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ABSTRACT. In an earlier paper [11], we proved that there does
not exist any A-critical graph of even order with five major
vertices. In this paper, we prove that if G is a A-critical graph
of odd order 2n-+ 1 with five major vertices, then e(G) = nA+1.
This extends an earlier result of Chetwynd and Hilton, and
also completes our characterization of graphs with five major
vertices. In [9], we shall apply this result to establish some
results on class 2 graphs whose core has maximum degree two.

1. Imtroduction

Throughout this article, all graphs we deal with are finite, simple, and
undirected. We use V(G), |Gl; E(G), e(G), A(G), and &(G) to denote
respectively the vertex set, order, edge set, size, maximum degree, and
minimum degree of a graph G. We also use Kn, On, Cn, GUH, and 7G to
denote respectively the complete graph of order n, null graph of order n,
cycle of order 1, union of two vertex-disjoint graphs G and H, and vertex-
disjoint union of r copies of a graph G- The join G+H of two vertex-disjoint
graphs G and H is the graph with the vertex set V(G)UV:(H ) and edgf: set
E(G)UE(H)u{zylz € V(G),y € V(H)}. Vertices of maximum degree in G
are called major vertices and others are called minor vertices. We write G=
i714% .18 if 7 has n; vertices of degree i, where j =1,---,A = A(G).
It oy € V{G), we use No(z) (or simply N(@), Nzl = N() {z}, do(2)

(or simple d(z)), and dg(z,y) to denote respectively the neighborhood f’f
distance between z and yin

x, cl i f z, d ee of z, and
close neighborhood of z, degr GozifA= (z}) to denote the

G.If ACV(G), weuse G— A (or simply
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graph obtained by deleting the set of vertices A from G, and use G[A] (or
simply G[z1,%2,---,zx] if A= {21,Z2,---,Zx}) to denote the subgraph of
G induced by A. If A and B are disjoint subsets of V(G), we use eg(4, B)
(or simply eg(z, B) if A = {z}) to denote the number of edges joining A
with B. If F C E(G), we use G — F to denote the graph obtained by
deleting F from G. '

An edge-colouring of a graph G is a map 7 : E(G) — C, where C isa
set of colours, such that no two adjacent edges receive the same colour. If
7 is an edge-colouring of G with |C| = k, then 7 is called a k-colouring of
G. The chromatic indez X'(G) of G is the least value of |C| for which an
edge-colouring 7 : E(G) — C exists. A well-known theorem of Vizing [1?]
states that, for any graph G, A(G) < x'(G) < A(G) +1. A graph G is
said to be of class i, where i = 1, 2, if x'(G) = A(G) +i—1. A graph G is
overfull if e(G) > AI_L?J +1. It is easy to see that if G is overfull, then G
is of class 2.

The core G of a graph G is the subgraph of G induced by the major
vertices of G. We use da(v) to denote the number of major vertices of
G adjacent to v. If G is a connected class 2 graph with A(G) = A and
X'(G — €) < X'(G) for each edge e € E(G), then G is said to be A-critical.
From Vizing’s Adjacency Lemma (abbreviated as VAL) (see Lemma 2.2
below) we know that if G is A-critical, then |Ga| > 3.

In an earlier paper [11], we proved the following result.

Theorem 1.1. There does not ezist any A-critical graph of even order
with five major vertices.

In this paper, we shall apply Theorem 1.1 (together with many other
results) to prove Theorem 1.2, which is an extension of a result of Chetwynd
and Hilton (see {4] and [5]). ' '

Theorem 1.2. Let G be a graph of odd order 2n + 1 > 7 with mazimum
degree A > 3. Suppose G is A-critical and |Ga| = 5. Then e(G) = nA+1.

kThe graph G of Fig.1 is obtained from the Petersen graph by removing
one vertex. Observe that G is 3-critical with six major vertices, and e(G) =
12 < 4x3+1, which indicates that Theorem 1.2 cannot be further extended
in general. : ol , -
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Fig. 1. G

2. Some useful results

In this section we give a list of results which we shall apply later. Proofs of
Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 can be found, for instance, in [14]. Lemma
2.6 to Lemma 2.8 were due to Chetwynd and Hilton ([41,5)). Alterna-
tive/shorter proofs of these results and a proof of Lemma 2.10 can be
found in Yap and Song [15]-

Lemma 2.1 [12]. For any groph G, X¥(G) < AG) +1.

Lemma 2.2 [13]. Suppose G is & A-critical graph and vw € E(G), where

d(v) = k. Then
(i) da(w) > A—k+1ifE<B;
(ii) da(w) > 2 ifk=8; ;
(iii) |Ga] > maz{3,A — 5(G) +2}-
Lemma 2.3 [12]. Let G be a class 2 graph. Then G contains a k-

subgraph for each k satisfying 2 <k < A(G)-

Lemma 2.4 [8]. There are no regular A-critical graphs for any A 2 3.
h G. Suppose da(w) = 1.

Lemma 2.5 [5]. Lete — yw be an edge of 6 groph &
Then A(G — w) = A(G) implies that Y (G -w) =X(G)

Lemma 2.6 [5]. LetG be a connected graph of order'n with A= ‘3.(36) >
3. Suppose |Gal =3- Then G is of class 2 ifand onlyif G = (n\-—2) (n—
1)3 (andthusnisodd). ‘ o e DT -

' Lemma 2.7 [4]- There does not erist any A-
“with four major vertices. . B
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Lemma 2.8 [4]. Let G be a A-critical graph of order 2n+1 with |Ga| = 4.
Then either

(i) G 2 (2n - 2)>=3(2n - 1)* or (i) G = (2n — 2)(2n — 1)27—4(2n)".
In particular, e(G) = nA + 1.

Lemma 2.9 [7]. If G-is a graph of order n > 3 and 6(G) > 8, then G
has a Hamilton cycle.

Let J, be a graph of order s and Gy = J, + O,42, and let Gy be a

- spanning subgraph of G such that each vertex of 0,42 is joined to at least

s —1 vertices of J, and at least one vertex of O, is joined to exactly s —1
vertices of J,.

Lemma 2.10 [15). A graph G of order 2n has a 1-factor if

(1) 6(G) > n — 1 ezcept when G = G,.

(i) 6(G) = n — 2 ezcept when G = Gy or G =3K3 + K;.
Lemma 2.11 [10]. Let G be a graph of order 2n. If6(G) > n+|Gal -2,
then G is of class 1. .

We observe that by following the proof of Lemma 2.11 given i{l (10]
and choosing two nonadjacent major vertices z; and z, of G, we obtain the
following result.

Lemma 2.12. Suppose G is a graph of order 2n and Ga has a mazima;
matching M = {z12r, 222r—1,--%, 22414}, where r = |Gal, k > 2, an
2123 € E(G). If 6(G) > n+|Ga| — 3, then G is of class 1.

Lemma 2.13. Suppose G is a A-critical graph of order 2n + 1 > 11 with
IGAl =5 and §(G) < A~2. Letz € V(G) be such that d(z) = 6(G). Then
G — z contains a 1-factor.

Proof. Let 6 = §(G), and let A be the set of major vertices of G By
VAL, 5=|Ga| >A-6+2,ands0 A—3 < § < A —2. By VAL again, for

any v € N(z), da(v) > A — 5+ 1. Hence by counting the number of edges
incident with A in two different ways, we have

(A—6+1)5+2((2n+1) — 6) < 5A. o

Furthermore, if there is a vertex u € N (z) such that d(u) = 4, then for a.ny
v € N[z}, da(v) > A - § + 1, and we have the following better inequality:

(A-S+ D+ +2(2n+1)— (§+1)) <5A. ()
We néxt show that J(G;x) 211—-2. v a , , ;
+1. Hence, if
3>n-2 00

Suppose § = A — 3. Then (1) implies that A > n
dv) > A —2forany v € N(z), then §(G —z) > A —



the other hand, if d(v) = d for some v € N(z), then we need only to
consider the case A = n + 1. However, when A = n + 1, (2) implies
that n < 5 and thus A = n + 1 < 6, which contradicts the fact that

A-3=40=d(z)>da(z)>2A-d+1=4

Suppose § = A — 2. Then (1) implies that A > n. Hence, if d{v) 2>
A —1 for any v € N(z), then §(G —z) > A —2 > n— 2. On the other
hand, if d(v) = & for some v € N(z), then by (2), A > n+1, and again
§G-z)>A-3>n-2.

From the above discussion, we have the following observation:

A >n and A =n only if § = A — 2 and the equality in (1) holds.

By Lemma 2.10, G—z has a 1-factor except when G~z € {Go, Gy, 3K3+
K,}. However, since A(G —z) ~6(G—z) < A~ (-1 <4<6=
A(BK3+K,)-8(3K3+K,), wehave G-z # 3K+ K. Suppose G—z = Go
or G — z = Gj). Then s =n — 1. We next show that A C V{J,).

