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1. Introduction

Spatial dispersal of organisms in a heterogeneous environment with uneven resource distri-
bution and varying connectivity have long been recognised as key components of ecological
interactions [3, 4, 13]. Various models with multiple patches (or metapopulation models) have
been proposed to investigate the impact of the environmental heterogeneity and the connec-
tivity of subregions on the population dynamics. For example, metapopulation models have
been used to study the effects of habitat fragmentation on biodiversity [10], the connectivity of
habitat patches on population survival and extinction [11], the impact of dispersal on species
richness and species relative abundances [35], and the outcome of multi-species interactions
such as competition [41] and predation [20], etc. Typically a patch model consists of a system
of ordinary differential equations with local dynamics in each patch coupled with dispersal
dynamics between patches.

A prominent example of patch models is the Lokta–Volterra competition model on a set of
discrete set of habitats [15, 29, 40]. In this paper, we consider the following n-patch two-species
Lotka–Volterra competition model:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u′
i = μu

n∑
j=1

(ai ju j − a jiui) + ui(pi − ui − cvi), i = 1, . . . , n, t > 0,

v′i = μv

n∑
j=1

(ai jv j − a jivi) + vi(qi − bui − vi), i = 1, . . . , n, t > 0,

u(0) = u0 � ( �≡)0, v(0) = v0 � ( �≡)0.

(1.1)

Here u = (u1, . . . , un) and v = (v1, . . . , vn) represent the population densities of two competing
species in n patches, respectively; n is an integer greater or equal to 2; pi, qi > 0 measure the
intrinsic growth rates of species ui, vi in patch i, respectively; b, c > 0 are the inter-specific
competition rates of the two species, and the intra-specific competition rates are rescaled to be
1 in (1.1);μu, μv � 0 are the dispersal rates of the two species, respectively; and the matrix A =
(ai j)n×n describes the movement pattern between patches where ai j � 0(i �= j) is the degree of
movement from patch j to patch i. In previous studies of (1.1) [15, 29, 40], it was often assumed
that ai j = a ji so the dispersal is symmetric, which is not necessarily assumed here.

For our purpose, let L = (Li j)n×n denote the connection matrix for the model, where

Li j =

⎧⎪⎨
⎪⎩

ai j, i �= j,

−
∑
k �=i

aki, i = j.
(1.2)

Thus (1.1) can be re-written as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
i = μu

n∑
j=1

Li ju j + ui(pi − ui − cvi), i = 1, . . . , n, t > 0,

v′i = μv

n∑
j=1

Li jv j + vi(qi − bui − vi), i = 1, . . . , n, t > 0,

u(0) = u0 � ( �≡)0, v(0) = v0 � ( �≡)0.

(1.3)

The global dynamics of (1.3) when n = 1 is well known, and the parameter range of bc � 1 is
often referred as the weak competition regime. Throughout out this paper, we assume

818



Nonlinearity 35 (2022) 817 S Chen et al

(A1) b > 0, c > 0, and 0 < bc � 1; pi, qi > 0 for all i = 1, 2, . . . , n.
(A2) The connection matrix L as defined in (1.2) is irreducible.

The assumption (A1) means that the competition between the two species is weak while
(A2) means that the digraph G associated with A (also L) is strongly connected. Our results
also assume that

(A3) The weighted digraph G associated with L is cycle-balanced.

The definition of the weighted digraph G and cycle-balanced will be given in section 2. We
note that each of the following is a special case of (A3):

(A3a) L is symmetric;
(A3b) n = 2;
(A3c) Every cycle of the weighted digraph G associated with L has two vertices.

The dynamics of (1.3) when L is symmetric has recently been considered in [38].
Under the assumptions (A1)–(A3), we show that any positive equilibrium (or coexistence

equilibrium) of (1.3) is linearly stable except a special case when bc = 1 (see theorem 3.1).
Together with the theory of monotone dynamical systems [18, 21, 39], we show that the fol-
lowing alternatives hold for the global dynamics of (1.3): either there exists a unique positive
coexistence equilibrium of (1.3) that is globally asymptotically stable; or (1.3) has no coex-
istence equilibrium and one of the two semitrivial equilibria is globally asymptotically stable
while the other one is unstable (see theorem 3.2).

The results established here resemble the corresponding ones for the reac-
tion–diffusion–advection Lokta–Volterra competition model on a continuous spatial
domain: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = μuΔu − αu∇ · [u∇Q(x)] + u(p(x) − u − cv), x ∈ Ω, t > 0,

vt = μvΔv − αv∇ · [v∇Q(x)] + v(q(x) − bu − v), x ∈ Ω, t > 0,

μu
∂u
∂n

− αuu
∂Q(x)
∂n

= μv
∂v

∂n
− αvv

∂Q(x)
∂n

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0 � 0, v(x, 0) = v0 � 0, x ∈ ∂Ω.

(1.4)

Here u(x, t) and v(x, t) are the population densities of two competing species at location x ∈
Ω and time t respectively; Q is used to describe the advection direction of the species; αu

and αv are the advection rates; the habitat Ω is a connected bounded smooth domain in RN

for N � 1; n is the outward unit normal vector of the boundary ∂Ω. The combined effect of
dispersal rates and environmental heterogeneity on the global dynamics of (1.4) have been
studied extensively in recent years in, for example, [9, 16, 17, 22–24, 28, 32, 36]. For the
diffusive case of αu = αv = 0 (corresponding to symmetric L in (1.3)), the global dynamics
of (1.4) with weak competition bc � 1 has been completely classified in [17]; and a similar
classification for the general case of αu,αv �= 0 (corresponding to asymmetric L in (1.3)) was
also achieved in [42] under the assumption ofμu/αu = μv/αv > 0. We refer interested readers
to the review articles [26, 33] and books [5, 18, 37] for more results for (1.4). Our intention
to prove that every coexistence equilibrium if exists is linearly stable except for the case when
bc = 1 is motivated by [17, 42], and our classification results are stated in a similar fashion as
those in [17, 42]. Here, we utilise the graph-theoretic approach in [30] to bridge the gap between
symmetry and asymmetry of the connection matrix L. We remark that the patch model (1.3)
may not be considered simply as a discretisation of the reaction–diffusion equation models in
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Figure 1. Three examples of strongly connected and cycle-balanced graphs. Each vertex
in the figure represents a patch, and the weight of each directed edge is positive which
corresponds to the degree of dispersal rate from the initial vertex to the terminal vertex.
(a) A star migration graph. (b) A complete digraph with 3 edges. It is cycle-balanced if
abc = de f . (c) A river network.

[17, 42], especially when L is not symmetric. For example, the patches configured as a directed
tree graph describing the dynamics of species in river networks (see e.g. figure 1(c)) is within
the scope of our considerations which seems not to be covered by reaction–diffusion models
in [17, 42].

The dynamics of (1.3) with n = 2 (two-patch model) with b = c and μu = μv = μ has been
studied in [7, 12, 31], see also recent work [25] for three-patch case. Our results here state
that when n = 2, the global dynamics of the model (1.3) is completely determined by the
local dynamics of the semitrivial equilibria. Moreover, we generalise the results in [31] to the
case n > 2 with cycle-balanced condition, and prove that there is a globally asymptotically
stable positive equilibrium when the diffusion rate is small while one semitrivial equilibrium
out-competes the other one when the diffusion rate is large. Our results also extend the ones in
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[38] which assumes L to be symmetric (this work also considers the case when the competition
is strong while we do not consider it here).

Our paper is organised as follows. In section 2, we present some preliminary results, and
in section 3, we classify the global dynamics of (1.4) for the general case. In section 4, we
apply the general results to two special cases for more detailed dynamics: (1) (equal resource)
pi = qi for all i = 1, 2, . . . , n; (2) (equal competitiveness and equal diffusivity) b = c = 1 and
μu = μv = μ. In section 5, we give a conclusion.

2. Preliminaries

In this section, we provide the necessary preliminary results, which are important to the proof
of our main results, the stability of coexistence equilibrium and the global dynamics of (1.3), in
section 3. In section 2.1, we present some results from matrix theory and graph theory, which
are used to deal with the asymmetry of the connection matrix L in the proof of theorems 3.1
and 3.2. In section 2.2, we state some well-known results about the single-species model and
the strict monotone theory. In particular, the strict monotone theory results state that the global
dynamics of the competition system (1.3) is largely determined by the local dynamics of the
steady states.

