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ABSTRACT. In this paper we give alternative and shorter
proofs of three theorems of Chetwynd and Hilton. All these
three theorems have been widely used in many research papers.

1 Introduction

Throughout this paper, all graphs are finite, simple and undirected. Let
G be a graph. We denote its vertex set, edge set, order, size, minimum
degree and maximum degree by V(G), E(G), |G|, e(G), 6(G) and A(G),
respectively. We use 7G to denote vertex-disjoint union of r copies of
a graph G. If z € V(G), we use Ng(z) ( or simply N(x) ) to denote
the neighbourhood of z and dg(z) ( or simply d(z) ) the degree of z. If
A C V(@) we use N(A) to denote the neighbourhood of A and use G — A
(or simply G — z if A = {z} ) to denote the graph obtained by deleting
the set of vertices A and its incident edges from G, and if A and B are
disjoint subsets of V(G) we use eg(A, B) ( or simply eg(z,B) if A = {z}
) to denote the number of edges joining A with B. If F C E(G) we use
G —F to denote the graph obtained by deleting F' from G. For z,y € V(G),
we write zy € E(G) if ¢ and y are adjacent in G. We use K,, and O,, to
denote the complete graph and null graph of order n, respectively. The join
G + H of two vertex disjoint graphs G and H is the graph having vertex
set V(G)U V(H) and edge set E(G)U E(H) U {zy|z € V(G),y € V(H)}.
Vertices of maximum degree in G are called major vertices and others are
called minor vertices. We write G = i{'i3? ---i,* if G has n; vertices of
degree i;, where j =1,---,A.

An edge colouring of a graph G is a map ¢ : E(G) — C, where C' is
a set of colours, such that no two adjacent edges receive the same colour.
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The chromatic index x'(G) of G is the least value of |C| for which an edge-
colouring ¢ : E(G) — C exists. A well-known theorem of Vizing [9] states
that, for any simple graph G, A(G) < x'(G) < A(G) + 1. A graph G is
called Class 1if x'(G) = A(G) and is called Class 2if X'(G) = A(G) + 1.

The core G of a graph G is the subgraph of G induced by the major
vertices of G. We use da(v) to denote eg(v, V(Ga)\{v}). If G is a con-
nected Class 2 graph having A(G) = A and x'(G—e) < x'(G) for each edge
e € E(G), then G is said to be A-critical. From Vizing’s Adjacency Lemma
( see Lemma 2 below ) we know that if G is A-critical, then |Ga| > 3.

In this paper we give alternative and /or shorter proofs of three theorems
of Chetwynd and Hilton ([2], [3]). The original proof of Theorem 1 used
a result of Chetwynd and Yap [5], whose proof is very tedious. Our proof
given here do not use the result of [5]. The proofs of Theorem 2 and
Theorem 3 given here are much shorter than the original proofs given by
Chetwynd and Hilton. The proof of Theorem 4 given here is basically
Chetwynd and Hilton’s original proof. We include it here because it is
more widely used than Theorem 2 and Theorem 3.

2 Preliminary results

In this section we give a list of results which we shall apply in the next
section. The proofs of Lemma 1 to Lemma 5 can be found in [10] and the
proofs of Lemma 6 and Lemma 7 can be found in many textbooks on graph
theory.

Lemma 1 [8]. For any simple graph G,
X'(G) < A(G) +1.

Lemma 2 [9]. Let G be a A-critical graph and let vw € E(G) where
d(v) = k. We have

(i) if k < A, then da(w) > A -k +1;
(1) if k = A, then da(w) > 2;

(i) |Ga| > A — §(G) + 2; and

(i) |Gal > 3.

Lemma 3 [8]. Let G be a Class 2 graph. Then G contains a k-critical
subgraph for each k satisfying 2 < k < A(G).

Lemma 4 [1]. There are no regular A-critical graphs for any A > 3.

Lemma 5 [2]. Let e = vw be an edge of a graph G. Suppose da(w) = 1.
Then A(G — w) = A(G) implies that x'(G — w) = X'(G).
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Lemma 6 [6]. If G is a simple graph of order n > 3 and §(G) > %, then
G has a Hamilton cycle.

Lemma 7 [7]. A graph G has a perfect matching if and only if
o(G - 8) < |S| for all S C V(G),
where o(G — S) denotes the number of odd components of G — S.