Suppose otherwise. Let a € ANV (Os42)- Since dg(a) = A > n=s+1,
we have az € E(G) and a is adjacent to every vertex v € V{(J,;). Now
A -1 =dg_.(a) < s, together with the inequality A > n = s+ 1, implies
that A = n — s + 1. Thus from the above observation, it follows that
8 = A ~2 and the equality in (1) holds. Since az € E(G) and the equality
in (1) holds, we have [ANV (/)] = dal@) =A—-6+1=23and G has
exactly § = A-2=n-2 vertices v with da(v) = A=48+1=3.
Moreover, these n — 2 vertices are all in N (z) and G has no vertex v with
da(v) > 4. Let B = V(Os42)\N(z). Since [N@z)=A~-2=n-2,we
have |B| > (s +2) —(n—2) = 3. If v € B is adjacent to every vertex of

Jy in G, then da(v) = ANV ()| =3, which contradicts the fact that all

the vertices v € V(G) with da(v) = 3 are in N(z). On the other hand, if

v € B is adjacent to s — 1 vertices of J, in G, then dg(v) =5 — 1=A-2.
However, since a € N(z) and a ¢ N(v), we have N(z) # N(v), and tht.xs
there exists w € N(v)\N(z) such that da(w) > A-(A --2) +1=3, again
contradicting the fact that all the vertices v € V(G) with da(v) = 3 are
all in N(z) and G has no vertex v with da(v) > 4. Hence A C V(J,) as

required.
" Finally, let Y = G — V(Ous2). Since A C V(J,), we have A C V(Y).
As for any u € N(z) N 4, dy(uv) 2 da(u) > 3, we have A(Y) > 3. This,
together with the fact that dy (v) > da(v) > 2 forany v € V(Y), implies
that e(Y) > s+2. Thus (s +2)8 < e(V(Ous2h, V) = Toeviryde(v) =
2¢(Y) < 5A+(s—5)(A—1)+0-2(s+2) = sA-3s+0+1 < 5(6+3)—3s+5+1,
and it follows that & < 1, which is false. Hence G-z # Go, Gp, and thu:

G — z has a 1-factor.
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3. Proof of Theorem 1.2

Proof. Let A = {wy, w2, w3, w4, ws} be the set of miajor vertices of G, let
B =V(G)\A4, and let § = §(G). As G is A-critical, we have

e(G) <nA+1. )

Since each v € V(G) is adjacent to at least two major vertices of G, we
have 2(2n + 1) < 5A. Hence

an+2

> .

A> 5 |

The results of Beineke and Fiorini [1] as well as Chetwynd and Yap [6] on

A-critical graphs of order 7 and order 9 confirm that this theorem is true
for n = 3,4. Hence, from now on, we assume that

4)

n > 5. (5)

We shall now prove this theorem by induction on A. For A < 4, by
(4), we have n < 4, and so this theorem is true. Hence, from now on, we
assume that A > 5. By VAL, 5 = |4] > A — § + 2, and it follows that

§>A-3. , | (6)

By Lemma 2.4, § # A. Hence, from (6), we have two cases to consider.
Case 1. 6 <A -2 '

Let z € V(G) be of degree §. By Lemma 2.13, G — z has a 1-factor F.
Clearly, G* = G — F is of class 2, A(G*) = A — 1 and Ng-(4) = V(G*)-
By Lemma 2.3, G* contains a (A — 1)-critical subgraph H with at most
five major vertices.

Suppose H has five major vertices. Then Ng- (4) = V(G*) implies
that V(H) = V(G*). Thus by the induction hypothesis on A, e(H) =
n(A - 1) +1, and so ¢(G) > e(H) +n =nA + 1. This, together with (3),
yields e(G) = nA + 1. . '

Suppose H has four major vertices, say ws, w3, ws,ws. Since for any
V€ V(G), da(v) > 2, we have z € V(H) and w; € V(H). We claim that
V(H) = V(G"). Suppose otherwise. By Lemma 2.7 and Lemma 2.8, |G*|—
|H1 > 2 and §(H) > A(H) —2 = A - 3. Since for any v € V(G)\V(H),
- da(v) > 2, we have vw; € E(G*). As dg(w;) > 6(H) > A — 3, it follows
that 2 < [V(G\V(H)| < d-(w1) — dg(w) < (A-1)— (A—3) = 2
~Thus, [V(G*)\V(H)| = 2 and dy(w,) = A — 3. By Lemma 2.8 agail,
A=AHEH)+1=|H|=(2n+1)-2=2n~1 > 9 (by (5)). Now let



y € V(G*)\V(H). Then da(y) = 2 (otherwise H has at most three major
vertices) and thus dg(y) > 6 > A — 3 > 6. This, however, implies that H
contains another vertex v’ # w such that dg(v') < A—3 = A(H)~2, which
contradicts Lemma 2.8. Hence V(H) = V(G*) as claimed. By Lemma 2.8,
e(H) = n(A — 1) + 1, and so &(G) > e(H) +n > nA + 1. This, together
with (3), yields e(G) = nA + 1.

Suppose H has three major vertices, say w1, w2 and wz. By Lemma
2.6, 6(H) = A(H) — 1, |H| is odd, and |H| = A(H) +1= A <|G|. Let
U = V(G*)\V(H). Then |U| (> 2) is even. Since w; (i = 1,2, 3) is adjacent
to every other vertex of H in G*, we have {wlul,w2U2,w3u3} C F, where
uy ,us, and us are distinct vertices in U. Hence |U] > 4. As each minor
vertex v(s# z,ws,ws) of H is of degree A — 1in G, we have

eg- (fwi, we,ws},U) =0 and ec-(V(H)U) <2 (0

Suppose A C V(H). Then the fact that da(u) > 2for any u € U implies
that eg- (U, A) > 4, contradicting (7). Hence ANU #¢. Letws € AnU.
Then da (ws) = 2 (otherwise H cannot have exactly three major vertices),
ws € {uy,us,us}, and wswy € E(G*). Since da(ws) = 2 and d(z) =48 <
A~ 2, by VAL, wsz ¢ E(G). Thus {wy,ws,ws} N N(z) # ¢, which in
turn implies that £ € V(H) (otherwise eg- ({wi, w2, w3}, U) # 0, which
contradicts (7)). Hence, by VAL, da(w;)) > A—d(z)+123, from which
(by (7)) it follows that wy € V.(H)- ~

Finally, by (7), we have [U| ¥ 6. Hence U] = 4and A = |Hf =
2n+1)—U}=2n-32>7 (by (5)). However, as ws € U, |U] =4 and
eg-(V(H),U) < 2, we have A = de(ws) < 5,2 contradiction.

Case 2. =A -1

Suppose (G) < nA. Then ((2n+ 1)-5)(A-1)+54 = 2¢(G) < 2n4,
and it follows that , :

8

A s evenrand A<2n—-4.
Since A > 5, by (8),
A>6 (9)
We shall use the following claims to settle Case 2.
Claim 1. Suppose min{da(v):?v € B} >3. ThenGa = Ks.
Proof. We prove this claim by contradiction. Suppose 8(Ga) < 3- Then,
_byVAL,2_<__6(GA)S3-_ o R e




Suppose 6(Ga) = 2. Let w; be such that da(w;) = 2 and let wyws,
wiw; € E(G), where da(w2) > da(ws). By (8), G has a minor vertex, say
u, such that wyu ¢ E(G). We next show that G' = G — {w;,w;,u} has a
1factor F.

Since for any v € B, da(v) > 3, by VAL, 3((2n +1) — 5) < 5(A - 2).
This, together with (5), implies that

A>n+1. (10)

Hence 6(G’) > (A-1)—3 > (n—1) —2. By Lemma 2.10, G' has a 1-factor
F except when G' € {Gy,G},3K3 + K, }. However, since A(G') —6(G') <
4 < 6= ABK; + K,) — 6(3K; + K,), we have G’ # 3Ks + K,. Suppose
G'=GporG'=Gj. Then2s+2=(2n+1)—3and A—4 < §(G') <5,
and it follows that s =n—2and A < s+ 4. Let Y = G — V(Os42)-
Then |Y| = 5+ 3 and wy,w; € V(Y). Since wywy, wyws ¢ E(G), we have
do'(wi) > A—2>s+1,i = 4,5 Thus wy,ws € V(J,) C V(Y). I
w3 € V(Os42), then A —3 < dgv(w3) < s =n—2 < A—3 (by (10),
which implies that ws is adjacent to all the vertices of V(Y) in G. Hence
da(wz) > da(ws) = 4. By VAL, 3((2n + 1) — 5) < 3(A — 2) + 2(A — 4)-
This, together with (5), implies that A > n + 2, a contradiction. Hence
wz € V(Y). We now have 4 C V(Y) and |V(Y)\A| = s — 2. Since for
any v € V(Y)\4, da(v) > 3, and by VAL, e(Ga) > 5, we have e(Y) >
3IV(Y)\A| +e(Ga) > 3(s —2) + 5= 35— 1. Now by counting the number
of edges joining V(0,42) and V(Y) in two different ways, we have -

(8+2)(A ~1) = ec(V(Ou12), V() < 5A + (s — 2)(A — 1) — 2e(Y)-

It follows that A > 2¢(Y) —4 > 2(33 —1) — 4 = 6s — 6, which, together
with the fact that A < s+ 4, yields 6s < 10, contradicting the fact that
$=mn-—22> 3. Hence G’ has a 1-factor F.

Clearly, G* = G — (F U {wyw,}) is of class 2, A(G*) = A -1, and
AU {u} is the set of major vertices of G*. Since w, is adjacent to only
one major vertex ws in G*, and A(G* = w;) = A(G*), by Lemma ?.5,
G* — w; is of class 2. By Lemma 2.3, G* — w, contains a (A — 1)-critical
subgraph H, which has at most four major vertices u,ws, w4, ws. BY (8)s
A is even, and so by Lemma 2.6 and Lemma 2.7, |H| = A(H) + 2= A+1
and 6(H) = A(H) — 1. Since for any v € Nwi)\4, dge -, v) =A—3=
A(H) — 2, we have v ¢ V(H). Thus (N(w;)\A) N V(H) = ¢. Hence
A+1=|H|<|G* ~w| - |N(uy)\A| = 2n — (A - 2), and it follows that
A < n, which contradicts (10). V ; ,

" Next suppose J(GA) = 3-fi‘~Then Ga o 3’243'01, GAE 3441, In either
case we can rename the major vertices, if necessary, so that wyw, ¢ E (G) P



(and wawy ¢ E(G) f Ga = 3441). By (8), there exist two minor vertices,
say z and y, of G such that zw;,yun ¢ E(G). Since da{y) > 3, by symme-
try of w3 and w,, we may assume that yws € E(G). Clearly, e(Ga) 2 8.
Now by VAL, 3(2n — 4) < 5A — 2¢(Ga), and it follows that -

A>n+2. (11)

Furthermore, if waws € E(G), then e(Ga) = 9. By VAL again, we have
the following better inequality: '

A>n+3. (12)

Now by (8) and (11), we have n 2> 6, and thus
A>n+2>8. (13)

We next show that G —z has a 1-factor F1 containing wywy and wsws, and
G — F, — y has a 1-factor F2 containing wiws.