2.1. Matrices and graphs

A vector u = (u1, . . . , un) � 0(u � 0) means that every entry of u is positive (nonnegative); a
vector u > 0 if u � 0 and u �= 0. Let A = (ai j)n×n be an n × n matrix and let σ(A) be the set of
eigenvalues of A. The spectral bound s(A) of A is defined as

s(A) = max{Reλ : λ ∈ σ(A)}.

The matrix A is reducible if we may partition {1, 2, . . . , n} into two nonempty subsets E and
F such that ai j = 0 for all i ∈ E and j ∈ F. Otherwise A is irreducible.

A weighted digraph G = (V , E) associated with the matrix A (denoted as GA in short) con-
sists of a set V = {1, 2, . . . , n} of vertices and a set E of arcs (i, j) (i.e., directed edges from i
to j) with weight a ji, where (i, j) ∈ E if and only if aji > 0, i �= j. A digraph is strongly con-
nected if, for any ordered pair of distinct vertices i, j, there exists a directed path from i to j.
A weighted digraph GA is strongly connected if and only if the weight matrix A is irreducible
[2]. A list of distinct vertices i1, i2, . . . , ik with k � 2 form a directed cycle if (im, im+1) ∈ E for
all m = 1, 2, . . . , k − 1 and (ik, i1) ∈ E.

A subdigraph H of G is spanning if H and G have the same vertex set. The weight of a
subdigraph H is the product of the weights of all its arcs. A connected subdigraph T of G is
a rooted out-tree if it contains no directed cycle, and there is one vertex, called the root, that
is not a terminal vertex of any arcs while each of the remaining vertices is a terminal vertex
of exactly one arc. A subdigraph Q of G is unicyclic if it is a disjoint union of two or more
rooted out-trees whose roots are connected to form a directed cycle. Every vertex of unicyclic
digraph Q is a terminal vertex of exactly one arc, and thus a unicyclic digraph has also been
called a contra-functional digraph [14, p 201].

A square matrix is called a row (column) Laplacian matrix if all the off-diagonal entries
are nonpositive and the sum of each row (column) is zero. For (1.3), we associate it with a row
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Laplacian matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
k �=1

a1k −a12 . . . −a1n

−a21

∑
k �=2

a2k . . . −a2n

...
...

. . .
...

−an1 −an2 . . .
∑
k �=n

ank

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.1)

Note that for the connection matrix L defined in (1.2), −L is a column Laplacian matrix, and
the off-diagonal entries of L and −L are the same. Let αi � 0 denote the cofactor of the ith
diagonal element of L. Then

(α1,α2, . . . ,αn) and (1, 1, . . . , 1)T (2.2)

are left and right eigenvectors of L corresponding to eigenvalue 0, respectively. If L is irre-
ducible (equivalently, the digraph G associated with A is strongly connected), then L is also
irreducible and thus αi > 0 for all i. We will also call G as the digraph associated with L, and
L as the Laplacian matrix of G throughout this paper.

The following tree-cycle identity has been established in [30, theorem 2.2].

Proposition 2.1 (Tree-cycle identity). Let G be a strongly connected weighted digraph
and let L be the Laplacian matrix of G as defined in (2.1). Let αi denote the cofactor of the ith
diagonal element of L. Then the following identity holds for xi, x j ∈ D ⊂ RN , 1 � i, j � n
and any family of functions {Fi j : D × D → R}1�i, j�n

n∑
i=1

n∑
j�=i, j=1

αiLi jFi j(xi, x j) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ )

Fsr(xs, xr), (2.3)

where Q is the set of all spanning unicyclic digraphs of (G, A), w(Q) > 0 is the weight of Q
(the product of weights of all directed edges on Q), and CQ denotes the directed cycle of Q
with arc set E(CQ).

We recall that a weighted digraph G is said to be cycle-balanced [30, section 3] if for any
cycle C in G it has a corresponding reversed cycle−C andw(C) = w(−C). Here−C, the reverse
of C, have the same vertices but edges with reversed direction as C.

The following result illustrates how the tree-cycle identity can be used to bridge the gap
between symmetry and asymmetry, and will be used later to analyze the eigenvalue problems
related to equilibrium stability.

Theorem 2.2. Let G be a strongly connected weighted digraph that is cycle-balanced,
and let L be the Laplacian matrix of G as defined in (2.1). Let αi denote the cofac-
tor of the ith diagonal element of L. Assume that xi, x j ∈ D ⊂ RN for all 1 � i, j � n and
{Fi j : D × D → R}1�i, j�n be a family of functions satisfying

Fi j(xi, x j) + F ji(x j, xi) � 0, 1 � i, j � n, j �= i. (2.4)

Then the following holds

n∑
i=1

n∑
j�=i, j=1

αiLi jFi j(xi, x j) =
n∑

i=1

n∑
j�=i, j=1

αiLi jF ji(x j, xi) � 0. (2.5)
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In addition, the double sum in (2.5) equals 0 if and only if Fij(xi, xj) + Fji(xj, xi) = 0 for all
distinct i, j.

Proof. For any unicyclic digraph Q with a directed cycle CQ, reversing the directions of
all directed edges in CQ (keeping the directions of all other directed edges) yields another
unicyclic digraphQ′. Since G is cycle-balanced,Q′ is well-defined andw(Q′) = w(Q). Notice
that (s, r) ∈ E(CQ) iff (r, s) ∈ E(CQ′), and (s, r) ∈ E(Q) − E(CQ) iff (s, r) ∈ E(Q′) − E(CQ′).
Perform this process to all unicyclic digraph Q on the right-hand side of the tree-cycle identity
(2.3), and we obtain

n∑
i=1

n∑
j�=i, j=1

αiLi jFi j(xi, x j)

=
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ )

Fsr(xs, xr)

=
1
2

⎡
⎣∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ )

Fsr(xs, xr) +
∑
Q′∈Q

w(Q′)
∑

(s,r)∈E(CQ′ )

Fsr(xs, xr)

⎤
⎦

=
1
2

⎡
⎣∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ )

Fsr(xs, xr) +
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ )

Fsr(xs, xr)

⎤
⎦

=
1
2

⎡
⎣∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ )

(Fsr(xs, xr) + Frs(xr, xs))

⎤
⎦

� 0,

where the last inequality follows from (2.4). �

Since L is irreducible, the null space of L is one-dimensional. As a consequence, for any
positive left eigenvector (e1, e2, . . . , en) of L corresponding to eigenvalue 0, there exists a con-
stant η > 0 such that ei = ηαi for all i. Therefore, the coefficients αi in theorem 2.2 can
be replaced by the coordinators ei of any positive left eigenvector of L corresponding to
eigenvalue 0.

Finally we show some necessary and sufficient conditions for a digraph to be cycle-
balanced, and enclose the proof in appendix.

Proposition 2.3. Let G be a strongly connected weighted digraph with n vertices associ-
ated with n × n matrix A (assuming aii = 0 for 1 � i � n).

(a) If A is symmetric (ai j = aji), then G is cycle-balanced; and if G is cycle-balanced, then A
is sign pattern symmetric, that is, ai j > 0 if and only if a ji > 0 for any j �= i.

(b) If G is cycle-balanced, then G has at least 2(n − 1) arcs.
(c) If every cycle of G has exactly two vertices, then G is cycle-balanced; and every cycle of

G has exactly two vertices if and only if A is sign pattern symmetric and G has exactly
2(n − 1) arcs. In addition, these arcs form two spanning trees in G of the opposite
direction: one rooted in-tree and one rooted out-tree. In particular, if n = 2, then G is
cycle-balanced.
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(d) Suppose that G is a complete graph (ai j > 0 for any i �= j) with at least 3 vertices. Then
G is cycle-balanced if and only if each three-cycle of G is balanced, that is, for any three
distinct vertices i, j, k, we have ai ja jkaki = aikak ja ji.

