers in each
patch in isolation. The constants in this linear combination are the components of
the normalized right eigenvector of the Laplacian matrix of the community network.
The specific aim of this work is to determine how this eigenvector and R0 change with
alterations in the network structure. We consider a strongly connected network and
assume that the network maintains this property when changed.

More precisely, let M = (mij) � 0 denote an n⇥n irreducible matrix representing
the pathogen/host movement in a heterogeneous environment of n patches. In partic-
ular, when 1  i, j  n are distinct, mij � 0 represents the pathogen/host dispersal
from patch j to patch i. We assume that mii = 0 for i = 1, . . . , n. Let G = G(M)
be the weighted digraph associated with M . That is, in G there is an arc j ! i from
vertex j to vertex i of weight mij if and only if mij > 0. Let L be the Laplacian
matrix of G(M), i.e.,

(2.1) L = diag
⇣X

i 6=1

mi1,

X

i 6=2

mi2, . . . ,

X

i 6=n

min

⌘
�M.

Notice that each column sum of L is 0, and thus 0 is an algebraically simple eigenvalue
of L (since M is irreducible). Evidently the all ones vector, >

, is a left null vector
for L. For each k = 1, . . . , n, let Ckk = det(L(k,k)) be the principal minor of L formed
by deleting its kth row and column. Consider the vector u = (u1, u2, . . . , un)>, where

(2.2) uk =
CkkPn
`=1 C``

, k = 1, . . . , n.

Denote the adjugate of L by adj(L), and recall that Ladj(L)=adj(L)L=det(L)I=0.
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1170 KIRKLAND, SHUAI, VAN DEN DRIESSCHE, AND WANG

Hence adj(L) = x
>
, where x is a nonzero vector in the right null space of L. It now

follows that u is the right null vector of L, normalized so that >
u = 1.

As shown in [17, 44] (also see [8]), when the time scale of movement is substan-
tially larger than the time scale of the disease dynamics, the coe�cients uk defined
above serve as weights to aggregate the disease dynamics from each patch. For this
reason, uk is called the network risk of patch k. In particular, the network basic re-
production number R0 can be approximated by the u-weighted average of the patch

basic reproduction numbers R(k)
0 , that is,

(2.3) R0 ⇡
nX

k=1

ukR(k)
0 .

This expression (2.3) separates the structure of the movement network and the within-
patch disease dynamics and thus provides a new approach to investigating the impact
of changes in the network on disease invasion. Specifically, we first investigate how a
change to the network structure a↵ects the network risks uk, and then we utilize the
aggregation in (2.3) to understand how varying the network a↵ects disease invasibility
(i.e., the value of R0).

Since uk depends on the cofactor Ckk as in (2.2), it can be expressed in terms
of the sum of weights of spanning rooted trees [11, 36] by using Kirchho↵’s matrix-
tree theorem. Calculating the weights of such trees gives a combinatorial method
for finding the sign of duk

dmij
, the derivative of uk with respect to a change in the arc

j ! i. This combinatorial approach is developed in section 3 and may be convenient
for some cases, such as small networks or networks with specific structures.

In addition, there is a well-established algebraic tool for understanding how
changes in the movement matrix M a↵ect the entries in the right null vector u of
the Laplacian matrix L. Since L is a singular and irreducible M-matrix, the eigen-
value 0 of L is algebraically simple; so, while L is not invertible, it has a group inverse,
that is, a unique matrix L

# such that LL# = L
#
L,LL

#
L = L, and L

#
LL

# = L
#
.

The group inverse has been used e↵ectively to analyze how changes in an irreducible
nonnegative matrix a↵ect its Perron eigenvalue and eigenvector (see, for example,
[14, 34]), and our results in section 4 are informed by that approach. We refer the
interested reader to [7] for background on generalized inverses in general and to [28]
for the use of group inverses in the study of M-matrices in particular.

With the group inverse method developed in generality, in section 5.1 we illustrate
this method with a star network in which one patch is the hub connected to several
leaf vertices. Such a network structure is appropriate as a model for a large city
connected to smaller cities or suburbs, with humans commuting in each direction.
Then in section 5.2, we illustrate the general results for a path network, which models
cholera outbreaks in communities along a river. For these two network structures,
we consider control strategies for restricted cases of the two networks (section 6) and
derive results on how changes to the network can help to minimize disease invasion.

3. Combinatorial method: Counting spanning rooted trees. It follows
from Kirchho↵’s matrix-tree theorem [11, 36] that the cofactor of the (k, k) entry of
L can be interpreted in terms of spanning rooted trees,

(3.1) Ckk =
X

T 2Tk

w(T ) =: Wk,

where Tk is the set of spanning in-trees rooted at vertex k, and w(T ) =
Q

(j,i)2E(T ) mij

is the weight of a spanning in-tree T rooted at k. The notation Wk introduced in
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(3.1) is convenient for tracking how uk = WkP
` W`

, defined in (2.2), behaves as the

network structure changes. Specifically, we consider a small change of the mij value
(for a fixed ordered pair (i, j)) in the movement network, say mij ! mij + ✏, and
explore how the value of uk responds; to do so, we focus on the sign of duk

dmij
. (We

note in passing that if mij is zero, we only consider positive values of ✏, and in that
setting duk

dmij
is interpreted as the derivative from the right.) Notice that such a change

mij ! mij + ✏ a↵ects two entries of L, the (i, j) entry and the (j, j) entry.
Before establishing our main results, we introduce some additional notation and

tools from matrix theory and graph theory. Let L(ij,k`) denote the matrix obtained

from L by deleting the ith and jth rows and kth and `th columns. Let W
ij
k denote

the sum of the weights of all spanning in-trees rooted at k containing the arc j ! i,
and let W⇠ij

k denote the sum of the weights of all spanning in-trees rooted at k that

do not contain the arc j ! i. Notice that Wk = W
ij
k +W

⇠ij
k .

First, we prove the following two lemmas.

Lemma 3.1. Assume i 6= j. Then

(3.2) W
ij
k = mij | det(L(ij,kj))|.

Proof. From the all minors matrix-tree theorem [11], | det(L(ij,kj))| is the sum of
the weights of all spanning forests F that contain exactly two in-tree components, one
rooted at k containing vertex i and the other rooted at j. Adding the arc j ! i of
weightmij in F yields a spanning in-tree T rooted at k containing j ! i; in particular,
mijw(F) = w(T ). The identity (3.2) follows after performing this operation for all
spanning forests.

We note here that strictly speaking, the right side of (3.2) is not defined in the
case when k = j. However, we may adopt the convention that det(L(ij,kk)) = 0, and
then (3.2) will also hold when k = j.

Lemma 3.2. Let Wk = Ckk = det(L(k,k)). Then, for any i 6= j,

(3.3)
dWk

dmij
= | det(L(ij,kj))|.

Proof. Straightforward calculations, along with (3.2), yield

dWk

dmij
= lim

✏!0

(W ij
k +W

⇠ij
k )|mij+✏ � (W ij

k +W
⇠ij
k )|mij

✏

= lim
✏!0

(mij + ✏)| det(L(ij,kj))|+W
⇠ij
k �mij | det(L(ij,kj))|�W

⇠ij
k

✏

= | det(L(ij,kj))|,

resulting in (3.3).

As with (3.2), when k = j, we interpret both sides of (3.3) as being zero.
In particular, if mij > 0 for i 6= j, it follows from Lemmas 3.1 and 3.2 that

(3.4)
dWk

dmij
=

W
ij
k

mij
.

Now we are ready to prove the main result arising from this combinatorial method.
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Theorem 3.3. For any given k, i, j, i 6= j,

(3.5) sgn
⇣
duk

dmij

⌘
= sgn

⇣�� det(L(ij,kj))
��
X

` 6=k

W` �Wk

X

` 6=k

�� det(L(ij,`j))
��
⌘
.