Let J; be a graph of order s and let Gy = Js + Os42. Let G denote
a spanning subgraph of Gy such that each vertex of Oy, is joined to at
least s — 1 vertices of J; and at least one vertex of O, is joined to exactly
s — 1 vertices of J;.

Lemma 8. A connected graph G of even order 2n has a 1-factor if

(i) 6(G) > n — 1 except when G = Gy ;

(i) 6(G) = n — 2 except when G = Gy or G = 3K3 + K;.
Proof. Suppose G has no 1-factor. Then by Tutte’s theorem, there exists
S C V(G) such that o(G — S) > |S| = s. Since |G| is even, o(G — S) and

|S| have the same parity. Hence o(G —S) > s+ 2 and so s + (s +2) < 2n.
Consequently

n>s+1 (1)

Let G; be an odd component of G — S with minimum order among all the
odd components of G — S. Then |G| < 23"+"2’ . Hence 6(G) < d(z) <

2:;2“ — 1+ s for any z € V(G;). Now we consider two cases separately:

Case 1. §(G) >n—1. Thenn—1<§(G) < 23";2’ — 1+ s together
with (1) implies that s = n — 1 and thus G = Gj.

Case 2. §(G) = n — 2. Suppose there exists ¢ € V(G;) such that
n —2 < d(z) or d(z) < 2252 — 1+ 5. Then

s+2
2n — s
-1< < -1
n <d(z) < s +s
or 5
n—s
-2<d(z) < —24s.
n <d(z) < 308 +s

However, each of these two inequalities together with n > s + 1 imply that
n = s+ 1 and thus G = Gj,.

So we may assume that for any z € V(G,),

b -
n—2:d(:1:)=sn+2s-l+s (2)
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However, from (2) we have |G| = 2;‘;23 and
ns = s +2s +2. (3)

Clearly, (3) does not hold forn =s+2and n=s+1. If n > s+ 3, then
(3) implies that s S 2. If s = 2, then from (3) it follows that n = 5. Hence

Gy 2;‘+23 = i +‘2 N Wthh contradicts the fact that |G| is odd. If
s =1, then from (3) again, we have n = 5 and thus G = 3K3; + K. o

3 Proofs of theorems

Theorem 1 [2]. Let G be a connected graph of order n with A = A(G) > 3.
Suppose |Ga| = 3. Then G is Class 2 if and only if G = (n—2)"3(n—-1)3
( and thus n is odd ).

Proof. Sufficiency. We have 2e(G) = 3(n—1)+(n—3)(n—2) = (n—1)2+2.
Hence e(G) = 251 (n— 1)+ 1> |3JA and so G is Class 2.

Necessity. Suppose G has three major vertices ( a, b and ¢ say ) and
is Class 2. By Lemma 3, G contains a A-critical subgraph H. By Lemma
2(iv), H has the same three major vertices a, b, c. By Lemma 2(iii) and
Lemma 4, §(H) = A — 1. Thus H = G. Since |Ga| = 3, A must be even,
and thus n is odd.

We next show that A = n — 1. By Lemma 2(i), da(v) > 2 for each
vertex v of G. Hence by counting the number of edges joining A = {a, b, c}
with V(G)\A4 in two different ways, we have 2(n — 3) < 3(A — 2). Hence

2

A= 3" (4)
For n = 5 and n = 7, using (4) and the fact that A is even, we have
A =n— 1. Hence we assume that n > 9. Suppose A < n — 1. Then G has
a vertex d ¢ N(a). Let G' = G — {a,b,d}. Then |G'| =n —3. Since n > 9,
we have §(G') > (A—-1) -3 > 2n -4 > 253 _ 1. By Lemma 8(i), G’
has a 1-factor F' except when G’ = Gy. However, when G’ = G, we have
2s+2—n—3and3—6(Go) =6(G') > A—4> 23 _ 1, from which it
follows that s = 255 and A = P n=3 + 3. Since the degree ofdis A —1 and
d is adjacent to only two major vertlces therefore d is adjacent to A — 3
minor vertices in G. Thus G’ has at most A —3 = 253 = s + 1 vertices of
degree A — 4 = s, which contradicts the fact that Gy has s + 2 vertices of
degree s.