The characterisation in part 3 of proposition 2.3 shows that a bi-directional tree is the cycle-
balanced network with the minimal number of arcs. Examples of such bi-directional tree are
the star graph in figure 1(a) and the river network in figure 1(c). Because of strong connectivity
of G, each row or column of A has at least one non-zero entry. Also for these networks, the
value of the weight ai j does not change the cycle-balanced property of the network, which is
not the case for networks with longer cycles (like the one in figure 1(b) or complete graphs
with more vertices as in part 4 of proposition 2.3).

2.2. Dynamical systems

In this section, we first state some results about the single species model, to which (1.3) is
reduced if u = 0 or v = 0. Then we present some results from monotone dynamical system
theory.

We recall results on a single species population model in a heterogeneous environment of
n patches (n � 2):

w′
i = μ

n∑
j=1

Li jw j + wi(ri − wi), i = 1, . . . , n, t > 0, (2.6)

where wi denotes the population size (or density) in patch i. System (2.6) admits a trivial
equilibrium 0 = (0, 0, . . . , 0). Suppose that L is irreducible. Since the Jacobian matrix of the
right-hand side of (2.6) is cooperative (off-diagonal entries are nonnegative) and irreducible,
the solutions of (2.6) have strongly monotonicity [39, theorem 4.1.1], i.e. for any two solutions
w1(t) and w2(t) of (2.6), if w1(0) > w2(0) � 0 then w1(t) � w2(t) for all t > 0. In partic-
ular, if w1(0) > 0 then w1(t) � 0 for all t > 0. The global dynamics of (2.6) is as follows
[6, 8, 30, 34], which is essentially similar to the dynamics of the logistic model, i.e. the case
n = 1.

Lemma 2.4. Suppose that the connection matrix L as defined in (1.2) is irreducible,
and ri > 0 for all i = 1, 2, . . . , n. Then the equilibrium 0 is unstable, and (2.6) admits a
unique positive equilibrium w∗(μ, r) = (w∗

1, . . . ,w∗
n), which is globally asymptotically stable

in Rn
+ − {0}.

Throughout this paper, we assume that pi, qi > 0 for all i = 1, 2, . . . , n. By lemma 2.4,
(1.3) has two semi-trivial equilibria, E1 = (w∗(μu, p), 0) and E2 = (0,w∗(μv , q)), and one triv-
ial equilibria E0 = (0, 0). A positive equilibrium (or coexistence equilibrium) of (1.3), if exists,
is denoted by E = (u, v) when not causing confusion.

An important tool to investigate the global dynamics of the Lotka–Volterra competition
system (1.3) is the monotone dynamical system theory [18, 21, 27, 39]. Let X = Rn

+ × Rn
+

equipped with an order �K generated by the cone K = Rn
+ × {−Rn

+}. That is, for x =
(ū, v̄), y = (ũ, ṽ) ∈ X, we say x �K y if ū � ũ and v̄ � ṽ; x <K y if x �K y and x �= y. Then (1.3)
is cooperative with respect to K [39, section 4.4], and the solutions of (1.3) induce a strictly
monotone dynamical system in X in the sense that for any two initial data (u1

0, v1
0) <K (u2

0, v2
0),

the corresponding solutions satisfy (u1(t), v1(t)) <K (u2(t), v2(t)) for all t � 0. Moreover since
the Jacobian matrix of (1.3) is irreducible in the interior int(X), the dynamical system is strongly
monotone in int(X), i.e. for any two initial data (u1

0, v1
0) <K (u2

0, v2
0) with at least one of them

in int(X), the corresponding solutions satisfy (u1(t), v1(t)) �K (u2(t), v2(t)) for all t > 0 [39,
theorem 4.1.1, remark 4.1.1].
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The following two results derived from the monotone dynamical system theory can be found
in [39].

Lemma 2.5 ([39, theorem 4.4.2]). Suppose that the connection matrix L is irreducible
and E1 is linearly unstable. Then one of the following holds:

(a) E2 attracts all solutions with initial data (u0, v0) ∈ X satisfying v0 > 0. In this case, E2 is
linearly stable or neutrally stable;

(b) There exists a positive equilibrium E satisfying E2 �K E �K E1 such that E attracts all
solutions with initial data (u0, v0) ∈ X satisfying E �K (u0, v0) <K E1.

Lemma 2.6 ([39, corollary 4.4.3]). Suppose that the connection matrix L is irreducible
and E1 and E2 are linearly unstable. Then there exist positive equilibria E1 and E2 of (1.3)
satisfying E2 �K E2 �K E1 �K E1 such that the order interval

[E2, E1] := {(u, v) ∈ X : E2 �K (u, v) �K E1}

attracts all solutions with initial data (u0, v0) satisfying u0 > 0 and v0 > 0. In particular, if
E1 = E2, then E1 attracts all solutions as above.

The two lemmas 2.5 and 2.6 are stated for the case n = 2 in [39], but as remarked in [39, p
70], they hold for any n � 2. The following result can be derived by [18, theorem I.6.1].

Lemma 2.7. Suppose that the connection matrix L is irreducible and E1 and E2 are equilib-
ria of (1.3) satisfying E2 �K E2 <K E1 �K E1. If E1 and E2 are stable and at least one of them
is an isolated equilibrium, then there exists an unstable positive equilibrium E ∈ [E2, E1].

In view of previous lemmas, a key step as in [17, 42] is to show that every positive
equilibrium, if exists, is stable.

3. Stability of coexistence equilibrium

In this section we state our main results on the global dynamics of (1.3). Recall that w∗(μ, r)
is the unique positive steady state of (2.6). Then the following result states that every positive
equilibrium of (1.3), if exists, is locally asymptotically stable except for the degenerate case,
when the competition is weak and the network G is cycle-balanced.

Theorem 3.1. Suppose that (A1)–(A3) hold. A positive equilibrium E = (u, v) of (1.3), if it
exists, is locally asymptotically stable except for the case bc = 1 and w∗(μu, p) = cw∗(μv , q)
at which case E is linearly neutrally stable.

Proof. Let E = (u, v) be a positive equilibrium of (1.3). Then it satisfies the following
equations: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
μu

n∑
j=1

Li ju j + ui(pi − ui − cvi) = 0, i = 1, . . . , n,

μv

n∑
j=1

Li jv j + vi(qi − bui − vi) = 0, i = 1, . . . , n.

(3.1)
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Linearising (1.3) at E, we have the following eigenvalue problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μu

n∑
j=1

Li jφ j + (pi − ui − cvi)φi − ui(φi + cψi) + λφi = 0, i = 1, . . . , n,

μv

n∑
j=1

Li jψ j + (qi − bui − vi)ψi − vi(bφi + ψi) + λψi = 0, i = 1, . . . , n.

(3.2)

Here (φ,ψ) = ((φ1, . . . ,φn), (ψ1, . . . ,ψn)) is a principal eigenvector associated with the princi-
pal eigenvalue λ of (3.2). We normalise (φ,ψ) such that φi > 0 and ψi < 0 for all i = 1, . . . , n.
We will show that λ � 0, where the equality holds if and only if bc = 1 and w∗(μu, p) =
cw∗(μv , q).