If, in addition, mij > 0, then

(3.6) sgn
⇣
duk

dmij

⌘
= sgn

⇣
W

ij
k

X

` 6=k

W
⇠ij
` �W

⇠ij
k

X

` 6=k

W
ij
`

⌘
.

Proof. Taking the derivative on both sides of (2.2) with respect to mij yields

(3.7)
duk

dmij
=

1

(
P

` W`)2

⇣
dWk

dmij

X

`

W` �Wk

X

`

dW`

dmij

⌘
.

Substituting (3.3) into (3.7), after the cancellation of the case ` = k, yields (3.5).
Additionally, if mij > 0, then it follows from (3.4) that

duk

dmij
=

1

(
P

` W`)2

⇣
W

ij
k

mij

X

` 6=k

W` �Wk

X

` 6=k

W
ij
`

mij

⌘
(3.8)

=
1

mij(
P

` W`)2

⇣
W

ij
k

X

` 6=k

(W ij
` +W

⇠ij
` )� (W ij

k +W
⇠ij
k )

X

` 6=k

W
ij
`

⌘
(3.9)

=
1

mij(
P

` W`)2

⇣
W

ij
k

X

` 6=k

W
⇠ij
` �W

⇠ij
k

X

` 6=k

W
ij
`

⌘
,(3.10)

resulting in (3.6).

The sign identities (3.5) and (3.6) characterize how the network risk at patch k

changes as a function of the movement from patch j to patch i. If more information
on the movement network is provided, the exact sign of duk

dmij
may be able to be

determined. If patch k is the head of the altered arc j ! i (i.e., j = k), then the sign
of the change in the network risk duk

dmij
is determined in the following result, regardless

of the network structure.

Theorem 3.4. For any given k, i, i 6= k,
duk
dmik

< 0.

Proof. Since there is no spanning in-tree rooted at k that contains the arc k ! i

(i.e., leaving the root vertex k), W ij
k = 0. It follows from the irreducibility of M that

there exists at least one spanning in-tree rooted at k, which certainly does not contain
the arc k ! i; thus W⇠ik

k > 0. If mik > 0, then there exists at least one vertex ` 6= k

at which a spanning in-tree containing k ! i is rooted, and hence W ik
` > 0. It follows

from (3.6) that duk
dmik

< 0.
If mik = 0, then (3.5) can be utilized to establish the result. Specifically, there is

no spanning forest of two components where both are rooted at k, which is reflected
in our convention that det(L(ij,kk)) = 0. Similarly, the irreducibility of M implies
that Wk > 0 and | det(L(ij,`k))| > 0 for some ` 6= k.

Notice that none of the in-trees rooted at k include the arc k ! i, so any increase
of mik does not alter Wk but increases all other W`, ` 6= k. Consequently, all terms
in the first sum of (3.5) and (3.6) vanish, as shown in the proof of Theorem 3.4. In
contrast, perturbations of mkj change Wk and other W`, ` 6= k, which requires more
discussion.
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If patch k is the tail of the altered arc j ! i (i.e., k = i), and the restriction is
added that the only path from j to k is the arc j ! k, then the proof of the following
result proceeds by an analysis similar to that used to prove Theorem 3.4.

Theorem 3.5. For any given k, j, j 6= k, if the arc j ! k is the only path from

j to k, then W
⇠kj
k = 0, and duk

dmkj
> 0.

In section 4, we generalize Theorem 3.5 by using the group inverse to remove the
restriction on the number of paths from j to k.

4. Algebraic method: Computing the group inverse. Suppose that L is
an irreducible Laplacian matrix with zero column sums as in (2.1). Recall from section
2 that there is a unique group inverse L

# such that LL
# = L

#
L, LL#

L = L, and
L
#
LL

# = L
#. The left and right null spaces of L are necessarily one-dimensional

and are spanned by > and u, respectively, where u = (u1, . . . , un)T is the right null
vector of L, normalized so that >

u =
Pn

i=1 ui = 1. From Corollary 7.2.1 of [7], it
now follows that L#

L = I � u
>.

Consider a perturbation L̃ = L + E of L such that L̃ is also a singular and
irreducible M-matrix with >

L̃ = 0. We seek the normalized right null vector of L̃,
i.e., the vector ũ such that L̃ũ = 0 and >

ũ = 1. Since (L + E)ũ = 0, we have
L
#(L+ E)ũ = 0, and hence (I � u

>)ũ+ L
#
Eũ = 0. Thus (I + L

#
E)ũ = u. Since

I + L
#
E is invertible (see [34] or Lemma 5.3.1 in [28]), this gives

(4.1) ũ =
�
I + L

#
E
��1

u.

At the end of this section, we provide an explicit expression for L#.
The following technical results (see, e.g., [24, p. 19] and [35, p. 475]) are useful in

proving Theorem 4.2 below.

Lemma 4.1. Let x and y be column vectors of dimension n; then we have

det(I+xy
>) = 1+y

>
x. If, in addition, y

>
x 6= �1, then (I+xy

>)�1 = I� 1
1+y>xxy

>
.

Here is one of the main results of this section.

Theorem 4.2. Let L be an irreducible M-matrix as defined in (2.1).
(a) Suppose that L + ✏F is an irreducible M-matrix with

>
F = 0 for all ✏ in a

neighborhood of 0. Then the directional derivative of u with respect to F is �L
#
Fu.

(b) Perturb mij ! mij + ✏ (where ✏ � 0 when mij = 0) with 1  i 6= j  n, and

denote the corresponding right null vector for the Laplacian (normalized to have sum

1) by ũ. Then for k = 1, . . . , n,

(4.2) ũk � uk = � ✏uje
>
k L

#(ej � ei)

1 + ✏ e>j L
#(ej � ei)

= �
✏uj(L

#
kj � L

#
ki)

1 + ✏(L#
jj � L

#
ji)

.

Moreover,

(4.3)
duk

dmij
= �uje

>
k L

#(ej � ei) = �uj(L
#
kj � L

#
ki), k = 1, . . . , n,

and

1

uj

duk

dmij
= � 1

ui

duk

dmji
, k = 1, . . . , n.
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Proof. (a) For ✏ su�ciently small,

(4.4)
�
I + ✏L

#
F
��1

= I � ✏L
#
F +O(✏2).

Taking E = ✏F in (4.1) and using (4.4) yields

(4.5) ũ = (I + L
#
E)�1

u =
�
I � ✏L

#
F
�
u+O(✏2) = u� ✏L

#
Fu+O(✏2).

Hence lim✏!0
ũ�u
✏ = �L

#
Fu, as desired.

(b) Set E = ✏(�ei + ej)e>j . From (4.1), it follows that ũ =
�
I + L

#
E
��1

u, and

Lemma 4.1 gives
�
I + L

#
E
��1

= I � ✏
1+✏e>j L#(�ei+ej)

L
#(�ei + ej)e>j . Observe that

since I + ✏L
#(�ei + ej)e>j is invertible, 1 + ✏e

>
j L

#(�ei + ej) = det(I + ✏L
#(�ei +

ej)e>j ) 6= 0, following Lemma 4.1. The conclusions now readily follow.

Next we discuss how to find L
#. From the hypotheses on L, it is easy to see that

L may be partitioned as

L =

✓
¯>z �¯>B
�z B

◆
,

where the submatrix B of L is an (n � 1) ⇥ (n � 1) invertible matrix, u1 is the first
entry of u, ū = (u2, . . . , un)>, z = 1

u1

Bū, and ¯ is the all ones column vector of
dimension n� 1.