Let G' = G —‘{z7w11w37w47w5}' By (11)1 J(Gl) 2 (A - 1) -5 2
(n — 2) — 2. Thus by Lemma 2.10, ¢’ has a 1-factor F’ except when
G' € {Go,Gh,3K3 + K1} However, since A(G') — 5(G") < 3, we have
G' # 3K;+K,. Suppose G' = Goor G' =Gp. Thens = n—-3and A-6<
8(G'") < s. This, together with (11), implies that s + 5<A<s+6. Let
Y = G—V(O,42). Then |[Y]=s+5 and {z,wl,ws,w4,w5} c V(Y). Since
wyws ¢ E(G), we have dgr(w2) 2 A—-4>s+1 Hencewz € V(Y). Thus
ACV(Y)and [VIY)\A| = (s +5) =5 =& As e(Ga) > 8and da(v) 23
for any v € V(Y)\A, we have e(Y) > VYAl + e(Ga) > 3s +8. Thus

(s+2)(A-1)= ec(V(0p42), V(Y)) =58 + (A~ 1) - 2e(Y),

and it follows that 6s + 14 < 3A, which, together with the inequality
A < s + 6, implies that 3s <4, contradicting the fact that s=n—322
Hence G' # Go, Gj, and G’ has a 1-factor F'. Let F1 = F'U{wyws, waws}

and let z € B (2 could be y) be such that zw: € F. ’
We now show that G-F, —yhasa 1-factor F; containing wiws3- Let

G" = G- F, — {y,wp,ws}. By (1), 6(G") 2 A-52> (n—1)—2. Thus by
Lemma 2.10, G” has a 1-factor F" except when G” € {Go,Gp,3K3 + K}
Since A(G") —8(G") S (A — 1)-(A-5)=4% G" # 3K3 + Ki. Suppose
G" = Gy or G" = Gp. Then 8 = n-2and A-5% 5(G") < s. This,
together with (11), implies that s +4 < A< s+5. Let Y = G-V (0.42)-
Then |Y} = s+ 3 and wy,ws € V(Y). Since zw; , W)W, WiWs, W3s

E(G — Fy), dg»(v) 2 A —3> s+ 1forany vE {I,tl!z,!ﬂ4,!ﬂ5}; Hence
z,we,ws,ws € V(Js) C V(Y). We now have (AU {z}) C V(Y) and
WONAl = (s+3)—5=3-2 As ocr, (A, A) 2 6, and for ay v €

e



V(Y)\4, eg—F, (v,4) > 2, we have e(Y) > 2|V(Y)\4| + eg-r, (4, 4) >
2(s —2)+6 =2s+2. Thus

(+2)(A~2) = eg_F, (V(Os42), V(Y)) = 6(A - 1)+ (s ~3)(A—2) - 2¢(Y),

and it follows that A > 2e(Y)—4 > 2(2s+2)—4 = 4s, which, together with
the inequality A < s+ 5, implies that 3s < 5, contradicting the fact that
s =n~2>3. Hence G’ # Gy, G}, and G" has a 1-factor F”'. Clearly ,
Fy = F"U{w w3} is a 1-factor of G — F; —y. Let 2/, w,w' € V(G") (each of
z',w,w' could be any vertex in V(G")) be such that 2'w,, wws, w'ws € F2.

Let G* = G — Fj — F3. Then G* is of class 2, and AU {z,y} is the set
of major vertices of G*. Since w, is adjacent to only one major vertex ws
in G* and A(G* — w,) = A(G*), by Lemma 2.5, G* — w; is of class 2. By
Lemma 2.3, G* — w; has a (A — 2)-critical subgraph H with at most five
major vertices ws, w3, wy, T, and y.

Suppose H has five major vertices. Since eg(ws, {w2,ws}) > 1, we
have ws; € V(H). From the choice of F; and F3, it follows that, for any
v € B\{z,2',w,w'}, eg-(v,A) > 3. Thus (B\{z,2',w,w'}) C V(H), and
2n =|G* —wy| > |H| > |G* ~ {wy, 2, 2',w,w'}| > 2n — 4. By Theorem 1.1,
|H| is odd, and so either |H| = 2n — 1 or |H| = 2n — 3. By the induction
hypothesis on A, we have e(H) = (A - 2)J—|—- +2. Suppose |[H| =2n—1.
Then e(H) = (A —2)(n-1)+1 and so e(G) > e(H) + |Fy |+ |Fa] +2(A -
3) > nA+ A -3 >nA+5 (by (13)), contradicting the assumption that
e(G) < nA. Next suppose |[H| = 2n — 3. Then e(H) = (A -2)(n—2) +1
and so e(G) > e(H) +|F|+|R| +4(A-3)-6>nA—2A-13>nA+3
(by (13)), again contradicting the assumption that e(G) < nA. Hence H
has at most four major vertices.

Suppose H has four major vertices. By (8), A is even, a.nd so by Lemma
2.7 and Lemma 2.8, |H| = A(H) +1 = A ~ 1. Since waws,yws € E(G");
we have wa, w3, ws € V(H) (otherwise H would have at most three major
vertices), and at least one of w; and wy, say w3, is a major vertex in H. As
{H| = A(H) + 1, it follows that ws is adjacent to all the other vertices in
H. In particular, w; is adjacent to wy in H. Thus wsw, € E(G), and so by
(12), A > n+3. However, since for any v € N(w;)\4, dg+ o, (v) = A—4=
A(H) — 2, by Lemma 2.8, H contains at most one vertex v € N(wi)\A-
Thus A -1 =|H| <|G* ~ w| — (IN(w)\4| 1) = 2n — (A — 4), and it
follows that A < n + 2, whu:h isa c0ntrad1ctxon :

~ Suppose H has three major vertxces Then by Lemma. 2.6, |H| =
A(H)+1 = A —1and §(H) = A(H) =1 = |H| — 2. Since for any
ve N(wl)\A dg- _.,,,(v) A-4= A(H) 2, we have v ¢ V(H). Thus
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(Nw,)\A)NV(H) = pandso A—1=[H| < |G* —wn| - IN(wi)\A| =
2n — (A ~ 4). This, together with (11), implies that A =n+2and
|H| = |G* —w; |- |N(w1)\A|. Hence wy,ws, wy,ws € V(H). Aswaws € Fi,
waws ¢ E(H). Since 6(H) = A(H)-1= |H] - 2, ws is adjacent to any
other vertex of H except ws. In particular, ws is adjacent to wy in H.
Xhisnw_zuzu € E(G). By (12), A > n+3, which contradicts the fact that

[

Claim 2. If6 < A < n and G[B] has a mazimum matching M with
IM| > n—3, then A(Ga) 2 3. In particular, e(Ga) 2 6.

Proof. Suppose otherwise that A(Ga) = 2. Then by VAL, A(Ga) =
3(Ga) = 2, and so Ga = Cs. Assume that Ga = (w,,wg,w3,w4,w5). We
first show that G[B] has a matching M ! of size n — 3 such that one of the
two M'-unsaturated vertices is adjacent to at most four major vertices in

G.

Since |M| > n -3, if [M| =n—
B such that zw;, ¢ E(G). Let zy €
required matching because da(z) < 4-
let u and v be the two M-unsaturat
min{da(u),da(v)} < 4, then M' =
Hence we assume that da(u) = da(v) = 5. Let 217}, -+, 7oy € M and
11y}, -+, Y.y, € M be such that uz;, uzl,uy; € E(G) and uj ¢ E(G),
where 2t 4+ s = |Ng(u)\A| = (A — )-5=A-6i= 1,258, § =
1,2,-:-,s. Let C = {:vl,z’l,---,zt,x;,y{,---,y;}. Since M is a maximum
matching of G[B], v is not adjacent to any vertex of C. Suppose da(w) =5
for any w € C. Then by VAL, 2((2n —4) = |CU {u,v})) +5ICU {u, v} £
5(A — 2), which implies that A > 2n — 5, contradicting the fact that
6 < A < n. Hence there exists w € C such that da(w) < 4 Let ww' € M.
Then uw' € E(G). Now M' = (M —{ww'hu{uw'}isa required matching

of G{B]. ‘

The above shows that in either case, G[B] has a matching M’ of size
n — 3 such that one of the M 1_unsaturated vertices is adjacent to at most
four major vertices in G. Let 2,3 € Bbethetwo M I_unsaturated vertices
and let da(z) <4. AsGa = Cs, assume that Zw; ¢ E(G)- We next show

that G-z hasa 1-factor.

2, then by (8), there exists T €
M. Then M' = M —{zy} isa
On the other hand, if [M] =n -3,
ed vertices. Then uv ¢ E(G). If
M is a required matching of G|[B].