Multiplying the first equation of (3.2) by ui, the first equation of (3.1) by φi and taking the
difference, we have

μu

n∑
j=1, j�=i

Li j(φ jui − φiu j) = u2
i (φi + cψi) − λuiφi, i = 1, . . . , n. (3.3)

Let (α1, . . . ,αn) be the left eigenvector of L as defined in (2.2). Multiplying both sides of (3.3)
by αiφ

2
i /u2

i and summing up all the equations, we obtain

μu

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
φ2

i φ j

ui
− φ3

i u j

u2
i

)
=

n∑
i=1

αiφ
2
i (φi + cψi) − λ

n∑
i=1

αi
φ3

i

ui
. (3.4)

Let {Fi j : D × D → R}1�i, j�n be a family of functions defined as Fi j(xi, x j) =
φ2

i φ j
ui

− φ3
i u j

u2
i

,

where D = (0,∞) × (0,∞) and xi = (φi, ui) ∈ D. It can be verified that

Fi j(xi, x j) + F ji(x j, xi) =

(
φ2

i φ j

ui
− φ3

i u j

u2
i

)
+

(
φiφ

2
j

u j
−

φ3
jui

u2
j

)

= uiu j
φ2

i

u2
i

(
φ j

u j
− φi

ui

)
+ uiu j

φ2
j

u2
j

(
φi

ui
− φ j

u j

)

=− uiu j

(
φi

ui
− φ j

u j

)2 (
φi

ui
+

φ j

u j

)
� 0,

and the equal sign holds if and only if φi/ui = φ j/uj. Since G is cycle-balanced, it follows
from theorem 2.2 that

n∑
i=1

n∑
j=1, j�=i

αiLi jFi j(xi, x j) =
n∑

i=1

n∑
j=1, j�=i

αiLi j

(
φ2

i φ j

ui
− φ3

i u j

u2
i

)
� 0, (3.5)

and the equal sign holds if and only if

φ1

u1
=

φ2

u2
= . . . =

φn

un
. (3.6)

Similarly, by using (3.1) and (3.2), we obtain
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μv

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
ψ2

i ψ j

vi
− ψ3

i v j

v2
i

)
=

n∑
i=1

αiψ
2
i (bφi + ψi) − λ

n∑
i=1

αi
ψ3

i

vi
. (3.7)

Similar to (3.5), it follows from theorem 2.2 that

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
ψ2

i ψ j

vi
− ψ3

i v j

v2
i

)
� 0, (3.8)

where the equal sign holds if and only if

ψ1

v1
=

ψ2

v2
= . . . =

ψn

vn
. (3.9)

Multiplying (3.7) by c3 and subtracting it from (3.4), and noticing (3.5) and (3.8), we have

−λ

n∑
i=1

αi

(
φ3

i

ui
− c3ψ

3
i

vi

)
� −

n∑
i=1

αiφ
2
i (φi + cψi) +

n∑
i=1

αic
2ψ2

i (bcφi + cψi)

� −
n∑

i=1

αiφ
2
i (φi + cψi) +

n∑
i=1

αic
2ψ2

i (φi + cψi)

= −
n∑

i=1

αi(φi − cψi)(φi + cψi)2 � 0,

where we have used bc � 1. This implies λ � 0 and the equality holds if and only if bc = 1,
φi = cψi for all i, and (3.6) and (3.9) hold.

Now we consider the situation when λ = 0. It follows that u = kv for some k > 0, and
bc = 1. By u = kv and the first equation of (3.1), we have

w∗(μu, p) =
(

1 +
c
k

)
u.

By the second equation of (3.1), we have

w∗(μv, q) = (kb + 1) v.

Therefore,

w∗(μu, p)
w∗(μv, q)

=

(
1 + c

k

)
u

(kb + 1) v
= c.

�

Denote by λ1(μ, h) the principal eigenvalue of

μ

n∑
j=1

Li jψ j + hiψi + λψi = 0, i = 1, . . . , n,

where h = (h1, . . . , hn). Then λ1(μ, h) = −s(μL + diag(hi)). Let E1 = (w∗(μu, p), 0) and E2 =
(0,w∗(μv , q)) be the two semi-trivial equilibria of (1.1). Following [17] we define the following
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parameter subsets of Q = {(μu, μv) : μu, μv > 0}

Su = {(μu,μv) : (w∗(μu, p), 0) is linearly stable}

= {(μu,μv) : λ1(μv , q − bw∗(μu, p)) > 0},

Sv = {(μu,μv) : (0,w∗(μv , q)) is linearly stable}

= {(μu,μv) : λ1(μu, p− cw∗(μv , q)) > 0},

S− = {(μu,μv) : λ1(μv , q − bw∗(μu, p)) < 0, λ1(μu, p− cw∗(μv , q)) < 0},

Su,0 = {(μu,μv) : λ1(μv , q − bw∗(μu, p)) = 0},

Sv,0 = {(μu,μv) : λ1(μu, p− cw∗(μv , q)) = 0},

S0,0 = {(μu,μv) : λ1(μv , q − bw∗(μu, p)) = λ1(μu, p− cw∗(μv , q)) = 0}.

We classify the global dynamics of (1.3) according to the diffusion coefficients as follows.

Theorem 3.2. Suppose that (A1)–(A3) hold. Then we have the following mutually dis-
joint decomposition of Q:

Q =
(
Su ∪ Su,0\S0,0

)⋃(
Sv ∪ Sv,0\S0,0

)⋃
S−

⋃
S0,0. (3.10)

Moreover, the following statements hold for system (1.3):

(a) For any (μu, μv) ∈ Su ∪ Su,0\S0,0, E1 = (w∗(μu, p), 0) is globally asymptotically stable.
(b) For any (μu, μv) ∈ Sv ∪ Sv,0\S0,0, E2 = (0,w∗(μv , q)) is globally asymptotically stable.
(c) For any (μu, μv) ∈ S−, (1.3) has a unique positive equilibrium (u, v), which is globally

asymptotically stable.
(d) For any (μu, μv) ∈ S0,0, we have bc = 1, w∗(μu, p) ≡ cw∗(μv, q) and (1.3) has a compact

global attractor consisting of a continuum of equilibria

{
(
ρw∗(μu, p), (1 − ρ)w∗(μu, p)/c

)
: ρ ∈ [0, 1]}. (3.11)

Proof. Step 1. We first show the mutually disjoint decomposition of Q. For simplicity of
notations, we denote u∗ = w∗(μu, p) and v∗ = w∗(μv , q). Denote by ψ = (ψ1, . . . ,ψn) > 0
(respectively, φ = (φ1, . . . ,φn) > 0) the principal eigenvector with respect to λ1(μv , q − bu∗)
(respectively, λ1(μu, p− cv∗)). Then we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μu

n∑
j=1

Li jφ j + (pi − cv∗i )φi + λ1(μu, p− cv∗)φi = 0, i = 1, . . . , n,

μv

n∑
j=1

Li jψ j + (qi − bu∗
i )ψi + λ1(μv , q − bu∗)ψi = 0, i = 1, . . . , n.

(3.12)

Note that u∗ = (u∗
1, . . . , u∗

n) and v∗ = (v∗1, . . . , v∗n) satisfy
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μu

n∑
j=1

Li ju
∗
j + ui(pi − u∗

i ) = 0, i = 1, . . . , n,

μv

n∑
j=1

Li jv
∗
j + vi(qi − v∗i ) = 0, i = 1, . . . , n.

(3.13)

Multiplying the first equation of (3.12) by u∗
i , the first equation of (3.13) by φi and taking the

difference, we have

μu

n∑
j=1, j�=i

Li j(φ ju
∗
i − φiu

∗
j) = (cv∗i − u∗

i )u∗
i φi − λ1(μu, p− cv∗)φiu

∗
i , i = 1, . . . , n.

(3.14)

Let (α1, . . . ,αn) be the left eigenvector ofL as defined in (2.2). Multiplying both sides of (3.14)
by αiu∗

i /φi, and taking the sum, we obtain

μu

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
φ j(u∗

i )2

φi
− u∗

i u∗
j

)

=

n∑
i=1

αi(cv
∗
i − u∗

i )(u∗
i )2 − λ1(μu, p− cv∗)

n∑
i=1

αi(u
∗
i )2. (3.15)

Let Fi j = Fi j(φi,φ j) =
φ j(u

∗
i )2

φi
− u∗

i u∗
j . Since

Fi j + F ji =
φ j(u∗

i )2

φi
− u∗

i u∗
j +

φi(u∗
j)

2

φ j
− u∗

ju
∗
i =

(√
φ j√
φi

u∗
i −

√
φi√
φ j

u∗
j

)2

� 0,

and the equality holds if and only if φi/u∗
i = φ j/u∗

j , it follows from theorem 2.2 that

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
φ j(u∗

i )2

φi
− u∗

i u∗
j

)
� 0, (3.16)

and the equal sign holds if and only if

φ1

u∗
1

=
φ2

u∗
2

= . . . =
φn

u∗
n
. (3.17)

Similarly, by using (3.12) and (3.13), we have

μv

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
ψ j(v∗i )2

ψi
− v∗i v

∗
j

)