The above shows that G' has a 1-factor F. Now G* = G — (F U {ab})
is Class 2. Since a is adjacent to only one major vertex ¢ in G* and
A(G* —a) = A(G*) = A -1, by Lemma 5, x'(G* — a) = x'(G*). Finally,
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since G* — a has only two major vertices, by Lemma 2(iv), x'(G* — a) =
A — 1. Hence x'(G) = X'(G* —a) + 1 = A, which is a contradiction.
Consequently A =n — 1. -

Theorem 2 [3]. There does not exist any A-critical graph of even order
having four magjor vertices.

Proof. Suppose such a A-critical graph G exists. Clearly, A > 3. Assume
that 2n = |G| is minimum among all graphs G which are A-critical and
having |Ga| = 4, and A is minimum among all such graphs of order 2n.
Let a, b, ¢, d be the four major vertices of G and let A = {a,b,c,d}. By
Lemma 4, G can not be regular. By Lemma 2(iii), 4 > A — ¢ + 2, where
6 = 6(G). Hence

et (5)
<

By Lemma 2(i), da(v) > 2 for any vertex v € V(G) and so 2(2n — 4)
ec(A,V(G)\A) < 4(A —2). Hence A > n and by (5),

6>A—-2>n-2 (6)

We first prove that G has a 1-factor F. Suppose é =n — 2. Thenn — 2 =
6 > 2 and (6) imply that n > 4 and A = n. Let u € V(G) be such
that d(u) = n — 2. By Lemma 2(i), each vertex in N(u) is adjacent to at
least three major vertices. Now 3(n — 2) + 2(2n — (n — 2)) < 4A = 4n
implies that n < 2, which is a contradiction. Hence § > n — 1. By Lemma
8(i), G has a 1-factor unless G = Gy. However, when G = Gy, we have
A —§=A(Gy) — 6(Go) > 4 ( because all the major vertices of G are in J
), which contradicts (5). Hence G has a 1-factor F. Clearly, G* = G — F
is Class 2 and Ng+(A) = V(G*). By Lemma 3, G* has a (A — 1)-critical
subgraph H, which has at most four major vertices a, b, ¢, d. Suppose H has
four major vertices. Then Ng«(A) = V(G*) implies that V(H) = V(G*)
and thus H is a (A — 1)-critical graph of order 2n, which contradicts the
assumption that A is minimum among all graphs G of order 2n which
are critical and having four major vertices. Hence H has three major
vertices. By Theorem 1, |H| # |G*| and thus Ng«(A4) = V(G*) implies
that there is only one vertex in V(G*)\V (H). Hence, by Theorem 1 again,
2n— 1= |H| = A(H) +1 = A. Since Ks, is Class 1 and G C K>, with
A(G) = 2n — 1, G must also be Class 1, which is a contradiction. o

Theorem 3 [3]. Let G be a graph of odd order 2n +1 > 5 with A =
A(G) > 3. Suppose G is A-critical and |Ga| = 4. Then e(G) = nA + 1.

Proof. By Lemma 2(ii), da(v) > 2 for any v € V(G), which implies that
2(2n + 1) < 4A. Hence

A>n+1 (7)
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It is known that there are three critical graphs of order 5. Beineke and
Fiorini [1] had determined all the critical graphs of order 7. ( for proofs
of these results, see also Theorem 6.6 and Theorem 6.9 in [10] ) All these
graphs are of size nA + 1. Hence this theorem is true for n = 2, 3.

We shall now prove this theorem by induction on A. Thus by (7) this
theorem is true for A = 3, 4. Now we can assume that n > 4 and thus
A>n+12>5.

Let a, b, ¢, d be the four major vertices of G, A = {a,b,c,d}, and
6 = §(G). Since |Ga| = 4, by Lemma 2(iii),

6>A -2 (8)
By Lemma 4, § # A. Hence we have two cases to consider.