Since da(y) > 2 and Ga = Cs, we may choose wi(# w1) € A such that
ywy € E(G) and de(wi,ws) = mim{da(w;,w,-) vj= 2,3,4,5}. Clearly,

> GA“wk has a 1-factor {W1Wj, 8}’ Whemj € {215}7 ande € E(GA).B)’ the

. symmetry of wy and ws, assume that j = 2. Now F = MU {wrws, €, ywe}
isalfactorof G—2- S
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Finally, let G* = G — F. Then G* is of class 2 and AU {z} is the set
of major vertices. As da(w1) =2, wwwe € F, and zw, ¢ E(G), it follows
that w; is adjacent to only one major vertex, namely ws, in G*. Since
A(G*—w,) = A(G*), by Lemma 2.5, G* —w, is of class 2, and so by Lemma
2.3, G* —w; contains a (A —1)-critical subgraph H with at most four major
vertices y, wa, w3, w;s. By (8), A is even, and so by Lemma 2.6, Lemma 2.7,
and Lemma 2.8, |H| # A(H)+1= (A -1)+1=A. Thus by Lemma 2.6
and Lemma 2.8, |H| = A(H) +2 = A+ 1 and H has exactly four major
vertices y, wa, w3, wy. Note that wowy ¢ E(H). Thus yw, € E(H) (because
du(w2) = A(H) = |H|—2). By the assumption of wy, it follows that wi =
ws. Now yws € F. This, together with the fact that wy is a major vertex in
H, implies that wsws € E(H). Thus ws € V(H) (otherwise H would have
at most three major vertices). Hence {w,, w3, wy,ws} C V(H). As w2 is
a major vertex in H and wyw, € F, it follows that (Ng(w2)\A) C V(H).
Hence [H| > |Ng(w2)\A| + [{w2, w3, ws, ws}| = (A —2) +4 = A+2, which
contradicts the fact that |[H| = A + 1. [

In what follows, we use m; (i = 2,3,4,5) to denote the number of minor
vertices of G each of which is adjacent to exactly i major vertices in G. We
are now in a position to prove Case 2.

Subcase 2.1. min{da(v) : v € B} = 4.

By Claim 1, G5 = K5. By VAL and (8), 4m, + 5ms = eg(B,A) =
5(A —4) < 5((2n — 4) — 4). This, together with mg +ms = |B| =2n—4,
implies that m4 > 20. Now from 2n — 4 = | B} = m, + ms, it follows that
n > ims +12 > 12. By VAL again, 4(2n — 4) < eg(B, A) = 5(A — 4)-
This, together with the inequality n > 12, yields

A>n+8 o (14)

By (8), there exists z; € B (i = 1,2,3) satisfying wyz; ¢ E(G). By (14)
and Dirac’s theorem (see Lemma 2.9), G — {z1, w1, w2, w3, ws} has a 1-
factor Fy. Let Fy = Fj U {ww,,wsws}. By (14) and Dirac’s theorem,
G — Fy — {z2,w1, w3} has a 1-factor Fj. Let Fy = F} U {wyws}. Then by
(14) and Dirac’s theorem again, G — F; — F — {z3,w;, w4} has a 1-factor
F3. Let F3 = FyU{wyws}. Clearly, G* = G—F, — F; — F; is of class 2 and
AU {z1, 2,73} is the set of major vertices of G*. Since w, is adjacent to
only one major vertex ws in G* and A(G* —w,;) = A(G*), by Lemma 2.5,
X' (G* —w,) = x'(G*), and so G* — w, is of class 2 with six major vertices
w2, W3, W4, T1, T2, T3. However, from the choice of F; ,F, and F3, it follows
that Wawy ¢ E(G‘ - ’lUl) and w3$3,1U4272 € E(G* et wl). Therefore the
core of G* — w; has a maximal matching containing wszs, wazs. Since
G* — w, has six major vertices and by (14), §(G* — w;) > 6(G*) -1 =
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(5(G) —3) —1 = A — 5> n+6—3. Thus by Lemma 2.12, G* —wy is of
class 1, which is a contradiction.

Subcase 2.2. min{da(v) :v € B} =3.
By Claim 1, Ga = K. By VAL, 3((2n+1)—5) < eg(B, 4) = 5(A~4).
This, together with (5), implies that
A>n+3 (15)
By (8) and (15), we have |
n>T (16)

3. Suppose there exists a vertex y € B\N|[z]

Let z € B satisfying da(z) =
we may assume that zw; € E(G)

s“ICh that da(y) = 3. Since Ga = Ks,
(i = 1,2,3) and yw,,yw;,ywr € E(G), where wj,wx € A and w; # we.
By (8), there exists another vertex z(# y) € B such that zz ¢ E(G). We
next show that G — z has a 1-factor F} containing zwz, ywj, G—-F;—-yhas
a 1-factor F; containing zws, and G — F,—-F,—{z,y,z} hasa 1-factor F3.

Let Gl = G—'{.’E, Y, z7w2)‘wj}' By (15)7 J(Gl) Z (A—l)—s 2 (n—2)_1'
G; = Gp. Suppose

By Lemma 2.10, G, has a 1-factor F! except when
Gy = Go. Then s = n—3 and A—6 < 5(G) < s Thus A < s +6.
This, together with (15), implies that A =5+ 6 and §(G1) =A—-6=3.
As da(ws) = 4 and zw; € E(G), it follows that w, is adjacent to at
most A — 5 = s + 1 vertices of B\{z,y,z} In G,. Thus G has at most
s+ 1 vertices of degree 6(G) =A—-6=35, which contradicts the fact that
G: = G, has s + 2 vertices of degree 5. Hence Gy # Go and thus Gy has a

1-factor F!. Clearly, Fy = F{U {zwa,yw;} is @ 1-factor of G — 2.

Let Gy = G—F ~{z, 4, ws}. By (15), 5(Gy) 2 (A~2)-32 (n=1)—1.
By Lemma 2.10 again, G2 has a 1-factor F} except when G2 = Go. Suppose
Gs = Go. Thens =n—2and A—=5 < 5(G) = 8(Go) = 5. Thus A< s+5.
This, together with (15), implies that & = 5+ 5and 6(G2) =A—-5=5
As zw; € E(Gz) and ec, (ws, {wr, w2, wa, ws}) < 4 it follows that wj is
adjacent to at most A—~ 5= vertices of B\{z,¥,2} in G,. Thus G has
at most s vertices of degree 8(G2) = A — 5 = s, which contradicts the fact
that Gy = G has s + 2 vertices of degree s. Hence G, # Go and thus G2
has a 1-factor F} and Fz = F3U {zws} is a 1-factor of G- Y-

: Let G3 = G — R - y 2 and G4 = Ga - {:v,y,z}. By (15)r 5(G4) 2
(A-3)-3>(n—1)-2 By (16) and Lemma 2.10, Gs has a 1-factor
Fs except when Ga € {G,,G5}. Suppose G € {Go, *}. Then s =

‘m—2and A—6 < 8Gs) <5 “Thus A < s +6- By (15), we have
545 < A< s+6. Since zv ¢ E(Gj) for any v € {wz,w;;,m,ws}, we have

ooam



dg,(v) > A—4> s+1, and so wa, w3, ws, ws € V(J,). Suppose w; € V(J;).
Then A C V(J,). Observe that for any u € V(Os42), dg,(u) > A -6 2
(s+5)—6 = s—1. This, together with A C V(J,), implies that each vertex
of 0,4, is adjacent to at least four vertices of A in G4. Hence da(u) > 4
for any u € V(O,43). As min{da(v) : v € B} = 3, by VAL, it follows
that 3|B\V (O,42)| + 4]0442| < eq(B,A) = 5(A —4). But then A > 5+7
{because s = n —2 > 5 (by (16))), contradicting the fact that A < s+6.
Suppose w; € V(O,42). Then A =5 < dg,(w1) <s=n—-2<A-5
(by (15)), which implies that s = A — 5 and w; is adjacent to all the
vertices of J,. Thus there exists u € V(Q,42) such that wyu € F. Since
dGA(u) 2 6(G4) Z A-6=3s— 1, IJsl =8, and Wy, W3, W, Ws € V(JS)’ it
follows that u is adjacent to at least three vertices of ws,ws,ws,ws in G.
This, together with the fact that uw; € E(G), implies that da(u) > 4. As
da(v) > 3for any v € B, by VAL, 3(2n—4-1)+4 < eg(B, A) = 5(A —4),
which, by (16), implies that A > n +4 = s + 6 (because s = n — 2),
contradicting the fact that s = A—5. Hence G4 ¢ {Gy,G5}. Consequently,
G4 has a I-factor Fj.