=

n∑
i=1

αi(bu∗
i − v∗i )(v∗i )2 − λ1(μv , q − bu∗)

n∑
i=1

αi(v∗i )2, (3.18)
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and

n∑
i=1

n∑
j=1, j�=i

αiLi j

(
ψ j(v∗i )2

vi
− v∗i v

∗
j

)
� 0, (3.19)

where the equal sign holds if and only if

ψ1

v∗1
=

ψ2

v∗2
= . . . =

ψn

v∗n
. (3.20)

Multiplying (3.18) by c3 and subtracting it from (3.15), and noticing (3.16) and (3.15), we
have

λ1(μu, p− cv∗)
n∑

i=1

αi(u
∗
i )2 + λ1(μv, q − bu∗)c3

n∑
i=1

αi(v
∗
i )2

�
n∑

i=1

αi(cv∗i − u∗
i )(u∗

i )2 +

n∑
i=1

αi(bcu∗
i − cv∗i )(cv∗i )2

� −
n∑

i=1

αi(cv∗i − u∗
i )2(cv∗i + u∗

i ) � 0, (3.21)

where the last two inequalities are equalities if and only if cv∗ = u∗ and bc = 1. This implies
that

(
Su ∪ Su,0\S0,0

)
∩
(
Sv ∪ Sv,0\S0,0

)
= ∅, (3.22)

which proves (3.10).
Step 2. We show that if (μu, μv) ∈ Su then E1 is globally asymptotically stable. If (μu, μv) ∈

Su, then E1 is linearly asymptotically stable (so it is an isolated equilibrium) and E2 is linearly
unstable by (3.10). By lemma 2.5, either E1 is globally asymptotically stable or there exists a
positive equilibrium E ∈ [E2, E1]. If such a positive equilibrium E exists, it is stable by theorem
3.1. Then by lemma 2.7, there exists an unstable positive equilibrium in [E, E1], which con-
tradicts theorem 3.1. This proves the global stability of E1. Similarly, we can prove the case
(μu, μv) ∈ Sv .

Step 3. As in [17], we rule out the possibility of coexistence equilibrium in the following
two cases:

(A) (μu, μv) ∈ Su,0\S0,0;
(B) (μu, μv) ∈ Sv,0\S0,0.

It suffices to consider case (A). To the contrary, we assume that there exists a coex-
istence equilibrium (U∗, V∗) for some (μu, μv) ∈ Su,0\S0,0 and (b, c) = (b0, c0) satisfying
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b0c0 � 1. So, λ1(μv , q − b0u∗) = 0 and λ1(μu, p− c0v
∗) < 0. We define

G(b, c, u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μu

n∑
j=1

L1 ju j + u1(p1 − u1 − cv1)

...

μu

n∑
j=1

Ln ju j + un(pn − un − cvn)

μv

n∑
j=1

L1 jv j + v1(q1 − bu1 − v1)

...

μv

n∑
j=1

Ln jv j + vn(qn − bun − vn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we compute the Jacobian matrix of G evaluated at (b, c, u, v) = (b0, c0, U∗, V∗):

DG(u,v)(b0, c0, U∗, V∗)

=

[
μuL + diag(p− 2U∗ − c0V∗) − diag(c0U∗)

− diag(b0V∗) μvL + diag(q − b0U∗ − 2V∗)

]
.

By theorem 3.1, the principal eigenvalue of DG(u,v)(b0, c0, U∗, V∗) is negative and so all of its
eigenvalues are on the left half plane of the complex plane. Therefore, DG(u,v)(b0, c0, U∗, V∗)
is invertible. By G(b0, c0, U∗, V∗) = 0 and the implicit function theorem, there exist positive
solutions (u(b, c), v(b, c)) of G(b, c, u, v) = 0 for (b, c) close to (b0, c0), where (u(b, c), v(b, c))
is continuously differentiable in (b, c) with (u(b0, c0), v(b0, c0)) = (U∗, V∗). By the definition
of G, (u(b, c), v(b, c)) is a positive equilibrium of (1.3). Noticing λ1(μu, p− c0v

∗) < 0, we may
choose (b̌, č) close to (b0, c0) with 0 < č < c0, b̌ > b0, and b̌č � 1 such that (1.3) has a positive
equilibrium (u(b̌, č), v(b̌, č)) with λ1(μu, p− čv∗) < 0. Since b̌ > b0, we have

λ1(μv , q − b̌u∗) > λ1(μv , q − b0u∗) = 0.

Then (b̌, č) ∈ Su, which means (u∗, 0) is globally asymptotically stable. This contradicts that
(1.3) has a positive equilibrium (u(b̌, č), v(b̌, č)).

Step 4. If (μu, μv) ∈ Su,0\S0,0, by step 3 and lemma 2.5, E1 is globally asymptotically stable;
similarly if (μu, μv) ∈ Sv,0\S0,0, E2 is globally asymptotically stable.

Suppose (μu, μv) ∈ S−. By lemma 2.6, there exist positive equilibria E1 and E2 satisfying
E2 �K E2 �K E1 �K E1 such that the order interval [E2, E1] attracts all solutions with initial
data (u0, v0) satisfying u0 > 0 and v0 > 0. By theorem 3.1, E1 and E2 are locally asymptoti-
cally stable. If E1 �= E2, by lemma 2.7, there exists an unstable equilibrium in [E2, E1], which
contradicts theorem 3.1. Therefore, E1 = E2 and it is globally asymptotically stable.

Step 5. Finally, we show (d). By (3.21), if λ1(μu, p− cv∗) = λ1(μv , q − bu∗) = 0 then
u∗ = cv∗ and bc = 1, i.e.

S0,0 ⊂ {(μu,μv) : u∗ = cv∗ and bc = 1}.

On the other hand, if u∗ = cv∗ and bc = 1, from μu
∑n

j=1Li ju∗
j + u∗

i (pi − u∗
i ) = 0,

we have μu
∑n

j=1Li jv
∗
j + v∗i (pi − cv∗i ) = 0, which implies λ1(μu, p− cv∗) = 0. Similarly,
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λ1(μv , q − bu∗) = 0. So we have

{(μu,μv) : u∗ = cv∗ and bc = 1} ⊂ S0,0.

Hence,

S0,0 = {(μu,μv) : u∗ = cv∗ and bc = 1}. (3.23)

It is easy to check that (1.3) has a continuum of equilibria (3.11) when (μu, μv) ∈ S0,0, which
is a global attractor by [19, theorem 3] in the sense that every solution of (1.3) converges to
an equilibrium in (3.11). The result in [19, theorem 3] is for reaction–diffusion competition
systems, which also holds for patch models. �

4. Examples

In this section, we apply the results obtained in section 3 to two special situations when the
two species have the same resources availability or when the two species are identical except
for resources availability. In these two cases, we are able to find the explicit parameter ranges
that result in coexistence or competitive exclusion of the two species.

The following result is needed later (see [1, 6]).

Lemma 4.1. Suppose that n × n matrix A is irreducible and quasi-positive (i.e. off-diagonal
entries are nonnegative) with s(A) = 0. Let η = (η1, η2, . . . , ηn)T be a positive right eigenvector
of A corresponding to eigenvalue s(A) = 0 and D = diag(dj) be a diagonal matrix. Then,

d
da

s(aA + D) � 0, for all a > 0,

where the equality holds if and only if D is a multiple of the identity matrix I. Moreover, the
following limits hold:

lim
a→0

s(aA + D) = max
1�i�n

{di} and lim
a→∞

s(aA + D) =
n∑

i=1

ηidi/
n∑

i=1

ηi.

4.1. Example (A)

Firstly, we consider a situation that two species compete for the common resource (i.e. p =
q = r): ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u′
i = μu

n∑
j=1

Li ju j + ui(ri − ui − cvi), i = 1, . . . , n, t > 0,

v′i = μv

n∑
j=1

Li jv j + vi(ri − bui − vi), i = 1, . . . , n, t > 0,

u(0) = u0 � ( �≡)0, v(0) = v0 � ( �≡)0,

(4.1)

where r > 0. We remark that the continuous space version of model (4.1) has been investigated
in [42]. Then the following results can be derived from theorem 3.2.