Case 1. § = A - 2. Let z € V(G) be of degree A — 2. By Lemma
2(i), each of the A — 2 neighbours of z is adjacent to at least three major
vertices of G. Hence

3(A-2)+2((2n+1) - (A -2)) <4A
from which it follows that

A> gn (9)

Now by putting n > 4 into (9) we obtain
A>n+2 (10)

Applying (8) and (10), we have §(G —z) > A —3 > n — 1. By Lemma
8(i), G — = has a l-factor F' except when G — z = Gy. However, when
G — z = Gy, we have A C V(J;) and thus A(Gg) — 6(Gy) > 4, which
contradicts the fact that 3 =A - (A -3) > A(G — z) — §(G — z). Clearly
G* = G - F is Class 2 and Ng-(A) = V(G*). By Lemma 3, G* contains a
(A — 1)-critical subgraph H, which has at most four major vertices a, b, ¢
and d. Suppose H has three major vertices. Since da(v) > 2 for any v € 4,
we have A C V(H). By Theorem 1, §(H) = A(H) — 1. Also by Theorem
2, |G*| - |H| # 1. Now Ng-(A) = V(G*) implies that V(H) = V(G*) and
thus 2n+1=|G*| = |H| = A(H)+1=(A -1)+1 = A, which is false.
Hence H has four major vertices. Now Ng-(A) = V(G*) also implies that
V(H) = V(G*). By the induction hypothesis on A, e(H) = n(A — 1) + 1.
Consequently e(G) > e(H)+n = (n(A-1)+1)+n =nA + 1. Since G is
A-critical, e(G) < nA + 1. Therefore e(G) = nA + 1.

Case 2. § = A — 1. We shall prove this case by contradiction also.
Suppose e(G) < nA. Then 4A + (2n — 3)(A — 1) = 2¢(G) < 2nA, from
which it follows that

Aisodd and A <2n -3 (11)
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We consider two subcases separately.
Subcase 2.1. G has a minor vertex w such that da(w) = 2.

Suppose A > n+2. Let we, wd € E(G). By (11),d(w) = A-1 < 2n—4.
Hence G has a minor vertex z such that wz ¢ E(G). Let G' = G—{w, z,d}.
Then A(G') > A-2and §(G') > (A-1)-3=A-4>(n-1)-1,by
Lemma 8(i), G’ has a 1-factor F except when G’ = Gy. However, when
G' = Gy, we have s=n — 2 and s = §(Go) = 6(G') > A — 4, from which
it follows that A = n + 2. Since w is adjacent to A — 3 minor vertices
in G, therefore G' has at most A —3 = n — 1 = s + 1 vertices of degree
A — 4 = n — 2 = s, contradicting the fact that Gy has s + 2 vertices of
degree s. Hence G — z has a 1-factor FU{wd}. Now G* = G — (F U {wd})
is Class 2 and Ng-(A) = V(G*). Observe that the major vertices of G* are
a, b, ¢, d, . Since w is adjacent to only one major vertex ¢ in G*, we have
A(G* —w) = A(G*) = A — 1. By Lemma 5, x'(G* — w) = x'(G*). Hence
by Lemma 3, G* — w contains a (A — 1)-critical subgraph H, which has at
most four major vertices a, b, d, z. Let S = Ng-(w)\A. Since da(w) = 2,
|S] = A - 3.

Suppose SNV (H) # ¢. Then §(H) < (A-2)-1=A(H)-2. By
Theorem 1, H can not have only three major vertices. Hence H has four
major vertices. By Lemma 2(iii), we have §(H) = A(H) — 2. Hence, by
the induction hypothesis on A, 2e(H) = (|H| — 1)A(H) + 2. Suppose H
has at least two vertices of degree A(H) — 2. Then (|H| - 1)A(H) +2 =
2e(H) < 2(A(H)-2)+(|H|—6)(A(H)—1)+4A(H), from which it follows
that |[H| < A(H), which is false. Hence H has only one vertex of degree
A(H) — 2. Since da(c) > 2, we have ¢ € V(H) and thus A C V(H). Next,
since every vertex in S NV (H) is of degree A(H) — 2 in G* — w, the only
vertex of degree A(H) — 2 in H must be a vertex in SN V(H). Hence
dp(c) = A(H) — 1. Finally Ng+(A) = V(G*) implies that Ng«_,(A) =
V(G* — w). Since A C V(H), we have V(H) = V(G* — w). Consequently,
|H| = |G* — w| = 2n, which contradicts Theorem 2.

Suppose SNV(H) = ¢. Then A =A(H)+1< |H| L |G*—w|—|S| =
2n — (A — 3), from which it follows that A < n + 1, which contradicts the
assumption that A > n + 2.