It follows from Observation 2.3.4 of [28] that

(4.6) L
# = (¯>B�1

ū)u > +

✓
0 �u1¯>B�1

�B
�1

ū B
�1 �B

�1
ū¯> � ū¯>B�1

◆
.

Let ēj denote the unit column vector in Rn�1 with all zero entries except the jth
entry, which is one. Suppose that 1  i < j  n; partitioning out the first entry as
above gives

(4.7) L
#(ej�ei) =

8
>>>><

>>>>:

 
�u1¯>B�1

ēj�1

B
�1

ēj�1 � ū¯>B�1
ēj�1

!
if i = 1,

 
�u1¯>B�1(ēj�1 � ēi�1)

B
�1(ēj�1 � ēi�1)� ū¯>B�1(ēj�1 � ēi�1)

!
if 2  i  n.

From (4.7), we find that e>1 L
#(e1 � ej) > 0, j = 2, . . . , n. The rows and columns of L

can be simultaneously permuted to place any index in the first position, and hence

(4.8) L
#
jj � L

#
ji > 0, i, j = 1, . . . , n, i 6= j.

Suppose that 1  i < j  n. If we perturb mij ! mij + ✏ (where ✏ � 0 when
mij = 0), it follows from (4.2) and (4.7) that

ũ1 � u1 =

8
>>><

>>>:

✏u1uj¯>B�1
ēj�1

1 + ✏ē>j�1

�
B�1ēj�1 � ū¯>B�1ēj�1

� , i = 1,

✏u1uj¯>B�1(ēj�1 � ēi�1)

1 + ✏ē>j�1

⇥
B�1(ēj�1 � ēi�1)� ū¯>B�1(ēj�1 � ēi�1)

⇤ , 2  i  n.
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For 2  `  n, we have

ũ` � u` =

8
>>><

>>>:

�
✏uj ē

>
`�1

�
B

�1
ēj�1 � ū¯>B�1

ēj�1

�

1 + ✏ē>j�1

�
B�1ēj�1 � ū¯>B�1ēj�1

� , i = 1,

�
✏uj ē

>
`�1

⇥
B

�1(ēj�1 � ēi�1)� ū¯>B�1(ēj�1 � ēi�1)
⇤

1 + ✏ē>j�1

⇥
B�1(ēj�1 � ēi�1)� ū¯>B�1(ēj�1 � ēi�1)

⇤ , 2  i  n.

Remark 4.1. By considering (4.3) and (4.8) for the cases j = k and i = k, we
find an alternate proof for Theorem 3.4 and an extension of Theorem 3.5 that goes
through without the path restriction.

5. Applications to specific networks. In this section, we apply our general
results to two di↵erent networks: a star network for human transport between one
hub and several leaves, and a path network for communities along a river.

5.1. Star network. First, we consider a star network with vertex 1 as the hub
and 2, 3, . . . , n as leaf vertices, with corresponding weights m1j ,mj1 > 0, j = 2, . . . , n.
Assuming that a new arc from leaf j > 1 to leaf i > 1 is added, the following result
shows that the direction of change of the network risk uk at any other vertex (i.e.,
k 6= i, k 6= j) depends only on m1i and m1j .

Theorem 5.1. For a star network, let i, j be any two distinct leaf vertices, and

let k be another vertex. Then sgn( duk
dmij

) = sgn(m1i �m1j).

To illustrate both combinatorial and algebraic methods from sections 3 and 4, we
prove the above result using two di↵erent approaches.

Combinatorial proof of Theorem 5.1. By Theorem 3.3, it su�ces to determine the
sign of

(5.1) W
ij
k

X

` 6=k

W
⇠ij
` �W

⇠ij
k

X

` 6=k

W
ij
` ,

which involves the weights of certain specific spanning rooted trees. As depicted
in Figure 2, W

ij
k = mk1m1imij

Q
s m1s and W

⇠ij
k = mk1m1im1j

Q
s m1s, where s

takes all values except 1, k, i, j, corresponding to the unique spanning in-tree rooted
at k that contains the arc j ! i and does not contain the arc j ! i, respectively.
Now we consider spanning in-trees rooted at ` 6= k, containing j ! i or not, which
contributes terms appearing in the sums of (5.1). Specifically, we consider three
cases: ` = i, ` = j, and all other possible values (i.e., ` = r, where r 6= k, i, j).
As depicted in Figure 2, W⇠ij

i = mi1m1jm1k
Q

s m1s, W
⇠ij
j = mj1m1im1k

Q
s m1s,

W
⇠ij
r = mr1m1im1jm1k

Q
s m1s/m1r; W

ij
i = mi1mijm1k

Q
s m1s+mijmj1m1k

Q
s m1s,

W
ij
j = 0, W ij

r = mr1m1imijm1k
Q

s m1s/m1r. Here s takes all values except 1, k, i, j,
and notice that there are two spanning in-trees rooted at i containing j ! i, while no
spanning in-tree rooted at j contains j ! i. There is immediate cancellation in (5.1)
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W
ij
k

1

i

j

k

W
⇠ij
i

1

i

j

k

W
⇠ij
j

1

i

j

k

W
⇠ij
r

1

i

j

k

r

W
⇠ij
k

1

i

j

k

W
ij
i

1

i

j

k

1

i

j

k

W
ij
r

1

i

j

k

r

Fig. 2. Spanning rooted trees with certain specific restrictions in a star network ( 1 is the hub).

Notice that there is no spanning in-tree rooted at j that contains the arc j ! i, so W ij
j = 0.

since W
ij
k W

⇠ij
r = W

⇠ij
k W

ij
r for all r. After simplification, (5.1) becomes

W
ij
k

X

` 6=k

W
⇠ij
` �W

⇠ij
k

X

` 6=k

W
ij
` = W

ij
k [W⇠ij

i +W
⇠ij
j ]�W

⇠ij
k [W ij

i +W
ij
j ]

= mk1m1imij

Y

s

m1s

h
mi1m1jm1k

Y

s

m1s +mj1m1im1k

Y

s

m1s

i

�mk1m1im1j

Y

s

m1s

h
mi1mijm1k

Y

s

m1s +mijmj1m1k

Y

s

m1s

i

= mk1m1imj1m1kmij

⇣Y

s

m1s

⌘2
(m1i �m1j),

completing the proof.

Algebraic proof of Theorem 5.1. Consider a star network with vertex 1 as the
hub, and 2, 3, . . . , n as leaf vertices. From the hypothesis,

(5.2) L =

0

BBBBB@

P
i 6=1 mi1 �m12 �m13 . . . �m1n

�m21 m12 0 . . . 0
�m31 0 m13 . . . 0

...
...

�mn1 0 0 . . . m1n

1

CCCCCA
.

For concreteness, consider i = 2 and j = 3. It follows from (4.3) that

(5.3)
du

dm23
= �u3L

#(�e2 + e3).

To determine the sign of du
dm23

, we need to compute the right-hand side of (5.3). As

u3 > 0, sgn( du
dm23

) = sgn(�L
#(�e2+e3)). Since B = diag(m12, . . . ,m1n) is diagonal,
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u1¯>B�1(�ē1 + ē2) = u1

⇣
� 1

m12

+ 1
m13

⌘
, which implies that

(B�1 � ū¯>B�1)(�ē1 + ē2) =

0

BBBBB@

� 1
m12

1
m13

0
...
0

1

CCCCCA
�

0

BBBBB@

u2

u3

u4
...
un

1

CCCCCA

✓
� 1

m12
+

1

m13

◆
.

So,

�L
#(�e2 + e3) = �

0

BBBBBBBB@

�u1

⇣
� 1

m12

+ 1
m13

⌘

0

BBBBB@

� 1
m12

1
m13

0
...
0

1

CCCCCA
�

0

BBBBB@

u2

u3

u4
...
un

1

CCCCCA

⇣
� 1

m12

+ 1
m13

⌘

1

CCCCCCCCA

.