Proposition 4.2. Suppose that 0 < bc � 1 and (A2)–(A3) holds. Let θ = (θ1, θ2, . . . , θn)
be a positive right eigenvector of L corresponding to s(L) = 0 with

∑n
i=1θi = 1. Then the

following statements hold for (4.1):

832



Nonlinearity 35 (2022) 817 S Chen et al

(i) If r = δθ for some δ > 0, then we have:

(i1) If (b, c) = (1, 1), there exists a compact global attractor consisting of a continuum
of equilibria {(ρr, (1 − ρ)r) : ρ ∈ [0, 1]};

(i2) If b � 1 and c < 1, E1 = (w∗(μu, r), 0) is globally asymptotically stable;
(i3) If b < 1 and c � 1, E2 = (0, w∗(μv , r)) is globally asymptotically stable;
(i4) If b < 1 and c < 1, there exists a unique positive equilibrium

E =

(
1 − c

1 − bc
r,

1 − b
1 − bc

r

)
,

which is globally asymptotically stable.

(ii) If r �= δθ for any δ > 0, then we have:

(ii1) Suppose μu < μv . Then there exist b∗ < 1 and c∗ > 1 with b∗c∗ > 1 such that if
b < b∗ and c < c∗ (4.1) has a unique positive equilibrium which is globally asymp-
totically stable; if b � b∗, E1 = (w∗(μu, r), 0) is globally asymptotically stable; if
c � c∗, E2 = (0, w∗(μv , r)) is globally asymptotically stable;

(ii2) Suppose μu > μv . Then there exist b∗ > 1 and c∗ < 1 with b∗c∗ > 1 such that if
b < b∗ and c < c∗ (4.1) has a unique positive equilibrium which is globally asymp-
totically stable; if b � b∗, E1 = (w∗(μu, r), 0) is globally asymptotically stable; if
c � c∗, E2 = (0, w∗(μv , r)) is globally asymptotically stable;

(ii3) Supposeμu = μv . Then if b < 1 and c < 1, (4.1) has a unique positive equilibrium
which is globally asymptotically stable; if b � 1 and c < 1, E1 = (w∗(μu, r), 0)
is globally asymptotically stable; if c � 1 and b < 1, E2 = (0, w∗(μv , r)) is glob-
ally asymptotically stable; if (b, c) = (1, 1), there exists a compact global attrac-
tor consisting of a continuum of steady states {(ρw∗(μu, r), (1 − ρ)w∗(μv , r)) :
ρ ∈ [0, 1]}.

Proof.

(i) If r = δθ for some δ > 0, we have

w∗(μu, r) = w∗(μv , r) = r.

For the case b = c = 1, a direct computation yields

λ1(μv, r − bw∗(μu, r)) = λ1(μv , 0) = 0,

λ1(μu, r − cw∗(μv, r)) = λ1(μu, 0) = 0.

Then it follows from theorem 3.2 (d) that (i1) holds.
For the case b � 1 and c < 1, we have

λ1(μu, r − bw∗(μv , r)) = λ1(μu, (1 − b)r) � 0,

λ1(μu, r − cw∗(μv, r)) = λ1(μu, (1 − c)r) < 0.

Then it follows from theorem 3.2 (a) that E1 = (w∗(μu, r), 0) is globally asymptotically
stable, which proves (i2). Similarly, we can prove (i3).
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For the case b < 1 and c < 1, we have

λ1(μv, r − bw∗(μu, r)) = λ1(μv , (1 − b)r) < 0,

λ1(μu, r − cw∗(μv, r)) = λ1(μu, (1 − c)r) < 0.

Then it follows from theorem 3.2 (c) that statement (i4) holds.
(ii) Suppose r �= δθ for any δ > 0. Then r − w∗(μu, r) �= γ(1, . . . , 1) for any γ ∈ R. If

this is not true, then there exists γ0 ∈ R such that r − w∗(μu, r) = γ0(1, . . . , 1). Since
w∗ :=w∗(μu, r) satisfies

μu

n∑
j=1

Li jw
∗
j + w∗

i (ri − w∗
i ) = 0,

we conclude that −γ0/μu is the principal eigenvalue of L with w∗(μu, r) being a positive
eigenvector. Then γ0 = 0, and r = w∗(μu, r) = δ0θ for some δ0 > 0, which is a contradic-
tion. Similarly, we obtain that r − w∗(μv , r) �= γ(1, . . . , 1) for any γ ∈ R. Then it follows
from lemma 4.1 that λ1 (μ, r − w∗(μu, r)) and λ1 (μ, r − w∗(μv, r)) are strictly increasing
for μ ∈ (0,∞).

Note that

λ1

(
μu, r − w∗(μu, r)

)
= 0 and λ1

(
μv , r − w∗(μv , r)

)
= 0.

(ii1) If μu < μv , we have

λ1
(
μv , r − bw∗(μu, r)

)
|b=1 > 0 and λ1

(
μu, r − cw∗(μv , r)

)
|c=1 < 0.

Since λ1 (μv , r − bw∗(μu, r)) |b=0 < 0 and λ1 (μv , r − bw∗(μu, r)) is strictly increasing in
b, there exists b∗ ∈ (0, 1) such that

λ1

(
μv , r − bw∗(μu, r)

)
⎧⎪⎪⎨
⎪⎪⎩
< 0, b < b∗,

= 0, b = b∗

> 0, b > b∗.

(4.2)

Sinceλ1 (μu, r − cw∗(μv , r)) is strictly increasing in c and limc→∞ λ1 (μu, r−cw∗(μv , r)) =
∞, there exists c∗ > 1 such that

λ1

(
μu, r − cw∗(μv , r)

)
⎧⎪⎪⎨
⎪⎪⎩
< 0, c < c∗,

= 0, c = c∗

> 0, c > c∗.

(4.3)

We claim b∗c∗ > 1. To see it, we first note that b∗c∗ < 1 is not possible. If otherwise,
we may find (b, c) such that b < b∗ and c < c∗ with bc < 1. For such (b, c), we have
λ1(μv , r − bw∗(μu, r)) < 0 and λ1(μu, r − cw∗(μv , r)) < 0, i.e. both E1 and E2 are stable,
which is impossible by theorem 3.2.

Suppose to the contrary that b∗c∗ = 1. Since λ1(μv , r − b∗w∗(μu, r)) = λ1

(μu, r − c∗w∗(μv , r)) = 0, we have w∗(μu, r) = c∗w∗(μv , r) by theorem 3.2 (d). Putting
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this into

μu

n∑
j=1

Li jw
∗
j (μu, r) + w∗

i (μu, r)(ri − w∗
i (μu, r)) = 0,

μv

n∑
j=1

Li jw
∗
j (μv , r) + w∗

i (μv , r)(ri − w∗
i (μv , r)) = 0,

we obtain

w∗
i (μv, r) =

μv − μu

c∗μv − μu
ri < ri for all i = 1, . . . , n.

Therefore, noticing
∑n

i=1Li j = 0 for all j = 1, . . . , n, we have

0 =

n∑
i=1

⎛
⎝μv

n∑
j=1

Li jw
∗
j (μv , r) + w∗

i (μv , r)(ri − w∗
i (μv , r))

⎞
⎠

=

n∑
i=1

w∗
i (μv , r)(ri − w∗

i (μv, r)) > 0,

which is a contradiction. This proves the claim. It follows from (4.2) and (4.3), b∗c∗ > 1 and
theorem 3.2 that (ii1) holds.

Using similar arguments for (ii1), we can prove (ii2). For the case (ii3), we have b∗ = c∗ = 1
and its proof is similar to (ii1). �
Remark 4.3. We have a complete classification of the global stability of example A by
proposition 4.2. In figure 2, we plot a diagram to illustrate our results for the case (ii1) (i.e.
r �= δθ and μu < μv).

4.2. Example (B)

In this subsection, we consider a special case of (1.3):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
i = μ

n∑
j=1

Li ju j + ui(pi − ui − vi), i = 1, . . . , n, t > 0,

v′i = μ

n∑
j=1

Li jv j + vi(qi − ui − vi), i = 1, . . . , n, t > 0,

u(0) = u0 � ( �≡)0, v(0) = v0 � ( �≡)0.