By (7), it remains to consider the case that A = n + 1. Suppose G
has ¢ vertices v such that da(v) > 3. Then 3t +2((2n +1) — t) < 4A =
4(n + 1) implies that ¢ < 2. From this, it also follows that §(Ga) = 2.
Let a,b,c € A be such that da(a) = 2 and ab, ac € E(G). By (11),
[VIGI\(N(a)UA)| > (2n+1)—(n+2) =n—12> 3. Now t < 2 implies
that there exists z € (V(G)\A) satisfying za ¢ E(G) and da(z) = 2. Let
G' =G - {z,a,b}. Clearly, §(G') > A -4 =(n—-1) -2, by Lemma 8, G’
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has a 1-factor F' except when G’ = Gy, Gy or 3K3+ K;. f G’ = 3K3+ K,
then (2n+1)—3 = 10 implies that n = 6 and thus A = 7, which contradicts
the fact that A(3K3 + K;) =9. If @' = Gy or G}, then s = n — 2. Since
ad ¢ E(G), we have dg/(d) > A -2 = s+ 1, and sod € V(J,). Let
Y =G — V(Oy42). Suppose ¢ € V(Oy42). Observe that eg(v, A\{c}) > 1
for any v € V(Y). Thus e(Y) > s+ 2. Now (s+1)(A-1)+A <
e(V(Os42),V(Y)) < 3A+s(A—1) —2¢(Y) implies that A > 2n — 1, which
contradicts (11). Hence ¢ € V(O,42). Since da(v) > 2 for any v € V(G),
we have e(Y) > 2s + 2. Again, (s + 2)(A — 1) < e(V(0s42),V(Y)) <
4A + (s —1)(A —1) — 2e(Y) implies that A > 2n + 1, which is impossible.
Consequently, G — z has a 1-factor F U {ab}.

Clearly, G* = G — (F U {ab}) is Class 2. Since a is adjacent to only
one major vertex c in G*, we have A(G* —a) = A(G*) = A - 1. By
Lemma 5, x'(G* — a) = x'(G*). Hence by Lemma 3, G* — a contains a
(A — 1)-critical subgraph H, which has at most three major vertices b, d
and z. Since da(c) > 2, c € V(H). By Theorem 1, z is adjacent to every
vertex in H and in particular zb, zc, zd € E(H). Thus da(z) > 3 in G,
which contradicts the fact that da(z) = 2.

Subcase 2.2. For any minor vertex v of G, da(v) > 3.

By Lemma 2(i), 3((2n + 1) — 4) < 4(A — 2). Hence 4A > 6n — 1. This
together with (11) implies that » > 6 and A > n + 3. By (11), G has
a minor vertex y which is not adjacent to d. Let db, dc € E(G) and let
G' = G- {y,d,b}. Then §(G') > (A—1)—3>n—1, and thus by Lemma
6, G' has a 1-factor F;. Now G” = G — (F; U {db}) is Class 2 and having
five major vertices a, b, ¢, d, y of degree A — 1. Clearly, Ngu(A) = V(G").

Suppose da(d) = 2. Then d is adjacent to only one major vertex ¢ in
G" and A(G" — d) = A(G"). By Lemma 5, x'(G" — d) = x'(G"). Hence,
by Lemma 3, G" — d contains a (A — 1)-critical subgraph H, which has
three major vertices a, b, y. However, since da(y) > 3 and dy ¢ E(G),
y must be adjacent to a, b, c. Hence, ¢ € V(H). Again, since da(v) > 3
for every minor vertex v of G, we have V(H) = V(G" - d) and thus
|H| = |G"| — 1 = 2n, which contradicts Theorem 1.

Suppose da(d) = 3. Since A > n+ 3 > 7, G has at least another
minor vertex z not adjacent to d. Thus §(G" — {a,d,z}) > (A-2) -3 >
(n = 1) — 1. By Lemma 8(i), G" — {a,d, z} has a 1-factor F5 except when
G" —{a,d, z} = Go. However, when G" — {a,d, 2z} = Gy, we have s = n —2
and s = 6(Go) = 6(G" — {a,d,z}) > (A —2)—3 > n — 2, from which
it follows that A = n + 3. As z is adjacent to A — 4 minor vertices in
G, G" —{a,d, 2z} has at most A —4 = n — 1 = s + 1 vertices of degree
A -5 = n -2 = s, contradicting the fact that Gy has s + 2 vertices of
degree s.



