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Abstract

A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles,
and a Gallai k-coloring is a Gallai coloring that uses k colors. We study Ramsey-type problems
in Gallai colorings. Given an integer k ≥ 1 and a graph H, the Gallai-Ramsey number GRk(H)
is the least positive integer n such that every Gallai k-coloring of the complete graph on n
vertices contains a monochromatic copy of H. It turns out that GRk(H) is more well-behaved
than the classical Ramsey number Rk(H). However, finding exact values of GRk(H) is far
from trivial. In this paper, we study Gallai-Ramsey numbers of odd cycles. We prove that for
n ∈ {4, 5} and all k ≥ 1, GRk(C2n+1) = n · 2k + 1. This new result provides partial evidence for
the first two open cases of the Triple Odd Cycle Conjecture of Bondy and Erdős from 1973. Our
technique relies heavily on the structural result of Gallai on Gallai colorings of complete graphs.
We believe the method we developed can be used to determine the exact values of GRk(C2n+1)
for all n ≥ 6.
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1 Introduction

All graphs in this paper are finite and simple; that is, they have no loops or parallel edges. Given

a graph G and a set A ⊆ V (G), we use |G| to denote the number of vertices of G, and G[A] to

denote the subgraph of G obtained from G by deleting all vertices in V (G) \ A. A graph H is

an induced subgraph of G if H = G[A] for some A ⊆ V (G). We use Kn and Cn to denote the

complete graph and cycle on n vertices, respectively. For any positive integer k, we write [k] for

the set {1, 2, . . . , k}. We use the convention “A :=” to mean that A is defined to be the right-hand

side of the relation.

Given an integer k ≥ 1 and a graph H, the classical Ramsey number R(H) is the least integer

n such that every k-coloring of the edges of Kn contains a monochromatic copy of H. Ramsey

numbers are notoriously difficult to compute in general. In this paper, we study Ramsey numbers
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of graphs in Gallai colorings, where a Gallai coloring is a coloring of the edges of a complete graph

without rainbow triangles (that is, a triangle with all its edges colored differently). Gallai colorings

naturally arise in several areas including: information theory [18]; the study of partially ordered

sets, as in Gallai’s original paper [12] (his result was restated in [15] in the terminology of graphs);

and the study of perfect graphs [4]. There are now a variety of papers which consider Ramsey-type

problems in Gallai colorings (see, e.g., [6, 10, 13, 14, 16, 3, 21, 22]). These works mainly focus on

finding various monochromatic subgraphs in such colorings. More information on this topic can be

found in [9, 11].

A Gallai k-coloring is a Gallai coloring that uses k colors. Given an integer k ≥ 1 and a

graph H, the Gallai-Ramsey number GRk(H) is the least integer n such that every Gallai k-

coloring of Kn contains a monochromatic copy of H. Clearly, GRk(H) ≤ Rk(H) for all k ≥ 1 and

GR2(H) = R2(H). In 2010, Gyárfás, Sárközy, Sebő and Selkow [14] proved the general behavior

of GRk(H).

Theorem 1.1 ([14]) Let H be a fixed graph with no isolated vertices and let k ≥ 1 be an integer.

Then GRk(H) is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star,

and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRk(H) behaves nicely, while the

order of magnitude of Rk(H) seems hopelessly difficult to determine. It is worth noting that finding

exact values of GRk(H) is far from trivial, even when |H| is small. We will utilize the following

important structural result of Gallai [12] on Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai-coloring c of a complete graph G, V (G) can be partitioned

into nonempty sets V1, V2, . . . , Vp with p > 1 so that at most two colors are used on the edges in

E(G) \ (E(V1)∪ · · · ∪E(Vp)) and only one color is used on the edges between any fixed pair (Vi, Vj)

under c, where E(Vi) denotes the set of edges in G[Vi] for all i ∈ [p].

The partition given in Theorem 1.2 is a Gallai-partition of the complete graph G under c. Given

a Gallai-partition V1, V2, . . . , Vp of the complete graph G under c, let vi ∈ Vi for all i ∈ [p] and

let R := G[{v1, v2, . . . , vp}]. Then R is the reduced graph of G corresponding to the given Gallai-

partition under c. Clearly, R is isomorphic to Kp. By Theorem 1.2, all edges in R are colored by

at most two colors under c. One can see that any monochromatic H in R under c will result in

a monochromatic H in G under c. It is not surprising that Gallai-Ramsey numbers GRk(H) are

related to the classical Ramsey numbers R2(H). Recently, Fox, Grinshpun and Pach posed the

following conjecture on GRk(H) when H is a complete graph.

Conjecture 1.3 ([9]) For all integers k ≥ 1 and t ≥ 3,

GRk(Kt) =

{
(R2(Kt)− 1)k/2 + 1 if k is even

(t− 1)(R2(Kt)− 1)(k−1)/2 + 1 if k is odd.
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The first case of Conjecture 1.3 follows from a result of Chung and Graham [6] in 1983. The next

open case when t = 4 was recently settled in [19]. In this paper, we study Gallai-Ramsey numbers

of odd cycles. Using the same construction given by Erdős, Faudree, Rousseau and Schelp in 1976

(see Section 2 in [8]) for classical Ramsey numbers of odd cycles, we see that GRk(C2n+1) ≥ n·2k+1

for all k ≥ 1 and n ≥ 2. General upper bounds for GRk(C2n+1) were first studied in [10] and later

improved in [16].