Finally, let G* = G3 if yz ¢ E(G) or G* = G3—(F3U{yz}) if yz € E(G)-
Then G* is of class 2. As z is adjacent to only one major vertex w; in G*
and A(G* —z) = A(G*), by Lemma 2.5, G* — z is of class 2 with six major
vertices y, z, ws, w3, ws, ws. From the choice of Fy, Fy and Fj, it follows
that y is adjacent to only one major vertex wy in G* — z. Observe that
A(G* - {z,y}) = A(G* — z). By Lemma 2.5, G* — {z,y} is of class 2
with four major vertices. By Lemma 2.3, G* — {z,y} contains a A’-critical
subgraph H with at most four major vertices, where A’ = A—2if G* = Gs,
and A' = A — 3if G* = G3 — (FU {yz}). Note that, if A’ = A — 2, then
HI>AH)+1=(A-2)+1=A-1 IfA'=A -3, by (8), A is even,
and so by Lemma 2.6 and Lemma 2.8, |H| = A(H)+2=(A-3)+2=
A — 1. Hence in both cases, we have |H| > A — 1. Observe that for any
v € Ng- {23} (\A, dge_{z 13(v) £ A’ —2 = A(H) — 2. By Lemma 2.6
and Lemma 2.8 again, H contains at most one vertex v € N(z)\A. Thus
A-1< |H| < |G*~{z,y}|~(INo- (253 (2]\A|-1) < (2n—1)—(A~5), and
it follows that A < n + 2, contradicting (15). Hence for any v € B\N (=],
da(v) > 4 and G[C] is a complete subgraph of order m3 in G, where
C={veB:da(v)=3}. : ‘

As da(v) > 4 for any v € B\N[z], we have m3 < |N[z]n Bl = A -3
By VAL, : : L

: 3('A;;, 3) +4(2n ~A-1) syeG:(B,‘A) =5a-4). (17)

This, together'ﬁth (16), kkimplies:that‘ A ’r_>_ n+4. - SuppOSé A=n +4
‘Then (8) and (17) imply that n =8 and A = n + 4 = 12. Since m3 =
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(2 — 4) — (mq +ms) and by VAL, 3ms + 4my + 5ms = 5(A — 4) = 5n,
we have my +2ms = 4. Asmz < A-3=9,it follows that ms = 9,
my =2, and ms = 1 or mg = 8, my =4, and ms = 0. In both cases, as
Q [C] = Kpm,, by counting the number of edges joining C with B\C in two
different ways, we have 14 = 2(11-4—2) + (11-5-2) < eg(B\C, C) <58,
which is a contradiction. Hence -

A>n+5. (18)

Since zw; € E(G) (i = 1,2,3), we have zws ¢ E(G). By (8), there exist
another two vertices y,z € B such that yws, 2Ws ¢ E(G). As da(y),
da(z) > 3, we may assume that ywa,2w2 € E(G). We next show that
G — z has a 1-factor Fj containing wswz, G - F; — y has a 1-factor F
containing wsws, and G —Fy —F2 =2 has a 1-factor containing wsty.

Let Gl = G—{w5)w2’z7y7z} lfxy € E(G) (OrGI = G—{W5,IU2,1U3,’U!4,
z}ifzy ¢ E(G)). By (18),6(G1) > (A-1)-52n—L By Dirac’s Theorem,
G1 has a 1-factor Y. Let Fy = F!U{wsws,zy} (or F1 = FlU{wswz, waws})
and let Go =G~ F; — {ws,wg,a:,y,z} if zz € E(G) (or G2 = G-F -~
{ws, w3, wa, ws,y} if zz ¢ E(G)). By (18); §(G2) > (8 —-2)-52n-2
By Dirac’s Theorem again, G2 has a 1-factor FJ. Let F = FU {wsws, 2z}
(Or F2 = Fé u {’UJ5‘U)3,UI2’IU4}) and let Gs =G~ F1 - F2 - {‘lL's,‘lU4,1’}. By
(18), 6(Gs) > (A—-3)-3>n—1 Thus by Dirac’s Theorem, G3 has a
1-factor Fj. Let F3 = F3U {wsws} ;

Next, let G* = G—-F—F>2—F;. Then G* is of class 2, and Au{z,y,z}is
the set of major vertices of G*. As ws is adjacent to only one major vertex
w; in G* and A(G* —ws) = A(G"), by Lemma 2.5, G* — ws is of class 2,
and z is adjacent to only two major vertices w2 and w3 in G* —ws. We
now show that G* — ws has a 1-factor F, containing Tw2.

Let G4 = G* — {ws, w2, 2}- BY (18), 8(G4) 2 (A-4)-32(n— -1
By Lemma 2.10, G4 has a 1-factor F; except when G4 = Go. Suppose
G4 = Go. Thens=n—2and A=T=< §(G4) = 8(Go) < s. Thus A<Ls+T.
This, together with (18), jmplies that A =35 +7 and §(Gs)=A-T=s
As ws is adjacent to at most A —T = s vertices of B\{z,y,2} in G* —ws, it
follows that G4 has at most s vertices of degree §(Gy)=A-T=8, which
contradicts the fact that G4 = Go has s +2 vertices‘of degree s. Hence

G4 # G and thus G4 has a 1-factor Fg.
' Let Fy = F{U{zwp} and let G** =& —ws—Fy. Then G is of class 2
and z is adjacent to only one major vertex ws in G**. Since A(G” -7)=

A(G+) = A — 4, by Lemma 2.5, G** —z is of s 2, and v, 7, w2, W4
the four major vertices of G** —2- By Lemma 3, G** —7 contains a (A-4)-

critical subgraph H with at most four major vertices y, z,wz, Wa. Observe
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that for any v € Ng««(@)\4, dg-+—z(v) = (A = 5) -1 = A(H) - 2. By
Lemma 2.6 and Lemma 2.8, Ng(z)\A and V (H) have at most one vertex in
common. Thus A—3 = A(H)+1 < |H| < |G** —z|—(|(Ng-- (£)\A)|-1) <
(2n - 1) — ((A —4) — 1), and so A < n + 3, which contradicts (18).

Subcase 2.3. min{da(v) :v € B} =2.

In this case, we first show that there exist ¢ € B and y € B\N{z] such
that da(z) = 2 and G — y has a 1-factor F containing zw, where w € A.
We consider the following three cases.

Casei: A>n+1

Since min{da(v) : v € B} = 2, let = € B be such that da(z) = 2. By
(8), there exists y € B such that zy ¢ E(G). Assume that zw; € E(G),
where i = 1,2. By symmetry of w; and wz, assume that da (w1) > da (w2).
Let ' = G - {z,y,w;}. As A > n+1, it follows that §(G') > A —
4> (n-1) -2 By Lemma 2.10, G’ has a 1-factor F’ except when
G' € {Go,G},3K3 + K, }. However, as A(G') —6(G") <A - (A—-4) = 4,
G' # 3K5; + K;. Suppose G' = Go or G' = Gj. Then s = n —2 and
A-4<§G)<s. Thuss+3=n+1<A<s+4. LetY = G -V (Os+2)-
Then |Y] = s+ 3, w; € V(Y) and V(J,) C V(Y). Since zw; ¢ E(G),
i = 3,4,5, we have dg:(w;) > A —2 > s+ 1. Thus w; € V(J,)(C V(Y))-
Suppose wy € V(J;). Then A C V(Y). This, together with the fact
that da(v) > 2 for any v € V(Y), yields that e(Y) > e(Ga) +2/Y\A4} =
5+2((s+3)—5) =25+ 1. Now (84 2)(A — 1) = eg(V(Os42), V(¥)) =
5A + (s — 2)(A — 1) — 2¢(Y) implies that A > 45 — 2 > s + 7 because
s = n — 2 > 3, contradicting the fact that A < s + 4. Next, suppose
wy € V(0,42). Asdg(wz) = A > s+ 3 and |Y| = s + 3, it follows that w2
is adjacent to all the vertices of Y in G and thus A = s+ 3. In particular,
w+ is adjacent to w;, ws, ws, and ws in G. Thus da(w;) = 4. Since
da(wi) > da(ws), we have da (w1) = da(w;) = 4 and so e(G[A —ws]) 2 3-
This, together with the fact that da(v) > 2 for any v € V(Y), implies
that e(Y) > e(G[A —ws]) +|[Y\A| > 3+ ((s +3) —4) = s +2. Now
(s+1)(A=1) + A = eg(V(Osp2), V(Y)) = 4A + (s — 1)(A — 1) — 2¢(Y)
yields that A > 25+2 > s + 5 (because s =n — 2 > 3), which contradicts
the fact that A = s+ 3. Hence G’ ¢ {Gy,G})} as desired and G’ has 2
1-factor F'. Clearly, F = F' U {zw;} is a 1-factor of G — y.

Case ii: A =n and G[B] & J,_2 U J',_,, where my > n, and Ja-2
and J;,_, are graphs of order n — 2 with A(J,_2) = A(Jp_p) =n— 3.
. In this case, n = A > 6 (by (9)). Let z € V(Jn—2) and y € V(J5_2)
be such that da(z) = da(y) = 2. Clearly, zy ¢ E(G). Assume that
zwy, 2wz € E(G), and ywg, yw; € E(G), where wy, w; € A. By symmetry
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J,_5 and J',_, are graphs of order

of w; and wy and symmetry of z and y, assume that da(w1) > da(w2),
and da (wy) < maz{da(wi),da(w;)}. Let G' =G - {z,y,m1}. AsA=n
and (Ng(z) N Ng(y)) N B = ¢, it follows that §(G)=A-3=(n—-1)-2.
By Lemma 2.10, G’ has a 1-factor F' except when G' € {G},3Ks + K1}
Ht’)wever, as A(G) —8(G") <A-(A-3)=3, G' # 3K3 + K;. Suppose
G'=G). Then2s+2=2n~-2. Thus s=n—2and A =n=5+2. Let
Y = G — V(O,42). Then |Y| = s+3 and wy € V(Y). Observe that for
any v € V(Oyp2) — A, da(v) = A —1=73+1 and v is adjacent to at most
one of z and y. If |ANV(Y)| > 4, then [AN V(Os42)] < 1 and each vertex
v € V(O,42) — A is adjacent to at least three vertices of A in G. Thus
my+my+ms > |V(Opyz)— A = [Oss2|=1ANV (Oss2)] 2 (s+2)-1=n-1,
and so my < |B| — (m3 +ma +ms) < (2n-4)-(n-1)= n — 3, which
contradicts the fact that my > n. Hence |[AN V(Y)| < 3. On the other
hand, by VAL, da(v) > 2forany v € V(Os42)— A, we have [AnV(Y)] 2 2.