Clearly G* = G" — (F, U {da}) is Class 2 and having six major vertices
a, b, ¢, d, y and z. Morever, since da(v) > 3 for any minor vertex v of
G, we have Ng«(A) = V(G*). As d is adjacent to only one major vertex
c in G* and A(G* —d) = A(G*), by Lemma 5, x'(G* —d) = x'(G*).
Hence, by Lemma 3, G* — d contains a (A — 2)-critical subgraph H, which
has at most four major vertices a, b, y, z. From (11), we know that A is
odd. Hence by Theorem 1 and Theorem 2, |H| # A(H)+1= A —1. Thus
|H| > A(H)+2 and H has four major vertices. By the induction hypothesis
on A, 2¢(H) = (|H| — 1)A(H) + 2. Suppose §(H) < A(H) — 2. Then
(IH|-1)A(H) +2 = 2e(H) < (A(H) - 2) + (|H| - 5)(A(H) — 1) + 4A(H),
from which it follows that |H| < A(H)+ 1, which contradicts the fact that
|H| > A(H) +2. Thus §(H) = A(H) — 1. Now dg+_q(v) < A -4 =
A(H) —2 for any v € (N(d)\A) implies that (N(d)\A) NV (H) = ¢. Thus
A =A(H)+2 < |H| £|G* —d| — |N(d)\A4|, from which it follows that
A < n+ 1, contradicting the fact that A > n + 3. -

Corollary 4. Let G be a A-critical graph of order 2n + 1 with |G| = 4.
Then either (i) G = (2n — 2)>"3(2n — 1)* or (i) G = (2n — 2)(2n —
1)211—4(2,"‘)4.

Proof. Since G is A-critical, by Lemma 2(iii), we have § > A —2. Now we
want to show that G has at most one vertex of degree A — 2. Suppose G
has at least two vertices of degree A —2. Then by Theorem 3, 2(nA +1) =
26(G) = ¥yey(q)do(v) < 2(A —2) + (20 +1) - 6)(A - 1) +4A =
2nA + A — 2n + 1, from which it follows that A > 2n + 1, which is false.
Hence

(i) G= (A -1)3A% or (ii) G = (A - 2)(A — 1)»4A4
By Theorem 3 again, we have
(i)G=(2n-2)"32n-1)*or (ii)) G = (2n - 2)(2n - 1)2*~4(2n)*. @

Theorem 5 [4]. Let G be a connected graph and A = A(G). Suppose
|Ga| = 4. Then G is Class 2 if and only if, for some n, either (i) G =
(2n — 2)=3(2n — 1)4, or (i) G = (2n — 2)(2n — 1)>»~4(2n)4, or (iii)) G
contains a cut-edge e such that G — e is the union of two disjoint graphs
G and G, where G, is A-critical and satisfies G; = (2m — 1)?™~2(2m)3
or G1 = (2m — 2)(2m — 1)?>™—4(2m)*.

Proof. Sufficiency. If (i) or (ii) holds, then e(G) = nA +1 > [I€l|A. It
(iii) holds, then e(G1) = 2m?* +1 > Ll%’-lJA In either case G is Class 2.

Necessity. Suppose G is Class 2. If G is A-critical, then by Corollary 4,
(i) or (ii) holds. Suppose G is not critical. Then by Lemma 3, G contains
a A-critical subgraph G, which has at most four major vertices. If G;
has three major vertices, then by Theorem 1, G; = (2m — 1)>™~2(2m)?
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for some m. Since A(G) = A(G1) = 2m, §(G1) = 2m — 1 and G has four
major vertices, G has exactly one edge e joining G; with G —V(G). Since
G is connected, G, = G — V(G;) must also be connected. Thus e is a
cut-edge of G' and the end vertex of e in G is a major vertex of G.
Suppose G has four major vertices. Then by Corollary 4, G; = (2m —
2)(2m — 1)>™~4(2m)* for some m. Thus G, = G — V(G,) is joined to G5
by exactly one edge (e say). @

Final Remarks. We are writing a paper on A-critical graphs G having
|Gal =5.
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