(4.4)

Here the two species have the same intraspecific competition coefficients and diffusion rates,
but different resources availability. The case n = 2 (two-patch model) of (4.4) has been investi-
gated by [7, 12, 31]. In [12], it was conjectured that if q1 − σ = p1 < q1 < q2 < p2 = q2 + σ
with 0 < σ < q1, then u1 out-competes u2 when the dispersal rate μ is large while u1 and u2

coexist when μ is small. This conjecture was verified in [31], where the authors proved that
a threshold value of μ∗ dividing the outcome of the competition exists: if μ < μ∗ the model
has a unique globally asymptotically stable positive equilibrium while if μ > μ∗ the u1-only
semitrivial equilibrium is globally asymptotically stable. In [7], it was shown that such a thresh-
old result no longer holds when the inequalities on the birth rates pi, qi are relaxed. We consider
the general case with n � 2 here.
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Figure 2. Illustration of proposition 4.2 (ii1 ) (r �= δθ and μu < μv ) for example A.
Here, b∗ < 1, c∗ > 1, and b∗c∗ > 1. In regime I, there exists a globally asymptotically
stable positive equilibrium; in regime II, E1 is globally asymptotically stable; in regime
III, E2 is globally asymptotically stable.

The following result states that the species with more resources wins the competition.

Proposition 4.4. Suppose that (A1)–(A3) hold. If p > q, then E1 = (w∗(μ, p), 0) is glob-
ally asymptotically stable for (4.4); if p < q, then E2 = (0,w∗(μ, q)) is globally asymptotically
stable for (4.4).

Proof. We only show the case of p > q. For simplicity of notations, we denote u∗ = w∗(μ, p)
and v∗ = w∗(μ, q). By theorem 3.2, it suffices to consider the signs of λ1(μ, q − u∗) and
λ1(μ, p− v∗), where u∗ and v∗ also depend on μ. Let φ be a positive eigenvector corresponding
to λ1(μ, q − u∗). Then

μ

n∑
j=1

Li jφ j + (pi − u∗
i )φi + (qi − pi)φi + λ1(μ, q − u∗)φi = 0. (4.5)

Denote A = μL + diag(pj − u∗
j) and D = diag(qj − pj). Clearly, u∗ is a positive right eigen-

vector of A corresponding with eigenvalue 0. So s(A) = 0. Therefore, by lemma 4.1, s(aA + D)
is strictly decreasing in a and

lim
a→0

s(aA + D) = max
1� j�n

{q j − pj} � 0 and lim
a→∞

s(aA + D)

=

n∑
i=1

ηi(qi − pi) < 0,

where η = (η1, . . . , ηn) is the positive right eigenvector of A corresponding to s(A) with∑n
i=1ηi = 1. This yields

λ1(μ, q − u∗) = −s(A + D) > 0. (4.6)
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Similarly, we can prove that λ1(μ, p− v∗) < 0. This, combined with (4.6), implies
that (μ, μ) ∈ Su ∪ Su,0\S0,0, and consequently, E1 is globally asymptotically stable by
theorem 3.2. �

Next we consider the case when the resources of the two competing species are not
comparable.

Proposition 4.5. Suppose that (A1)–(A3) hold, and p � q and q � p. Let θ = (θ1,
θ2, . . . , θn) be a positive right eigenvector of L corresponding to s(L) = 0 satisfying∑n

i=1θi = 1. Then the following statements hold for (4.4):

(a) There exists μ1 > 0 such that (4.4) has a unique positive equilibrium which is globally
asymptotically stable for 0 < μ < μ1.

(b) If
∑n

j=1θ j(pj − q j) > 0, then there exists μ2 > μ1 such that E1 is globally asymptotically
stable for μ > μ2; on the other hand if

∑n
j=1θ j(pj − q j) < 0, then there exists μ3 > μ1

such that E2 is globally asymptotically stable for μ > μ3.

Proof. We claim that there exist two positive numbers m and M such that mθ � u∗ � Mθ
for all μ > 0. To see that, we may choose m, M > 0 such that u = mθ is a lower solution and
u = Mθ is an upper solution of

u′
i = μ

n∑
j=1

Li ju j + ui(pi − ui), i = 1, . . . , n. (4.7)

Since u∗ is the unique globally asymptotically stable positive equilibrium of (4.7), we have
mθ � u∗ � Mθ for all μ > 0.

(a) Since u∗ is the unique positive equilibrium of (4.7), we have u∗
i → pi as μ→ 0.

This can be seen by taking μ→ 0 in (4.7) and noticing u∗ � mθ. By lemma 4.1
and limμ→0 u∗ = p, we have limμ→0 λ1(μ, q − u∗) = −max1�i�n{qi − pi} < 0. Similarly,
limμ→0 λ1(μ, p− v∗) = −max1�i�n{pi − qi} < 0. Therefore, there exists μ1 > 0 such
that λ1(μ, q − u∗),λ1(μ, p− v∗) < 0 for all 0 < μ < μ1. Therefore by theorem 3.2, (4.4)
has a unique positive equilibrium which is globally asymptotically stable for 0 < μ < μ1.

(b) We first claim:

lim
μ→∞

u∗ =

∑n
i=1 θi pi∑n
i=1 θ

2
i
θ. (4.8)

To see that, for any μk →∞, there exists a subsequence, still denoting by itself,
such that the corresponding positive solution u∗

k = (u1k, . . . , unk) of (4.7) satisfies
u∗

k → u∞ � 0 as k →∞. Dividing both sides of (4.7) by μk and taking k →∞, we
obtain that

∑n
j=1Li ju∞

j = 0, which means that u∞ = lθ for some l � 0. Summing up
all the n equations in (4.7) and noticing

∑n
i=1Li j = 0 for all 1 � j � n, we have∑n

i=1uik(pi − uik) = 0. Taking k →∞, we have
∑n

i=1lθi(pi − lθi) = 0. Since l > 0 by
u∗ � mθ, we have l =

∑n
i=1θi pi/

∑n
i=1θ

2
i . This proves (4.8).

Then by lemma 4.1 and (4.8), we have limμ→∞ λ1(μ, q − u∗) =
∑n

i=1θi(pi − qi). Similarly,
limμ→∞ λ1(μ, p− v∗) =

∑n
i=1θi(qi − pi). If

∑n
j=1θ j(pj − q j) > 0, there exists μ2 > 0 such

that λ1(μ, q − u∗) > 0 and λ1(μ, p− v∗) < 0 for all μ > μ2. Therefore, by theorem 3.2, E1

is globally asymptotically stable for μ > μ2. The case
∑n

j=1θ j(pj − q j) < 0 can be proved
similarly. �
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Remark 4.6. By proposition 4.5, one may expect that there exists a critical valueμ∗ such that
if μ < μ∗, (4.4) has a unique globally stable positive equilibrium while if μ > μ∗ either E1

or E2 is globally asymptotically stable for (4.4). However, this result does not hold in gen-
eral. Indeed, in [7], it has been shown that for n = 2 there might exist 0 < μ∗

1 < μ∗
2 < μ∗

3
such that (4.4) has a globally asymptotically stable positive equilibrium exactly when μ ∈
(0,μ∗

1) ∪ (μ∗
2,μ∗

3).

The following result characterises the asymptotic limit of the unique positive equilibrium
of (4.4) when the diffusion rate μ approaches zero.

Proposition 4.7. Suppose that (A1)–(A3) hold. Let Ωu = {i : 1 � i � n, pi > qi} and
Ωv = {i : 1 � i � n, pi < qi}. Suppose that Ωu and Ωv are not empty with Ωu ∪ Ωv =
{1, 2, . . . , n}. Let u0 = (u01, u02, . . . , u0n) and v0 = (v01, v02, . . . , v0n), where

u0i =

{
pi, if i ∈ Ωu,

0, if i ∈ Ωu,
and v0i =

{
0 if i ∈ Ωu,

qi if i ∈ Ωu.

Let (u, v) be the unique positive equilibrium of (4.4) when μ is small, then limμ→0(u, v) =
(u0, v0).