Thus 2 < [ANV(Y) <3
NV (Oy42), da(w) =2

Suppose JANV(Y)| = 2. By VAL, foranyw € A
.and ww; € E(G). Thus da(w1) = 3. As zw; ¢ E(G) (i = 3,4,5),
it follows that for any w € {ws, ws, ws} N V(Os42), 7w ¢ E(G). Now
de(w) = A =s+2and{Y — ] =5+2 imply that yw € E(G). Thus
wi,wj € V(O42) and max{dA(wk),dA(wj)} = 2, which contradicts the
assumption that 3 = da(w1) < maz{da(we),daw;)}-

Suppose [ANV(Y)] = 3. We claim that e(Y) > s. Since Ng(z)\A and

Ng(y)\4 have no vertices in common, ifwy ¢ V(O,42), then ec({z, ¥}
—ec({z,4}, V(Out2)) 2

V(Oy42)) < s+2and soe(Y) 2 de(z) + dc(¥)

2(s+1)—(s+2) = s On the other hand, if w2 € V(Oy42), then
ec({z,y},V(Os42)) < s+3. Let {w,w2} = ANV (Oy42)- Thenzw ¢ E(G).
Now dg(w) = A = s+2and Y —z|= 3+2 imply that yw € E(G)andwis
adjacent to the other three vertices of ANV(Y). Thus da(w) =3- Observe
that da(w;) > da(wz). This, together with the fact that the number of
vertices of odd degrees in Ga 18 even, implies that e(G[AN viy)) 2 1.
M ety 1 dus) — eal(z,y} VOna)) + GOV IOD 2
2(s+1)—(s+3)+1=s. Thus,in both cases, we have e(Y') 2 8 33 cl::nmed.
Now by counting the number of edges joining V(Y) and V(Os42) in two
different ways, we have 2A+s(A-1) = eG(V(0,+g), V(Y)=3A+ s(A-
1)—2e(Y) < 3A—s(A—1)—2s, and it follows that A > 2s > s+4 (because
s=n—2>6-2=4), whicth contradicts the fact that A=n= s+ 2
Hence G' # G and G' has a 1-factor F' and F = F'uf{zw}isa 1-factor

Case fii: A <n—lorA — 1 and G[B] # Jn-2UJarg, wheremz 2 7 and

n -2 With A(Jn.—z) = A(J,',..g) =1 -—3.

I this case, n > A > 6 (by (9)). We first sho¥ that GIB] has 2



maximal matching M of size n — 3 and one of the two M-unsaturated
vertices is adjacent to exactly two major vertices in G.

Since min{da(v) : v € B} = 2, A(G[B]) = A — 3. By Lemma
2.1, X'(G[B}) < A ~2. Let 7 be a (A — 2)-colouring of G[B] and let
E\,E,,---,Ea_ be the colour classes, where |Ey| > |Ez| > --- > [Ea-2l-
Suppose |E1] < n—4. By VAL, e(Ga) > 5 and eg(4, B) = 5A —2¢(Ga) <
5A~10. Now (2n—4)(A—1)—eg(4, B) = 2¢(G[B]) = 2527 |Ei| < 2(A-
2)(n — 4) implies that A > 2n — 2, contradicting (8). Hence |Ey| > n —3.
Let M’ be a maximum matching of G[B]. Then |M’} > |E;| > n—3. Since
|Bl|=2n—-4,wehaven —3 < |M'|<n-2.

Suppose [M'| = n — 3. Let u and v be the two M’-unsaturated
vertices. Then uv ¢ E(G). Clearly, if da(u) = 2 or da(v) = 2, then
M = M’ is a maximal matching of G[B)] as required. Hence we assume
that da(u),da(v) > 3. Let z17},---, 22} € M’ and y19},---,ysy; € M
be such that uz;,uzi,uy; € E(G) and uy; ¢ E(G), where 2t + 5 =
ING(U)\Al = (A - 1) - dA(U), t =1,---,t, j = 1,---,8. Let C =
{z1,24,- - 2, 2,94, - -+, 4, }. Since M’ is a maximum matching of G[B], v
is not adjacent to any vertex of C in G. Suppose da(w) > 3 for any w € C.
Then by VAL and Claim 2, 2((2n —4) —|CU{u,v}|) +3|CU{v}| +dalu) £
ec(B,A) = 5A — 2e(Ga) < 5A — 12, and it follows that A > n+1,
which contradicts the fact that A < n. Hence there exists w € C such
that da(w) = 2. Let ww' € M’. Then uw’ € E(G) and vw ¢ E(G). Now
M = (M' — {ww'}) U {uw'} is a maximal matching of G[B] as required.

Next suppose [M'| = n — 2. By Claim 2, e(Ga) > 6. Thus by VAL,
2(2n—4) < eg(B,A) = 5A-2¢(Ga) < 5A—12 and 2m,+3(2n—4—-m2) <
ec(B, A) = 5A — 2¢e(Ga) < 5n — 12. Tt follows that

4 : V
A?_;n;{l and ma>n>6. (19)

Since mg 2> n and |M'} = n — 2, there exists uv € M’ such that da(u) =
da(v) = 2. Let z,},---, 7z} € M' and yiy},---,y.y; € M’ be such
that uz;,uz},uy; € E(G) and uy} ¢ E(G), where 2t + 5 = |[Ng(u)\(AU
{U})l = (A -1)- 2+ 1) =A—-4,1i= Lot 5 =1,---,8. Let C =
{z1,7},-- -, %, 2}, 95, -+ -, ¥ }. Suppose there exists w € C such that vw ¢
E(G). Let ww' € M'. Then uw' € E(G). Now (M’ — {uv,ww'}) U {uw'}
is a maximal matching of G[B] as required. Hence we assume that v is
adjacent to all the vertices of C, and thus v is not adjacent to any vertex
of {y1,---,ya-4-2t} in G. Let D = (N(u) U N(v)) N B. If there exist
y € B\D and z € D such that ’yz E'E'(G'), let yy';2z' € M’ Then
y'u,y'v ¢ E(G). By symmetry of v and v, we may assume that vz’ € E(G)-
Now M = (M’ — {uv,yy’,22'}) U {vz',yz} is a maximal matching of G[ 1



as required. Hence eg(B\D, D) = 0. Since 2t + s = A — 4, either s 2 1or
s=0.

Suppose s > 1. We claim that there exists y; € {y1,--1¥s} (or
y; € {yl,---,y}) such that y; (or y}) is adjacent to some vertex z €
{xlixll""13"!’3';73/11""?/8} (or z € {:1:1,2:'1,---,xt,z;,yi,---,y;}) in G.
Suppose otherwise. Then (Ng(y;)\4) C {vaiayﬁ,"',y;} and (N(;(y})\A)
C {v,y1,U2,,ys} , where 1 < j < 8. Let I = min{da(v) : v €
{v1,9%,- -+, ¥s, ¥, }}. Without loss of generality, we assume that da(y1) = 1.
Then < 1< 5 and [{y), -+ 9.} 2 INa@\(AV{D)] = (A-1)=(+1) =
A —1-2 Thus [{y1, 0¥ ¥iH = 2Hats- 9l 2 28 -1-2)
2A — 21 — 4. We claim that [ = 2.

Suppose 5 > { > 3. Then t > 1 (otherwise ift=0,thens=A-4
and my + mg + ms > [y, ¥ V¥l = 28 = 2(A — 4). By (19),
n < mg = |B| — (m3 + mg +ms) < (20— 4) — (2A - 8), and it follows
that A < 234, which contradicts (19)). Thus uz;,uzy € E(G) and so
A-1=dg(u) > da(u) + {v, 21,753} =6 This, together with (8),
implies that

n>A>8. (20)
On the other hand, by VAL and Claim 2, 1(2A ~ 4 — 20) +2((2n — 4) —
(2A — 4 — 21)) < eg(B, A) < 5A — 12, and it follows that

(-2)2A~4-2A)+4n-8<54-12 (21)
i I = 5, then (21) implies that A +4n < 38, which contradicts (20). If
I = 4, then (21) again implies that A > 4n — 20, which contradicts (20). If
l= 37 then 20—-10= 2A"4'—2I S I{yl’yif"fyhy;}l S m3'*6'm4 +Mms =
|Bl—=mg =(@n—-4)—n=n—4% and it follows that A < 23°. However,
by (21), A > n + 258, which contradicts (20).

Hence I = 2 as claimed and so s = A—4andt =0 Thus D] =
v, 51,0, > yis—ts¥p—g }} = 28 -6 and |B\D| =.(2n—-4)—(2A-—6) =
2n — 2A + 2. Let w € B\D be such that da(w) = min{da(v) : v € B\D}.
Then 2n — 24 + 2 = |B\D| 2 |[N[uwll - da(w) = A —da(w), and it follows

that S ; |
<2n+2—;—d,3(w). i @2)
By VAL and Claim 2, da(w)|B\D| +2ID| S ec(BrA) = 5A —12. Thus

-12. (23

da(w)(2n — 20 +2) +22A—6) Sec(B,A) <534 7
y T g 7 sl cont ic 19)-IfdA(W)=

If da(w) = 2, then by (22), A < 2244 which contradicts ( alw) =

3, by(,(2)2), A< Zt‘g'i ‘Hx’)wever, by (23), A 2 8248 which contradicts

o



(20). ¥ da(w) = 4, by (23), A > —8-"—5&. However, by (22), A < 228
which contradicts (20). If da(w) = 5, by (23), A > 192410 However, by
(22), A < 28£7, which, again, contradicts (20).

Hence by symmetry of u-and v, we can claim from above that there ex-
ists y; € {y1,--,ys} such that y; is adjacent to some vertex z € {z1,z},- -,
T4, Ty Y1, 7,Ys) in G. Let 22’ € M'. Then vz’ € E(G). Now M =
(M — {uv,y;¥},22'}) U {y;2,v2'} is a maximal matching of G[B] as re-
quired.