Thus,

sgn(ũ1 � u1) = sgn(m12 �m13),

sgn(ũ2 � u2) = �sgn

⇣�m13 � u2(m12 �m13)

m12m13

⌘
= sgn(m13 + u2(m12 �m13)),

sgn(ũ3 � u3) = �sgn

⇣
m12 � u3(m12 �m13)

m12m13

⌘
= sgn(�m12 + u3(m12 �m13)),

sgn(ũ` � u`) = sgn

⇣
u`(m12 �m13)

m12m13

⌘
= sgn(m12 �m13), ` = 4, . . . , n.

Corollary 5.2. For a star network with vertex 1 as the hub, the direction of

change of the network risk uk is given by the following:

sgn

✓
duk

dmij

◆
= sgn(m1i �m1j), k 6= i, j, i 6= 1, j 6= 1,

sgn

✓
dui

dmij

◆
> 0, sgn

✓
duj

dmij

◆
< 0.

(5.4)

5.2. River network. Consider a path network with vertices labeled 1, 2, 3, . . . , n
consecutively located along a river, where 1 denotes the vertex that is farthest up-
stream and n is the vertex that is farthest downstream. Suppose further that the
associated movement matrix M is constant along its superdiagonal and constant
along its subdiagonal. (This corresponds to constant dispersal rates for upstream
and downstream movements.) The corresponding Laplacian matrix L̂ is given by

(5.5) L̂ =

0

BBBBBBB@

a �b 0 · · · 0 0
�a a+ b �b · · · 0 0
0 �a a+ b · · · 0 0
...

...
0 0 0 · · · a+ b �b

0 0 0 · · · �a b

1

CCCCCCCA
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for a > 0 and b > 0. It su�ces to consider the case when a � b; see supplementary
material section (B) for a justification. Henceforth we restrict our attention to the
case when a � b.

Setting ↵ = a
b yields

(5.6) L̂ = b

0

BBBBBBB@

↵ �1 0 · · · 0 0
�↵ ↵+ 1 �1 · · · 0 0
0 �↵ ↵+ 1 · · · 0 0
...

...
0 0 0 · · · ↵+ 1 �1
0 0 0 · · · �↵ 1

1

CCCCCCCA

:= bL.

Our assumption that a � b gives ↵ � 1, and we note that this fits into our interpre-
tation of 1 being an upstream vertex and n being a downstream vertex. It is readily
verified that the vector

u = (u1, u2, . . . , un)
> =

1
Pn�1

`=0 ↵`
(1,↵,↵2

, . . . ,↵
n�1)>

is the right null vector of L normalized so that >
u = 1. Let B denote the principal

submatrix of L formed by deleting the first row and column. A proof by induction
on n shows that the (k, j) entry of B�1 is given by

ē
>
k B

�1
ēj =

(
1 + ↵+ ↵

2 + · · ·+ ↵
k�1

, 1  k  j  n� 1,

↵
k�j(1 + ↵+ ↵

2 + · · ·+ ↵
j�1), 1  j < k  n� 1.

It can be shown by induction on n that the sum of the entries in column j of B�1 is

¯>B�1
ēj = j

n�j�1X

`=0

↵
` +

n�2X

`=n�j

(n� 1� `)↵`
, j = 1, 2, . . . , n� 1,

where the empty sum is interpreted as zero.
The following is straightforward.

Lemma 5.3. Suppose that m � 0 and n 2 N. Then

 
mX

`=0

↵
`

! 
n�1X

`=0

↵
`

!
=

mX

`=0

(`+ 1)↵` + (m+ 1)
n�1X

`=m+1

↵
` +

n+m�1X

`=n

(n+m� `)↵`
.

The following can be deduced from (4.7) and our expression for B�1.

Lemma 5.4. For a path network, if 1  i < j  n, then

L
#
jj � L

#
ji =

Pj�i�1
`=0 (`+ 1)↵` + (j � i)

Pj�2
`=j�i ↵

`

Pn�1
`=0 ↵`

.

Lemmas 5.3 and 5.4, along with (4.7), establish the following result.

Theorem 5.5. On a path network, if 1  k  j  n, then

e
>
k L

#(ej � e1)

=
1

Pn�1
`=0 ↵`

0

@
k�2X

`=0

(`+ 1)↵` � (j � k)
n+k�j�1X

`=k�1

↵
` �

n�2X

`=n�j+k

(n� `� 1)↵`

1

A .
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For j < k  n,

e
>
k L

#(ej � e1) = ↵
k�j

e
>
j L

#(ej � e1) =
↵
k�j

Pn�1
`=0 ↵`

 
j�2X

`=0

(`+ 1)↵`

!
.

Theorem 5.5 yields the following result.

Corollary 5.6. For 1  k  j � 1,

(e>k+1 � e
>
k )L

#(ej � e1) =
↵
k�1

Pn�1
`=0 ↵`

 
j +

n�jX

`=1

↵
`

!
> 0.

For j  k  n� 1,

(e>k+1 � e
>
k )L

#(ej � e1) =
↵
k�j

Pn�1
`=0 ↵`

 
j�2X

`=0

(`+ 1)↵`

!
(↵� 1) > 0.

Remark 5.1. Set L̃ = L + ✏(ej � e1)e>j with 1 < j  n and ✏ > 0 so that

ũ�u = �cL
#(ej � e1), where c =

✏uj

1+✏(L#

jj�L#

j1)
> 0 by Theorem 4.2(b). By Theorem

5.5, ũ1�u1 > 0 and ũk�uk < 0, j  k  n. It follows from Corollary 5.6 that ũk�uk

is decreasing in k if ↵ > 1. If ↵ = 1, ũk � uk is decreasing in k for 1  k  j and
constant for j  k  n.

Next we consider L#(ej � ei) for j, i > 1. The proofs again rely on (4.7) and our
expression for B�1.

Lemma 5.7. For a path network with 2  i < j  n,

ē
>
k B

�1(ēj�1 � ēi�1) =

8
><

>:

0 if 1  k  i� 1,
Pk�i

`=0 ↵
`

if i� 1 < k  j � 1,

↵
k�j+1

Pj�i
`=0 ↵

`
if j � 1 < k  n.

Theorem 5.8. On a path network, if 2  i < j  n, then

e
>
k L

#(ej � ei) = � ↵
k�1

Pn�1
`=0 ↵`

0

@(j � i)
n�jX

`=0

↵
` +

n�i�1X

`=n�j+1

(n� i� `)↵`

1

A

for 1  k  i. For i < k  j,

e
>
k L

#(ej � ei) =
1

Pn�1
`=0 ↵`

 
k�i�1X

`=0

(`+ 1)↵` + (k � i)
k�2X

`=k�i

↵
`

� (j � k)
n+k�j�1X

`=k�1

↵
` �

n�2X

`=n�j+k

(n� 1� `)↵`

1

A .

For j < k  n, e
>
k L

#(ej � ei) = ↵
k�j

e
>
j L

#(ej � ei) = ↵k�j
Pn�1

`=0
↵`

⇣Pj�i�1
`=0 (`+ 1)↵`

+(j � i)
Pj�2

`=j�i ↵
`
⌘
.
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Corollary 5.9. If 2  i < j  n, then

(ek+1 � e
>
k )L

#(ej � ei)

=

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

� ↵
k�1

Pn�1
`=0 ↵`

0

@(j � i)
n�jX

`=0

↵
` +

n�i�1X

`=n�j+1

(n� i� `)↵`

1

A (↵� 1) � 0, 1  k  i� 1,

1
Pn�1

`=0 ↵`

 
i�2X

`=0

↵
` + (j � i+ 1)↵i�1 +

n+i�j�1X

`=i

↵
`

!
> 0, k = i,

1
Pn�1

`=0 ↵`

 
k�2X

`=k�i

↵
` + (j � i+ 1)↵k�1 +

n+k�j�1X

`=k

↵
`

!
> 0, i<kk+1j,

↵
k�j

Pn�1
`=0 ↵`

 
j�2X

`=0

(l`+ 1)↵`

!
(↵� 1) � 0, j  k  n� 1.