Proof. By proposition 4.5, there exists μ1 > 0 such that (4.4) has a unique positive equilib-
rium (u, v) that is globally asymptotically stable. By the definition, when μ = 0, (u0, v0) is a
solution of the following system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
μ

n∑
j=1

Li ju j + ui(pi − ui − vi) = 0, i = 1, . . . , n,

μ
n∑

j=1

Li jv j + vi(qi − ui − vi) = 0, i = 1, . . . , n.

(4.9)

We show that (4.9) has a continuum of solutions emanating (μ, (u, v)) = (0, (u0, v0)). To see
this, we define

F(μ, (u, v)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

n∑
j=1

L1 ju j + u1(p1 − u1 − v1)

...

μ

n∑
j=1

Ln ju j + un(pn − un − vn)

μ

n∑
j=1

L1 jv j + v1(q1 − u1 − v1)

...

μ

n∑
j=1

Ln jv j + vn(qn − un − vn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we compute the Jacobian matrix of F evaluated at (μ, (u, v)) = (0, (u0, v0)):
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DF(u,v)(0, (u0, v0)) =

[
diag(p− 2u0 − v0) − diag(u0)

− diag(v0) diag(q − u0 − 2v0)

]
.

By the assumption pi �= qi for all i and the definition of u0 and v0, we can see that
DF(u,v)(0, (u0, v0)) is invertible. Therefore, by the implicit function theorem, there existsμ∗

1 > 0
such that (4.9) has a solution (u(μ), v(μ)) for each 0 � μ < μ∗

1, where (u(μ), v(μ)) is contin-
uous in μ. By the definition of (u0, v0), we may choose μ∗

1 small such that ui(μ) > 0 for each
i ∈ Ωu and vi(μ) > 0 for each i ∈ Ωv for all 0 � μ � μ∗

1.
We show that ui(μ) > 0 for each i ∈ Ωv and vi(μ) > 0 for each i ∈ Ωu for μ close to zero. To

see that, fix i0 ∈ Ωv . Then, pi0 < qi0 , u0i0 = 0 and v0i0 = qi0 . Differentiating μ
∑n

j=1Li0 ju j +
ui0 (pi0 − ui0 − vi0 ) = 0 with respect to μ and evaluating at (μ, (u, v)) = (0, (u0, v0)), we obtain

u′
i0

(0) =

∑n
j=1Li0 ju0 j

qi0 − pi0

=

∑
j∈Ωu

Li0 ju0 j

qi0 − pi0

.

By the assumption,
∑

j∈Ωu
Li0 j > 0. So u′

i0
(0) > 0. Therefore, ui0 (μ) ≈ ui0 (0) + u′

i0
(0)μ > 0

for μ close to zero. Since i0 ∈ Ωv was arbitrary, ui(μ) > 0 for each i ∈ Ωv when μ is close to
zero. Similarly, vi(μ) > 0 for each i ∈ Ωu when μ is close to zero.

We can find μ∗ < μ∗
1 such that the solution (u(μ), v(μ)) of (4.9) is positive for 0 < μ < μ∗.

Then the conclusion follows from the uniqueness of the positive solution of (4.9) and the
continuity of (u(μ), v(μ)) in μ. �

5. Conclusion

In this paper, we analyze the global dynamics of a Lotka–Volterra competition model in a
patchy environment with asymmetric dispersal. We classify the global dynamics of the model,
when the competition is weak and the weighted digraph of the connection matrix is strongly
connected and cycle-balanced. In particular, in theorem 3.2, we show that either the model has
a globally stable coexistence steady state or one species competitively excludes the other one
except for the special case that both semi-trivial equilibria are neutrally stable. Theorem 3.2
has been applied to two special cases, in which we are able to determine the explicit parameter
ranges for coexistence verse competitive exclusion.

Our results use techniques from two fields. We use matrix theory and graph theory tech-
niques to deal with the asymmetry of the connection matrix L. Due to the limitation of this
method, the weighted digraph of L needs to be cycle-balanced. Though cycle-balanced digraph
covers some important types of the configurations of patches, it is desirable to see whether this
condition can be removed. We conjecture that theorem 3.2 still holds without this technical
assumption.

The second technique that we rely on is the well-developed monotone dynamical system the-
ory. According to this theory, the dynamics of the model is essentially determined by the local
dynamics of the equilibria. An essential step in our analysis is to prove that every coexistence
steady state is locally asymptotically stable except for the special case that both semi-trivial
equilibria are neutrally stable. This approach has been adopted in two recent articles [17, 42] on
Lotka–Volterra reaction–diffusion competition models. We remark that the patch model may
not be simply regarded as the discretisation of the reaction–diffusion model as the connection
matrix L is not assumed to be symmetric.
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Finally, we want to point out that we only consider the weak competition case in the paper,
and the dynamics of the strong competition case remains an open problem.
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Appendix

Proof of proposition 2.3.

(a) If A is symmetric, then G is clearly cycle-balanced from the definition. Now we assume
that G is cycle-balanced. Suppose ai j > 0; that is, there is an arc ( j, i) from vertex j to
vertex i in G. Since G is strongly connected, there exists a path from i to j. Therefore, the
arc ( j, i) belongs to some cycle C. If G is cycle-balanced, then for any cycle C, its reverse
−C is also a cycle in G. This implies a ji > 0. Hence A must be sign pattern symmetric.

(b) Since G has n vertices and it is strongly connected, any of its spanning tree has n − 1 arcs.
From part 1, any reverse arc is also an arc of G, thus G has at least 2(n − 1) arcs.

(c) Let A be a sign pattern symmetric n × n matrix with exactly 2(n − 1) positive entries,
and assume A is irreducible. Let A+ = (a+

i j )n×n be defined by a+
i j = ai j when i > j and

a+
i j = 0 when i � j, then the subdigraph G+ associated with A+ is a tree. Similarly let

A− = (a−
i j)n×n be defined by a−

i j = ai j when i < j and a−
i j = 0 when i � j, then the subdi-

graph G− associated with A− is also a tree. The digraph G is the union of two disjoint trees
G+ and G−. It is easy to see every cycle of G has exactly two vertices, and G is cycle-
balanced as every two-cycle is naturally balanced. This proves such a bi-directional tree
is cycle-balanced. If n = 2 then every cycle of G has two vertices. Hence it must be
cycle-balanced.

Now assume G is strongly connected, every cycle of G has exactly two vertices and G is
cycle-balanced. From part 1, A is sign pattern symmetric. So we only need to prove G has
exactly 2(n − 1) arcs. Let T be a spanning tree of G, then T has n − 1 arcs. Reversing the
directions of all arcs in T yields −T , which is also a subdigraph of G. This implies that G has
at least 2(n − 1) arcs, n − 1 arcs in T and n − 1 arcs in −T . If in addition to the 2(n − 1) arcs
in the spanning tree T and its reverse −T , there exists at least one more arc, say (ia, ib), which
is not in T ∪ (−T ). But there is a path P from ib to ia in T ∪ (−T ) because of the property of
spanning tree. The length of P is at least 2 as (ia, ib) /∈ T ∪ (−T ), so the union of P and (ia, ib)
is a cycle with length at least 3, which contradicts with the assumption that every cycle of G
has exactly two vertices. Therefore G has exactly 2(n − 1) arcs.

(d) Assume that G is complete with at least 3 vertices. If G is cycle-balanced, it is obvi-
ous that each three-cycle is balanced. So we only need to prove that if each three-cycle
is balanced, then each k-cycle with k � 4 is also balanced. We prove it inductively in
k. When k = 3, it is true from the assumption. Suppose it is true for any k-cycle with
k � m, we show it is true for k = m + 1. Let C be a cycle with length m + 1. Without
loss of generality, we assume that C = (1, 2, . . . , m, m + 1, 1), namely, a cycle connecting
vertices 1, 2, . . . , m, m + 1, 1 consecutively. Since G is complete, we have am1 > 0 and
a1m > 0. From the inductive hypothesis, the m-cycle C1 = (1, 2, . . . , m − 1, m, 1) and the
three-cycle C2 = (1, m, m + 1, 1) are both balanced. Hence am1a1mw(C) = w(C1)w(C2) =
w(−C1)w(−C2) = am1a1mw(−C), which implies that w(C) = w(−C). �
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