Suppose s =0. Then t = 452 and [D|=A-2<n—-2. Asm, > 7,
there exists w € B\D such that da(w) = 2. If A = n, then |D| =n —2
and [B\D| = (2n — 4) — (n — 2) = n — 2. Since eg(D, B\D) = 0, we have
G = Jp_2UJ, _,, which contradicts our assumption. Hence A < n—1. By
VAL, 2m3 +3((2n —4) —m2) < 5A —12 < 5(n—1) — 12, and it follows that
mg > n+5. Thus n +5 < my < |B| = 2n — 4, which implies that n > 9.
If there exists u'v’ € M’ N E(G[B\D]) such that da(u') = da(v') = 2,
then as similar to the case that uv € M’ with da(u) = da(v) = 2 as
shown above, we have |D’'| = A — 2 and eg(D’, B\(D' U D)) = 0, where
D' = (N(u')U N(v')) N B. We claim that D' = B\D. Suppose otherwise.
Since for any w € B\(DU D'), dg(w) = A — 1 and da(w) < 5, we have
(2n —4) ~2(A ~ 2) = |B\(DUD')| > |Na[uw]| - da(w) > A - 5, and
it follows that A < 2—"§‘L5, which contradicts (19) because n > 9. Hence
D' = B\D as claimed. Now (A —2)+(A-2) = |D|+|D'| = |B| =
2n — 4 implies that A = n, which contradicts the fact that A < n — 1.
Hence for any u'v’ € M’ N E(G[B\D)), maz{da(u'),da(v")} > 3 and so
m3 +my +ms > [M'NE(G[B\D])] = (n—2) — 252, Thusn+5 <
my = (2n —4) — (m3 + mq +ms) < (2n—4) — ((n— 2) — 252, and it
follows that A > 16, and so n > A +1 > 17. By VAL and Claim 2,
2((2n — 4) — (m3 +my +ms)) +3(m3 +my + ms) < eg(B, A) < 54 —12.
This, together with the inequality ma+m4+ms > n—2— 252 implies that
A> 106 Asmy >n+5and A <n—1, there exist w,w’ € B\D such
that da(w) = 2 and ww’ ¢ E(G). Observe that §(G[B\D] — {w,w'}) >
(A=1)=5-2=A-8> =84 (hecause A > 10n46 and n > 17).
By Dirac’s Theorem, G[B\D] — {w,w'} has a 1-factor F’, and thus M =
(M' N E(G[D])) U F' is a maximal matching of G|B] as required.

- We thus conclude that G[B] has a maximal matching M of size n — 3
and one of the two M-unsaturated vertices is adjacent to exactly two major
vertices in G. Let z,y € B be the two M-unsaturated vertices and let
da(z) = 2. Since M is maximal, zy ¢ E(G). Assume that zw; € E(G)
(i = 1,2). By symmetry of w; and wa, we may assume that da(wi) <
da(ws). We next show that Ga — w; has a perfect matching.

©+ As da(w) > 2 for any w € A and da(w;) < da(ws), it follows that
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Ga — wy has a perfect matching {er, ez} except when Ga = 2342 or Gp &
9332 and in both cases w; and wy are the two major vertices in Ga.
Suppose Ga = 2342 or Ga = 9332 We first show that G — z has a 1-
factor Fy. If y is adjacent to one vertex of w3, wy, ws, say ws, in G,
then Fy = M U {wyws,yws, wows} is a 1-factor of G — z. On the other
hand, if y is adjacent to only two major vertices w; and wy in G, let
ATy, BT, 1Y), YsYy € M be such that yz;,yzl,yy; € E(G) and
yy; ¢ E(G), where 2t +5 = [Ne()\4]=(A-1)-2= A-3,i=1,---,t,
G21,--,5 Let C = {21,271, -, &6, Ths ¥l -+, s} Clearly, [C] =2t +35 =
A — 3. Since da(w) > 3 and zw,,yun € E(G), there must exist a vertex
z € C such that zw, ¢ E(G) (otherwise dg(wy) > da(w) +|CU {z, ¥} =
3+(A-3)+2=A+2, whichis false). As.da(z) > 2, z is adjacent to
one of ws, wy, Ws, Say W3, in G. Let z2' € M. Then yz’' € E(G). Now
Fyo=(M-{22'})u {yz’,zw3,w1w4,w2w5} is a 1-factor of G — z. In either
case, let G* = G—Fp. Then G* is of class 2. Observe that wy is adjacent to

only one major vertex wz in G* and ws is adjacent to only one major vertex

w; in G*. Since A(G”—w,) = A(G*) and A(G* —{ws, ws}) = A(G* ~wa),
by Lemma 2.5, it follows that G” ~ {wa,ws} is of class 2 with only two
major vertices ws and z, which, by VAL, is false. Hence Gp % 2°4? and
Ga 22332, and so Ga — w1 has a perfect matching {e1,e2} as desired.

Let F = M U {zw1,e1,€2} and let G* = G — F. Then F is a perfect
matching of G — y containing zTwx and G* is of class 2. Since T is adjacent
to only one major vertex ws in G* and A(G* — 1) = A(G”), by Lemma
2.5, G* —z is of class 2. Observe that {w1,ws, ws, ws, y} is the set of major
vertices of G*. By Lemma 2.3, G has a (A — 1)-critical subgraph H which
has at most five major vertices. 5

Suppose H has five major vertices. By VAL, 5 > A(H) - 6(H) + 2,
and so 8(H) > A(H) ~3=A—4 As eg- (w2, A) 2 1, we have wp € V(I‘I)
(otherwise H has at most four major vertices) and so 4 C V(H ).. Th'xs,
together with the fact that da(v) > 2 for any v € V(G')\V'(H )s mTph&s
that vwe € E(G”) (otherwise H would have at most four major vertxces).
Thus [V(GNV D) < da- (w) — dinwn) £ (B 1) = (8 —4)=3,and it
follows that 2n > |G~ —=| = |HI 2 |G~ [V(GW\V(H)| 2 (2n+ 1)-3=
9n — 2. By Theorem 1.1, {H | = 2n—1. By the x:lductlon hypothesis
on A, e(H) = (n—1)(A ~ 1) +1 Let {z} = V(G - r)\lV(H)- Tgef
e(G) > e(H) + |F|+do-(2) +dg-2(2) 2 (B (A " N+ )+:w_+ (Mc
2)+(A-3)> nA +1 (by (9)) which con;radlcts the assumption

e(G) <nA. , G ey d X
B ti Ais even, and 50 by

' has at most four major vertices. By (8), , oy
LEmSI:::g?;eLfimm:il.’I, and Lemma 2.8, [H[is odd and |H| # A(H).H =
A e Lema 26 and Lemma 2.8 again, 1] = A(H)+2=A+1,



0(H) = A(H) -1 = A —2, and H has exactly four major vertices. Thus
3L |[ANV(H)| <5.

Suppose [ANV(H)| = 5. Then A C V(H). As da(v) > 2 for any

v € Nz\A, ea-(N[z]\A, 4) > IN[z\A| = A -2 > 62 = 4 (by (9)).

However, since §(H) = A(H) — 1 and H has exactly four major vertices,
we have eg. (4, N(z)\A) < 2, which is a contradiction.

Suppose [ANV(H)| = 4. As w, is a minor vertex in G* — z, 6(H) =
A(H)-1, and H has exactly four major vertices, we have w, ¢ V(H). Thus
da(ws) = 2 and there exists wj € A such that wew; € F (otherwise H
would have at most three major vertices). This, together with the fact that
zwy € F and 6(H) = A(H) — 1, implies that eg(ANV(H), N(z)\4) < 2.
However, since da(v) > 2 for any v € N(z)\A, we have eg(N(z)\4,AN
V(H)) > |N(z)\A] = A —3 > 6 — 3 = 3, which is a contradiction.

Suppose [ANV(H)| = 3. As H has exactly four major vertices, it
follows that y is a major vertex in H and eg- (V(G*)\V(H), ANV (H)) = 0.
Let {wy,w;} = A\V(H). Then by VAL, da(wi) = 2 = da(w;) and
wrw; € E(G). Since zw; € F, from the choice of F', there exist w;:,w_; €
A — {wy, wg,w;} such that wew}, w;w} € F (otherwise H would have at
most three major vertices), and thus ywy, yw; ¢ E(G). Clearly, zw}, Tw) ¢
-E(G). Since zw; € F, da(z) = 2, and eg.(V(G)\V(H),ANV(H)) =
0, we may assume that zw; € E(G). Now Twy, wpwy, w;w; € F and
w1, w,w; are major vertices in H. Thus for any v € N[z}, da(v) = 2.

I wiw) ¢ E(G), then wiwy, wiw; € E(G) and thus Ga = Cs. Since
§(H) = A(H) —1 and eg-(V(G*)\V(H), AN V(H)) = 0, by Lemma 2.10,
there exists exactly one vertex z € V(H)\A such that da(z) = 2 and
for any v € V(H)\(A U {z}), da(v) = 3. Thus, by VAL, 5A — 11 =
2((A —2) +1) + 3((A + 1) - 4) = 2|N[z] U {z}] + 3([V(E)\(AU {z})| <
ec(B, A) = 5A — 2¢(Ga) = 5A - 10, which is false. Hence wjw), € E(G)-
‘Now replace F by F* = (F — {wkw;:,ij;-}) U {wwj, wyw}}. Then in

G** —z (where G** = G ~ F*), w; is adjacent to only one major vertex

wy, and w; is adjacent to only one major vertex w}. Observe that AG™ —

{z,ws,w;}) = A(G** - z). By Lemma 2.5, G* ~ {z,wi, w;} is of class 2

with only two major vertices w; and y, which, by VAL, is false. The proof
of Theorem 1.2 is thus completed. - : ‘ =

Corollary 3.1. Let G be a graph of order 2n +1 > 7 with IGAI =5, where
A =A(G) > 3. Then G is A-critical if and only if . - -

(1) G = (2n - 3)>"~4(2n - 2)5;
() G (20 -3)(2n - 2)5(2n —1)%;
(i) G2 (2n—2)°(2n - 1)7=8(2n)5; or
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(iv) G = (2n — 3)(2n — 1)>5(2n)5.