Remark 5.2. Let 2  i < j  n and ✏ > 0. Set L̃ = L + ✏(ej � ei)e>j . It follows
from Theorem 4.2(b) that

(5.7) ũ� u = �cL
#(ej � ei),

where c = ✏uj

1+✏(L#

jj�L#

ji)
> 0 (observe that L#

jj �L
#
ji > 0 by (4.8)). In view of Theorem

5.8, we see that

ũk � uk =

8
>>>><

>>>>:

c↵
k�1

Pn�1
`=0 ↵`

⇣
(j � i)

Pn�j
`=0 ↵

` +
Pn�i�1

`=0 (n� i� `)↵`
⌘
> 0, 1  k  i,

�c↵
k�j

Pn�1
`=0 ↵`

⇣Pj�i�1
`=0 (`+ 1)↵` + (j � i)

Pj�2
`=j�i ↵

`
⌘
< 0, j  k  n.

Observe that if i � 2 and 1  k  n � 1, (ũk+1 � uk+1) � (ũk � uk) = �c(ek+1 �
e
>
k )L

#(ej � ei). It now follows from Corollary 5.9 that if ↵ > 1, then (ũk+1�uk+1)�
(ũk � uk) < 0. Hence, if ↵ > 1, then ũk � uk is decreasing as a function of k for
1  k  n.

Assume that a new arc from vertex j to vertex i is added, where i < j; the
following result shows that the network risk uk decreases at all vertices downstream
from j and increases at all vertices upstream from i. The result readily follows from
Theorems 4.2 and 5.8.

Theorem 5.10. Consider a path network, and suppose that 1  i < j  n. For

any k  i, sgn( duk
dmji

) < 0, while for any j < k, sgn( duk
dmji

) > 0.

For the vertices k between j and i (i.e., i < k < j), the change of the network
risk uk depends on the position of the vertices as well as the magnitude of mij .

We now revisit the toy model of a path graph network described in section 1.

Example 1. In this example we show how the results developed in section 4 yield
insight into the toy example presented in Figure 1. We suppose that the time scale of
movement greatly exceeds that of the disease dynamics, so that the asymptotic ap-
proximationR0 =

P4
k=1 ukqk applies, where u denotes the null vector of the Laplacian
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matrix L, normalized so that
P4

k=1 uk = 1. Taking ↵ = 1 yields

L =

0

BB@

1 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 1

1

CCA ,

and

L
# =

1

8

0

BB@

7 1 �3 �5
1 3 �1 �3
�3 �1 3 1
�5 �3 1 7

1

CCA .

A bypass from vertex 1 to vertex 3 corresponds to the perturbing matrix E = m31(e1�
e3)e>1 , and a computation now reveals that the normalized null vector of the perturbed
Laplacian matrix is given by

ũ =
1

4
� m31

16 + 20m31

0

BB@

5
1
�3
�3

1

CCA .

If the hot spot is at vertex 2, with qi = q, i = 1, 3, 4, q2 = 10q, then R0 =
P4

k=1 ũkqk =
q( 134 � 9m31

16+20m31

); evidently this is decreasing and concave down as a function of m31,
as is clearly reflected in Figure 1 (left plot) by computing R0 numerically.

Next, considering a bypass from vertex 2 to vertex 4 (so that E is given by
m42(e2 � e4)e>2 ), an analogous argument shows that

ũ =
1

4
� m42

16 + 12m42

2

664

3
3
�1
�5

3

775 .

With vertex 3 as the hot spot and qi = q, i = 1, 2, 4, q3 = 10q, it now follows thatP4
k=1 ũkqk = q( 134 + 9m42

16+12m42

). Evidently this last term is increasing and concave
down as a function of m42, as depicted in Figure 1 (right plot).

Alternatively, as uk encodes the weights of spanning in-trees rooted at k, as shown
in section 3, both bypasses (from vertex 1 to vertex 3 and from vertex 2 to vertex 4)
increase u1 and u2 but decrease u3 and u4. For example, with the bypass from vertex
1 to vertex 3 of weight m31, we have

u1 =
m12m23m34

�
=

1

4 + 5m31
=

1

4
�

5
4m31

4 + 5m31
,

u2 =
m21m23m34 +m23m31m34

�
=

1 +m31

4 + 5m31
=

1

4
�

1
4m31

4 + 5m31
,

u3 =
m34m32m21 +m34m31m12 +m34m31m32

�
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,

u4 =
m43m32m21 +m43m32m31 +m43m31m12

�
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,

where � is the sum of weights of spanning in-trees rooted at any vertex, that is, � =
m12m23m34+m21m23m34+m23m31m34+m34m32m21+m34m31m12+m34m31m32+
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m43m32m21 + m43m32m31 + m43m31m12 = 4 + 5m31. A hot spot at vertex 1 or 2
leads to the decrease of R0 due to the bypass, while a hot spot at vertex 3 or 4 leads
to the increase of R0.

Example 2. Consider a path network on five vertices with an additional arc from
vertex 2 to vertex 4. All other settings are the same as in Example 1. Figure 3
shows how R0 responds to this addition in the scenarios where the disease hot spot
is located at various vertices. It turns out that when vertex 3 is the hot spot, there
is no change in R0 no matter how large the value of m24. When the time scale of
movement greatly exceeds that of the disease dynamics, the results of sections 3 and
4 explain Figure 3. For example, the bypass decreases u1 and u2 but increases u4 and
u5. Therefore, a hot spot at vertex 1 or 2 leads to a decrease of R0 while a hot spot
at vertex 4 or 5 leads to an increase of R0, due to the bypass.

1 2 3 4 5

m42

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25
Hotspot at 1

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1
Hotspot at 2

0 2 4 6 8 10 12 14
0.92

0.94

0.96

0.98

1
Hotspot at 3

0 2 4 6 8 10 12 14

1

1.05

1.1
Hotspot at 4

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25

1.3
Hotspot at 5

Fig. 3. The impact of a bypass in a path network of five vertices.

Motivated by the observation made in Example 2 for the case when vertex 3 is
the hot spot, we use the exact network basic reproduction number to prove a general
result below, from which the observation is readily recovered.

Theorem 5.11. Suppose that M is an irreducible movement matrix and that L

is the corresponding Laplacian matrix. Let c > 0 and V = L + cI. Suppose further

that there is a permutation matrix Q and indices i, j such that (a) both F and L

commute with Q, and (b) Qej = ei. Then for any ✏ > 0, the basic reproduction

numbers corresponding to M and M + ✏(ej � ei)e>j are equal.

Proof. Let E = ✏(ej�ei)e>j . The network basic reproduction number correspond-
ing to M is ⇢(FV

�1), while that corresponding to the perturbed network M + E is
⇢(F (V + E)�1). We have

(5.8) F (V + E)�1 = FV
�1
⇣
I + ✏(ej � ei)e

>
j V

�1
⌘�1

.

Observe that V is a column diagonally dominant M-matrix. From Lemma 3.14 in
Chapter 9 of [5], it follows that the maximum entry in any row of V �1 occurs on the
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 1183

diagonal. In particular, e>j V
�1(ej � ei) � 0. It now follows that

⇣
I + ✏(ej � ei)e

>
j V

�1
⌘�1

= I � ✏

1 + ✏e>j V
�1(ej � ei)

(ej � ei)e
>
j V

�1
.(5.9)

Substituting (5.9) into (5.8) yields

F (V + E)�1 = FV
�1

"
I � ✏

1 + ✏e>j V
�1(ej � ei)

(ej � ei)e
>
j V

�1

#

= FV
�1 �

✏FV
�1(ej � ei)e>j V

�1

1 + ✏e>j V
�1(ej � ei)

.