Proc.)i:. Necessity. Let & = 6(G). Then by Lemma 2.4,§ <A-1. AsG is
A-critical, by VAL, 5 = |Ga| > A—6+2. It follows that A—12> §>A-3.

Suppose § = A —1. Then G = (A — 1)?n~4A5. By Theorem 1.2,
208 + 1) = 2(G) = Tevie) de®) = (20— (A~ 1) + 54, which
implies that A = 2n — 2. Thus G & (2n ~ 3)*"~*(2n - 2)°.

Suppose § = A —2. Then G = (A-2)*(A- 1)27~4-z A5 where z > 1.
By Theorem 1.2, 2(nA +1) = 2¢(G) = ¥, ev(q) da(v) = 2(A - 2)+ (2n -
4—1)(A—1)+5A, and it follows that A = 2n—2+z. AsAL|Gl-1=2n
and £ > 1, we have 1 < z < 2. Hence G = (2n - 3)(2n — 2)27=5(2n — 1)°
or G = (2n — 2)(2n ~ 1)27-5(2n)°.

Suppose § = A —3. Then G = (A — 3)%(A - 2)¥(A - 1)2n-4-2-VAS5,
where z > 1 and y > 0. By Theorem 1.2 again, 2(nA +1) = 2¢(G) =
Yeevic) da(v) = x(A_3)+y(A-2)+(2n—4—z-—y)(A-l)+5A, which
implies that A = 2n—2+2z+y. AsA < |G]-1=2nandz > 1, we have
z=1andy=0. Thus A =2n and G = (2n ~ 3)(2n — 1)*~3(2n)°.

(ii), (iii) and (iv). Then

Sufficiency. Suppose G satisfies one of (i),
lass 2. We next show that

A>2n—2and e(G) =nA+1. Thus Gisofc
G is A-critical. : ‘

Suppose otherwise. Then by Lemma 2.3, G contains a A-critical sub-

graph H with at most five major vertices. Since G is of class 2 and G is not
A-critical, we have e(H) < e(G). By Theorem 1.1, Lemma 2.6 and Lemma
2.7, |H| is odd. Observe that |H| > A(H)+12 (n-2)+122n-1
Thus either |H| = 2n + 1 or |H| = 2n — 1 (in this case, A =2n ~2).

Suppose |H| = 2n+1. Then by Lemma 2.6 , Lemma 2.8, and Theorem
1.2, e(H) = nA + 1. But then e(G) > e(H) =nA+1, contradicting the

fact that e(G) =nA +1.

Suppose |H| = 2n—1. Then A = 9n—2. Thus G = (2n - 3)°~4(2n -
25, Let {z,y} = V(G)\V(H). Then dg(),dc(¥) 2 2n-3=A-1 By
Lemma 2.6, Lemma 2.8, and Theorem 1.2 again, e(H) = (n— A +1.
Therefore e(G) > e(H) + de(z) + dg-=(¥) 2 (n-DA+D+ (a- 1). +
O D) e mA 414 (A—3) >nA-+1 (becanse & =20 =22 3) which
again contradicts the fact that e(Gy=nA+1. ’ -
Theorem 3.2. Let G be a connected graph of order" n+1 —>-, 7 ""',”‘
Gal = 5, where A = A(G) > 3. Then G is of class 2 if and only if

 @em=@Ea-yntem-D%
)G (2n— 3)(2n - 2)2‘"—5(21: 1%
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(iii) G = (2n — 2)%(2n — 1)2"~8(2n)5;
(iv) G = (2n — 3)(2n — 1)>"~5(2n)5;
(v) G = (2n — 1)2"—4(2n)5;

(vi) for some m < n, G contains a cut-edge e such that G — e is the
union of two disjoint graphs G1 and G2, where A(G;) < A and, in G,
e is incident with a vertez of degree in G2 at most A — 1; and G is A-
critical and isomorphic to one of the following: (2m —1)2™~2(2m)3, (2m—
2°m-3(2m—1)%, (2m~2)(2m—1)2™~4(2m)*, (2m—3)(2m —2)?™~5(2m—
1)%, (2m - 2)2(2m — 1)?™~5(2m)5, and (2m — 3)(2m — 1)2™-5(2m)5;

(vii) for some m < n, G contains a cut set of two edges e; and e
such that G — {e1,e2} is the union of two disjoint graphs G, and Gs,
where A(G1) < A—1and, inG, ¢; (i = 1,2) is incident with a vertez
of degree at most A — 1 in G2; and Gz is A-critical and isomorphic to
one of the following: (2m — 1)>™-2(2m)?, (2m — 2)(2m — 1)>™—4(2m)*,
(2m - 2)%(2m — 1)>™~%(2m), and (2m — 3)(2m — 1)2m=5(2m)5.

Proof. Sufficiency. Suppose G satisfies one of (1), (i), (iii), (iv), (v), (vi),
and (vii). Then either G is overfull or G contains an overfull subgraph with
the same maximum degree. Thus G is of class 2.

Necessity. Suppose G is of class 2. If G is A-critical, then by Corallory
3.1, G satisfies one of (i), (ii), (iii), and (iv). On the other hand, if G is not
A-critical, then by Lemma 2.3, G contains a A-critical subgraph G2 with
at most five major vertices and e(G2) < e(G). Observe that |Ge| < IG).
If |Gz} = |G|, as G has exactly five major vertices and e(G) > e(G2),
by Lemma 2.6, Lemma 2.8, and Corollary 3.1, G, = (2n — 1)2"~2(2n)°,
G2 = (2n - 2)(2n - 1)>~4(2n)* or G, = (2n — 2)2(2n — 1)2—6(2n). In
either case, G = (2n—1)*"~4(2n)°. If|G,| < |G|, let G, = G-V (G2). Since
G is connected, we have eq(V(G,), V(G2)) > 1. On the other hand, as G2
has at most five major vertices and G has exactly five major vertices, by
Lemma 2.6, Lemma 2.8 and Corollary 3.1, we have ec(V(G1),V(G2)) L2
Thus 1 < eq(V(G1),V(G2)) < 2. ' :

Suppose eg(V(G1),V(G2)) = 1. Then G has a cut-edge e connecting
G1 and G; in G. If G has three major vertices, then A(G,) < A, and by
Lemma 2.6, G» = (2m —1)>™~2(2m)3 for some m < n. Thus either G; has
exactly one vertex of degree A and e is incident with a vertex of degree at
most A—2in G and a vertex of degree (2m —1) in G, or A(G1))<A-1
‘and e is incident with a vertex of degree A —1in G, and a vertex of degree
(2m —1) in G;. If G, has exactly four major vertices, by Lemma 2.8, for
some m < n, G2 = (2m—2)*™~3(2m —1)* (in this case A(G)) < A—1and
e is incident with a vertex of degree at most A — 2 in G; and a vertex of




Ze(:éee (<ZTZ -2) in Go) or Gz = (2m — 2)(2m —1)2™~4(2m)* (in this case,
A 1.31 < ,.and if A(Gy) = A, then Gy has exactly one major vertex and e
32 inci en't with a vertex of degree at most A—2 in Gy and a vertex of degree
((i m—1) in Gz I A(G,) < A—1, then either e is incident with a vertex of

egree A —1in G, and a vertex of degree (2m — 2) in G2, or e is incident
?mth a vertex of degree at most A —2 in G and a vertex of degree 2m — 1
in Gg). If G has five major vertices, by Corollary 3.1, for somem < n
G = (2m —3)(2m — 2/m=*(2m ~ 1F, G 2 (2m ~2)*(2m — 1)2m-6(2m)*
Ef G2 = (2m — 3)(2m — 1)™~5(2m)®. In either case, since G has exactly

ve major vertices, it follows that A(G1) < A—2and e s incident with a
vertex of degree at most (2m — 2) in Ga.

Suppose ec(V(G1),V(G2)) = 2. Then G has two cut-edges e; and ez
connecting G and Gz in G. I G; has three major vertices, by Lemma
26, Gy = (2m — 1)?m~2(2m)? for some m < n. Thus A(G1) < A—1and
in G, e; and e, are incident with different vertices of degree_(Zm —-1)in
Gs. If G, has exactly four major vertices, by Lemma 2.8, for some m < n,
Ga = (2m — 2)(2m — 1)?™4(2m)*. Thus A(G1) < A -1 and either e;
and e, are both incident with the vertex of degree (2m - 2) in G2 or e;
and e, are incident with two vertices of degree (2m — 2) and (2m — 1)
respectively in G2. If G2 has five major vertices, by Corollary 3.1, for some
m < m, G2 = (2m — 2)*(2m ~ 1)2m-6(2m)® (in this case e and ez in G
are incident with two vertices of degree 2m - 2) respectively in G) or
Gz = (2m —3)(2m — 1)2m~5(2m)® (in this case both e and e; in G are
incident with the vertex of degree (2m —3) in G,). In either case, since G
has exactly five major vertices, AG))LA-1L -
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