Next, consider a positive left Perron vector y for FV
�1

, i.e., y>FV
�1 = R0y

>
.

Since both F and V commute with Q, so does FV
�1. Consequently, y>QFV

�1
Q

> =
R0y

>
, implying that (y>Q)FV

�1 = R0(y>Q). Hence y>Q is also a left Perron vector
for FV

�1. Since that Perron vector is unique up to a scalar multiple, we find that
necessarily y

>
Q = y

>
. In particular, yi = y

>
Qej = y

>
ej = yj .

Now consider

y
>
F (V + E)�1 = y

>
FV

�1 �
✏y

>
FV

�1(ej � ei)e>j V
�1

1 + ✏e>j V
�1(ej � ei)

= R0y
> �

✏R0(yj � yi)e>j V
�1

1 + ✏e>j V
�1(ej � ei)

= R0y
>
.

Hence y is a positive left eigenvector of F (V +E)�1
, (with corresponding eigenvalue

R0), from which it follows that F (V + E)�1 has y as a left Perron vector and R0 as
its Perron value.

Remark 5.3. Inspecting the proof of Theorem 5.11, we find that the conclusion
holds also for negative values of ✏, provided that ✏ > �mij and ✏ > � 1

e>j V �1(ej�ei)
.

As an application of Theorem 5.11, consider a river network on 2k + 1 vertices
with ↵ = 1, and suppose that F is the diagonal matrix whose `th diagonal entry is
1 for ` 6= k + 1 and whose (k + 1)st diagonal entry is x > 1. Setting V = L + cI for
some c > 0, we see that V and F commute with the “back diagonal” permutation
matrix P , where the (`, 2k+ 2� `) entry of P is 1 for ` = 1, . . . , 2k+ 1. Fix an index
j = 1, . . . , 2k + 1, and note that Pej = e2k+2�j . From the above theorem, for any
✏ > 0, the basic reproduction numbers associated with the movement matrices M and
M + ✏(ej � e2k+2�j)e>j are equal. In particular, for a river network on five vertices
with ↵ = 1, adding a weighted arc from vertex 4 to vertex 2 does not a↵ect the value
of R0. This justifies the observation made in Example 2 that the hot spot is located
at vertex 3.

6. Control strategies. The techniques developed in sections 3 and 4 inform
a strategy for controlling invasibility. Given an irreducible movement matrix M ,
the control strategy corresponds to a perturbation of M, say M + E which is also
irreducible and nonnegative. Denoting the corresponding Laplacian matrices and
normalized right null vectors by L, u and L̃, ũ, respectively, we find that the associated

network basic reproduction numbers are approximately R0 =
Pn

k=1 ukR(k)
0 and R̃0 =

Pn
k=1 ũkR(k)

0 . Our goal is then to find a suitable perturbing matrix E so as to ensure
that R̃0 �R0 is negative and, ideally, large in absolute value.
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From the results in section 4, we find that

(6.1) R̃0 �R0 =
nX

k=1

(ũk � uk)R(k)
0 =

nX

k=1

e
>
k ((I + L

#
E)�1 � I)uR(k)

0 .

In particular, for a perturbing matrix E, the e↵ectiveness of the corresponding control
strategy in mitigating the invasion can be quantified using (6.1).

In this section, we focus on a restricted set of perturbations: for distinct indices
i, j and fixed ✏, we consider the e↵ect of increasing the movement rate from patch j

to patch i from mij to mij + ✏. In this case, (6.1) simplifies considerably: from the
results of section 4, it follows that in this restricted setting,

(6.2) R̃0 �R0 = � ✏uj

1 + ✏(L#
jj � L

#
ji)

nX

k=1

(L#
kj � L

#
ki)R

(k)
0 .

Our challenge is then to select the indices i, j so as to minimize the expression

(6.3) � ✏uj

1 + ✏(L#
jj � L

#
ji)

nX

k=1

(L#
kj � L

#
ki)R

(k)
0 .

We remark here that for ✏ > 0, the expression (6.2) is always valid. However, for
negative values of ✏, another hypothesis is required in order for the derivation of
(6.2) to hold. In that case, we need to assume that �mij < ✏ (otherwise, there is a
danger that the network is no longer strongly connected). Evidently that additional
hypothesis is satisfied if, for example, we assume that when ✏ is negative, its absolute
value is su�ciently small. For ease of exposition in what follows, we only deal with
the case ✏ > 0 in the remainder of this section.

While we focus only on perturbing a single entry in the movement matrix M, note
that these special perturbations are building blocks: any admissible perturbation can
be written as a linear combination of these restricted perturbations.

From (6.3) it is clear that the specific values of R(k)
0 , k = 1, . . . , n, are needed in

order for us to assess the e↵ect on the basic reproduction number of changing mij

to mij + ✏. However, we restrict ourselves to the following situation, in which the
analysis simplifies even further. Imagine that one patch, say `, is a “hot spot” for

the disease, and that the patch reproduction numbers R(k)
0 , k 6= `, take on a common

value. Formally we assume that for some index `, we have R(k)
0 = r0 whenever k 6= `,

with R(`)
0 > r0. Then R̃0 � R0 =

P
k=1,...,n,k 6=`(ũk � uk)R(k)

0 + (ũ` � u`)R(`)
0 =

r0
P

k=1,...,n,k 6=`(ũk � uk) + (ũ` � u`)R(`)
0 . The fact that

Pn
k=1(ũk � uk) = 0 gives

(6.4) R̃0 �R0 = (ũ` � u`)(R(`)
0 � r0).

For our restricted family of perturbations, we have R̃0 �R0 = � ✏uj

1+✏(L#

jj�L#

ji)
(L#

`j �

L
#
`i)(R

(`)
0 � r0). Hence it su�ces to select the indices i, j that maximize the expres-

sion uj

1+✏(L#

jj�L#

ji)
(L#

`j � L
#
`i). In subsections 6.1 and 6.2, we revisit the star and river

networks and discuss how these perturbations a↵ect the basic reproduction number.

6.1. Star with a hot spot. In what follows, we assume that ✏ > 0, and we con-
sider a special case. We assume that m12 � m13 � · · · � m1n and impose the further
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assumption that m1k = mk1, k = 2, . . . , n. We note that when this is the case, u = 1
n .

Case 1. The hot spot is located at the hub (vertex 1). We claim that the best
strategy for reducing the infection risk is to increase mn1 when m1k = mk1 for 2 
k  n. Perturb m1j ! m1j + ✏ for ✏ > 0 and 1 < j  n. Then

ũ1 � u1 = � ✏uje
>
1 L

#(ej � e1)

1 + ✏ e>j L
#(ej � e1)

=
✏u1uj¯>B�1

ēj�1

1 + ✏ē>j�1

�
B�1ēj�1 � ū¯>B�1ēj�1

�

=
✏u1uj/m1j

1 + ✏(1� uj)/m1j
> 0.

Perturb mi1 ! mi1 + ✏ for 1 < i  n. Since B
�1 = diag(m12, . . . ,m1n),

ũ1 � u1 = � ✏u1e
>
1 L

#(e1 � ei)

1 + ✏ e>1 L
#(e1 � ei)

=
✏u1e

>
1 L

#(ei � e1)

1� ✏ e>1 L
#(ei � e1)

=
�✏u

2
1
¯>B�1

ēi�1

1 + ✏u1¯>B�1ēi�1

= � ✏u
2
1/m1i

1 + ✏u1/m1i
< 0.

Since u = 1
n , this gives

ũ1 � u1 = � 1

n

✏/(nm1i)

1 + ✏/(nm1i)
.

Since m1n is the smallest among {m1k : 2  k  n}, the minimum of ũ1 � u1 is
achieved at k = n, i.e.,

min
2kn

(ũ1 � u1) = � 1

n

✏/(nm1n)

1 + ✏/(nm1n)
.

This result indicates that the optimal strategy for reducing the infection risk is to
increase mn1 when m1k = mk1 for all k.

Additionally, we claim that in this special case, where only changing weights
between leaves is permitted, the best strategy is to increase mn2, as we now show.
Perturbing mij ! mij + ✏ for 2  i 6= j  n, we find that

ũ1 � u1 = � ✏uje
>
1 L

#(ej � ei)

1 + ✏ e>j L
#(ej � ei)

=
✏u1uj¯>B�1(ēj�1 � ēi�1)

1 + ✏ē>j�1

⇥
B�1(ēj�1 � ēi�1)� ū¯>B�1(ēj�1 � ēi�1)

⇤

=
✏

1
n2

⇣
1

m1j
� 1

m1i

⌘

1 + ✏

⇣
1

m1j
� 1

n

⇣
1

m1j
� 1

m1i

⌘⌘ =
✏

1
n2 (m1i �m1j)

m1im1j + ✏
1
n ((n� 1)m1i +m1j)

.

(6.5)

Note that ũ1 � u1 < 0 only if i > j, and hence this is the only interesting case.
It is straightforward to show that

✏
1
n2 (m1i �m1j)

m1im1j + ✏
1
n ((n� 1)m1i +m1j)
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is increasing in m1i and decreasing in m1j . Thus the minimum is obtained at i = n

and j = 2. Hence,

min
1j<in

(ũ1 � u1) =
✏

1
n2 (m1n �m12)

m1nm12 + ✏
1
n ((n� 1)m1n +m12)

,

which implies that the most e↵ective strategy for reducing the risk of infection is to
increase mn2.

Case 2. The hot spot is located on a leaf (vertex ` 6= 1). We claim that the best
strategy is to increase mn1 when m1`

m1n
> n � 1 and n 6= `, and to increase m1` when

m1`
m1n

< n� 1, as we now show. Perturbing m1` ! m1` + ✏ yields

ũ` � u` = � ✏u`e
>
` L

#(e` � e1)

1 + ✏ e>` L
#(e` � e1)

= �
✏u`e

>
`�1

�
B

�1
ē`�1 � ū¯>B�1

ē`�1

�

1 + ✏ē>`�1

�
B�1ē`�1 � ū¯>B�1ē`�1

�

= � ✏u`(1� u`)/m1`

1 + ✏(1� u`)/m1`
= � 1

n

✏
n�1
n

1
m1`

1 + ✏
n�1
n

1
m1`

< 0.

(6.6)

Perturbing mi1 ! mi1 + ✏ leads to

ũ` � u` = � ✏u1e
>
` L

#(e1 � ei)

1 + ✏ e>1 L
#(e1 � ei)

=
✏u1e

>
` L

#(ei � e1)

1� ✏ e>1 L
#(ei � e1)

.

Hence, if i 6= `,

ũ` � u` =
✏u1ē

>
`�1(B

�1
ēi�1 � ū¯>B�1

ēi�1)

1 + ✏u1¯>B�1ēi�1
= � 1

n

✏
n

1
m1i

1 + ✏
n

1
m1i

< 0,

and if i = `,

ũ` � u` =
✏u1ē

>
`�1(B

�1
ē`�1 � ū¯>B�1

ē`�1)

1 + ✏u1¯>B�1ē`�1
=

n� 1

n

✏
1
n

1
m1`

1 + ✏
n

1
m1`

> 0.

If i 6= `, then the minimum of ũ`�u` is achieved at i = n. To compare the two di↵erent
strategies (i.e., m1` and mn1), we have the following conclusion: If m1`/m1n < n� 1,
the most e↵ective strategy is to increase m1`; if m1`/m1n > n� 1, the most e↵ective
strategy is to increase mn1 provided that n 6= `.

6.2. River with a hot spot. As in subsection 6.1, we introduce a simplifying
hypothesis in order to make the analysis more tractable. We assume that ↵ = 1 (i.e.,
a = b) and observe that when this is the case, u = 1

n .

We now have the following result.

Lemma 6.1. Suppose that 1  i < j  n. If ↵ = 1, then

e
>
k L

#(ej � ei) =

8
><

>:

� 1
2n (j � i)(2n� i� j + 1), 1  k  i,

(k � j) + 1
2n (j � i)(i+ j � 1), i < k  j,

1
2n (j � i)(i+ j � 1), j < k  n.

Remark 6.1. By Lemma 6.1 and (5.7), it is clear that ũk � uk is a continuous,
piecewise linear function and decreasing in k for 1  k  n. For 1  k  i, ũk � uk is
positive and constant in k, while for j  k  n, ũk �uk is negative and constant in k.
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Assume that we have distinct indices i, j with 1  i, j  n. By (6.4), to minimize
the infection risk, it su�ces to minimize ũ` � u`, where ` is the hot spot. Perturb
mij ! mij + ✏ with ✏ > 0. We have

ũ` � u` = �✏uj e
>
` L

#(ej � ei)

1 + ✏(L#
jj � L

#
ji)

:= �ujg(i, j).

When ↵ = 1, ui =
1
n for all 1  i  n and mini,j,i 6=j(ũ` � u`) = � 1

n maxi,j,i 6=j g(i, j).

Hence, minimizing R̃0 � R0 is equivalent to maximizing g(i, j) over distinct i and
j with 1  i, j  n. It turns out that if ` � n+1

2 , then maxi,j=1,...,n,i6=j g(i, j) =
✏`(`�1)

2n+✏`(`�1) , with the maximum being attained when i = 1, j = `, while if `  n+1
2 ,

then maxi,j=1,...,n,i6=j g(i, j) = ✏(n+1�`)(n�`)
2n+✏(n+1�`)(n�`) , with the maximum being attained

when i = n, j = `. (See supplementary material section (C) for details.) Consequently,
the most e↵ective strategy for reducing the risk of infection is to increase m1` if the
distance between vertices 1 and ` is at least as large as the distance between vertices
n and `, and to increase mn` otherwise.

On the other hand, if 1  i < j  n are fixed, by Lemma 6.1, min`(ũ` � u`) can
be achieved at any j  `  n. Thus, for fixed i < j, an increase in mij will have an
equal and greatest e↵ect when the hot spot ` is such that ` � j.

7. Concluding remarks. Our study, which focuses on disease dynamics, is
motivated by modeling directly transmitted diseases [1] and waterborne diseases [17,
44] on patches, under the hypothesis that dispersal between patches is faster than
the disease/population dynamics. Our results also shed new light on many spatial
ecological studies, for example, the evolution of dispersal in patchy landscapes as
studied in [2, 27] in a discrete time model.

Our methods give qualitative and quantitative information about the behavior of
the basic reproduction number R0 as the topology of the network changes and have
applications to control strategies for mitigating disease spread among the patches.
Our analysis can be thought of as the introduction of connections on the network
or of changing the weight of existing connections. In the case that the change in a
weight is positive, we have considered optimal strategies for a star and a river network.
Our formula (4.2) is valid for all positive perturbations of a network connection, but
a negative perturbation must be small for this to remain valid. Optimal strategies
can also be formulated for a small negative change, as long as the network remains
strongly connected. The e↵ect of breaking this strong connectivity, and thus breaking
the network topology, remains to be considered.

In patch models, the monotonicity of R0 with respect to travel frequency or
the di↵usion coe�cient on a static network has been studied in several papers, for
example, [1, 18]; by contrast our results focus on the network topology. The network
threshold parameter R0 governs the invasibility of the disease but not the final size or
endemicity of an invading disease. To consider this, it is necessary to use the original
dynamical model.

Acknowledgments. The authors thank the American Institute of Mathematics
(AIM) for hosting and generously supporting an AIM SQuaRE program focusing on
epidemic dynamics of cholera in nonhomogeneous environments, at which this research
was initiated and developed. The authors also thank the anonymous reviewers for
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D. H. Guibert, Influence of temperature and rainfall on the evolution of cholera epidemics
in Lusaka, Zambia, 2003–2006: Analysis of a time series, Trans. R. Soc. Tropical Med.
Hygiene, 103 (2009), pp. 137–143.

[33] L. Mari, R. Casagrandi, E. Bertuzzo, A. Rinaldo, and M. Gatto, Conditions for transient
epidemics of waterborne disease in spatially explicit systems, R. Soc. Open Sci., 6 (2019),
181517.

[34] C. D. Meyer, Jr., The condition of a finite Markov chain and perturbation bounds for the
limiting probabilities, SIAM J. Alg. Disc. Meth., 1 (1980), pp. 273–283, https://doi.org/
10.1137/0601031.

[35] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
[36] J. W. Moon, Counting Labelled Trees, Canadian Mathematical Congress, Montreal, Canada,

1970.
[37] M. H. Myer and J. M. Johnston, Spatiotemporal Bayesian modeling of West Nile virus:

Identifying risk of infection in mosquitoes with local-scale predictors, Sci. Total Environ-
ment, 650 (2019), pp. 2818–2829.

[38] J. Okpasuo, F. Okafor, and I. Aguzie, E↵ects of household drinking water choices, knowl-
edge, practices and spatio-temporal trend on the prevalence of waterborne diseases in
Enugu Urban, Nigeria, Int. J. Infectious Diseases, 73 (2018), pp. 225–226.
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SUPPLEMENTARY MATERIALS: IMPACT OF VARYING

COMMUNITY NETWORKS ON DISEASE INVASION
⇤

STEPHEN KIRKLAND† , ZHISHENG SHUAI‡ , P. VAN DEN DRIESSCHE§ , AND

XUEYING WANG¶

(A) A version of the multi-patch cholera model in [SM2, SM3], simplified by

ignoring host movement, takes the following form:

dSi

dt
= Ai � gi(Si,Wi)� diSi,

dIi
dt

= gi(Si,Wi)� (di + ↵i + �i)Ii,

dRi

dt
= �iIi � diRi,

dWi

dt
= riIi � �iWi +

nX

j=1

�
mijWj �mjiWi

�
,

with variables and parameters summarized in the following list:

Si, Ii, Ri : susceptible, infectious and recovered host population in patch i
Wi : the concentration of cholera bacteria in the water source in patch i

Ai > 0 : constant recruitment into patch i
di > 0 : natural death rate in patch i
↵i � 0 : cholera induced death rate in patch i
�i > 0 : recovery rate of infectious individuals in patch i
ri � 0 : pathogen shedding rate in patch i
�i > 0 : removal rate of pathogen in patch i

mij � 0 : travel rate of pathogen from patch j to patch i
gi(Si,Wi) � 0 : incidence function for cholera transmission in patch i

Linearization at the disease-free equilibrium (
A1
d1

, 0, 0, 0, · · · , An
dn

, 0, 0, 0) and reducing

to the disease compartments (i.e., Ii andWi) yield the Jacobian matrix J = F�V with

F =

✓
0 Dq

0 0

◆
and V =

✓
GI 0

�Dr GW

◆
. Here Dq = diag{qi} := diag{ @gi

@Wi
(
Ai
di
, 0)},

GW = diag{�i} + L with L being the Laplacian matrix as defined in (2.1), Dr =

diag{ri} and GI = diag{µi} := diag{di + ↵i + �i}. Thus the basic reproduction

number R0 is defined as the spectral radius of the next generation matrix FV �1
; that

is, R0 = ⇢(FV �1
) = ⇢(DqG

�1
W DrG

�1
I ).

For directly transmitted disease models such as the SIS model in [SM1], the

basic reproduction number R0 = ⇢(diag{�i}(diag{⌘i} + dIL)�1
), where �i is the

disease transmission coe�cient for the standard incidence, ⌘i is the rate of infectious
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individuals becoming susceptible again, and dI represents the scale of movement rate

of infectious individuals.

(B) Suppose that L̂ is given by (5.5). We claim that it su�ces to consider the

case that a � b. To see the claim, first note that L̂ = PLP>, where

L =

0

BBBBBBB@

b �a 0 · · · 0 0

�b a+ b �a · · · 0 0

0 �b a+ b · · · 0 0

.

.

.
.
.
.

0 0 0 · · · a+ b �a
0 0 0 · · · �b a

1

CCCCCCCA

and P is the n⇥ n “back diagonal” permutation matrix such that pj n+1�j = 1, j =

1, . . . , n. If it happens that a < b, we then work with L instead of L̂.

(C) Here we derive the expression for maxi,j=1,...,n,i 6=j g(i, j) given at the end of

section 6.2. We begin by supposing that 1  i < j  n. If 1  `  i, then by Lemma

6.1, g(i, j) =
✏
⇥
� 1

2n (j � i)(2n� i� j + 1)
⇤

1 + ✏ 1
2n (j � i)(i+ j � 1)

. Hence, for 1  `  i, the maximum value

of g(i, j) is achieved when i = n� 1 and j = n, with g(n� 1, n) = � ✏

n+ ✏(n� 1)
.

If j  `  n, then by Lemma 6.1, g(i, j) =
✏
⇥

1
2n (j � i)(i+ j � 1)

⇤

1 + ✏ 1
2n (j � i)(i+ j � 1)

. Thus when

j  `  n, the maximum value of g(i, j) is achieved when j = ` and i = 1, with

g(1, `) =
✏`(`� 1)

2n+ ✏`(`� 1)
.

For the intermediate case where i < `  j, using Lemma 6.1, we have

g(i, j) =
✏
⇥
(`� j) + 1

2n (j � i)(i+ j � 1)
⇤

1 + ✏ 1
2n (j � i)(i+ j � 1)


✏
⇥

1
2n (j � i)(i+ j � 1)

⇤

1 + ✏ 1
2n (j � i)(i+ j � 1)

.

From the considerations above, it follows that for 1  i < j  n, the maximum value

of g(i, j) is
✏`(`� 1)

2n+ ✏`(`� 1)
, which is achieved when j = ` and i = 1.

Next, consider the case that 1  j < i  n. A parallel argument (which pro-

ceeds by considering the indices n + 1 � j, n + 1 � i and n + 1 � `) shows that

max1j<in g(i, j) =
✏(n+ 1� `)(n� `)

2n+ ✏(n+ 1� `)(n� `)
. We deduce that

max
i,j=1,...,n,i 6=j

g(i, j) = max

⇢
✏`(`� 1)

2n+ ✏`(`� 1)
,

✏(n+ 1� `)(n� `)

2n+ ✏(n+ 1� `)(n� `)

�
.

More specifically, if ` � n+ 1

2
, then maxi,j=1,...,n,i6=j g(i, j) =

✏`(`� 1)

2n+ ✏`(`� 1)
, and

the maximum is attained for i = 1, j = `; on the other hand, if ` � n+ 1

2
, then

maxi,j=1,...,n,i 6=j g(i, j) =
✏(n+ 1� `)(n� `)

2n+ ✏(n+ 1� `)(n� `)
, and the maximum is attained for

i = n, j = `.
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