Theorem 1.4 ([16]) For all k ≥ 1 and n ≥ 2,

n · 2k + 1 ≤ GRk(C2n+1) ≤ (2k+3 − 3)n lnn.

Theorem 1.5 and Theorem 1.6 below determine the exact values of GRk(C3) and GRk(C5),

respectively. A simpler proof of Theorem 1.5 can be found in [14].

Theorem 1.5 ([6]) For all k ≥ 1, GRk(C3) =

{
5k/2 + 1 if k is even

2 · 5(k−1)/2 + 1 if k is odd.

Theorem 1.6 ([10]) For all k ≥ 1, GRk(C5) = 2 · 2k + 1.

Recently, Bruce and Song [3] considered the next step and determined the exact values of

GRk(C7) for all integers k ≥ 1.

Theorem 1.7 ([3]) For every integer k ≥ 1, GRk(C7) = 3 · 2k + 1.

We continue to study the Gallai-Ramsey numbers of odd cycles in this paper. We determine the

exact values of Gallai-Ramsey numbers of C9 and C11 in this paper by showing that the lower bound

in Theorem 1.4 is also the desired upper bound. That is, we prove that GRk(C2n+1) ≤ n · 2k + 1

for all integers n ∈ {4, 5} and k ≥ 1. Jointly with Bosse and Zhang [2], we are currently working

on the Gallai-Ramsey numbers of C13 and C15, using the key ideas developed in this paper. We

believe the method we developed in this paper and [2] will be helpful in determining the exact

values of Gallai-Ramsey numbers of C2n+1 for all n ≥ 8. Theorem 1.8 is our main result.

Theorem 1.8 For all integers n ∈ {4, 5} and k ≥ 1, GRk(C2n+1) = n · 2k + 1.

It is worth mentioning that Theorem 1.8 also provides partial evidence for the first two open

cases of the Triple Odd Cycle Conjecture due to Bondy and Erdős [1], which states thatR3(C2n+1) =

8n + 1 for all integers n ≥ 2.  Luczak [20] showed that R3(C2n+1) = 8n + o(n), as n → ∞, and

Kohayakawa, Simonovits and Skokan [17] announced a proof in 2005 that the Triple Odd Cycle

Conjecture holds when n is sufficiently large.

We shall make use of the following known results in the proof of Theorem 1.8.

Theorem 1.9 ([1]) For all n ≥ 2, R2(C2n+1) = 4n+ 1.

Proposition 1.10 ([5]) R2(C4) = 6 and R2(C6) = 8.
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Finally, we need to introduce more notation. For positive integers n, k and a complete graph

G, let c be any Gallai k-coloring of G with color classes E1, . . . , Ek. Then c is bad if G contains

no monochromatic C2n+1 under c. For any W ⊆ V (G) and any color i ∈ [k], E := Ei ∩ E(G[W ])

is an induced matching in G[W ] if E is a matching in G[W ]. For two disjoint sets A,B ⊆ V (G),

A is mc-complete to B under the coloring c if all the edges between A and B in G are colored the

same color under c; and we simply say A is j-complete to B if all the edges between A and B in G

are colored by some color j ∈ [k] under c; and A is blue-complete to B if all the edges between A

and B in G are colored blue under c. For convenience, we use A \B to denote A−B; and A \ b to

denote A− {b} when B = {b}. We conclude this section with two useful lemmas.

Lemma 1.11 For all integers n ≥ 3 and k ≥ 1, let c be a k-coloring of the edges of a complete

graph G on at least 2n+ 1 vertices. Let Y,Z ⊆ V (G) be two disjoint sets with |Y | ≥ n and |Z| ≥ n.

If Y is mc-complete, say blue-complete, to Z under the coloring c, then no vertex in V (G)\ (Y ∪Z)

is blue-complete to Y ∪ Z in G. Moreover, if |Z| ≥ n+ 1, then G[Z] has no blue edges. Similarly,

if |Y | ≥ n+ 1, then G[Y ] has no blue edges.

Proof. Suppose there exists a vertex x ∈ V (G) \ (Y ∪ Z) such that x is blue-complete to Y ∪ Z
in G. Let Y = {y1, . . . , y|Y |} and Z = {z1, . . . , z|Z|}. We may further assume that z1z2 is colored

blue under c if |Z| ≥ n + 1 and G[Z] has a blue edge. We then obtain a blue C2n+1 with vertices

y1, x, z1, y2, z2, . . . , yn, zn in order when |Y | ≥ n, |Z| ≥ n or vertices y1, z1, z2, y2, z3, . . . , yn, zn+1

in order when |Z| ≥ n + 1 and G[Z] has a blue edge z1z2, a contradiction. Thus no vertex in

V (G) \ (Y ∪ Z) is blue-complete to Y ∪ Z in G; and if |Z| ≥ n + 1, then G[Z] has no blue edges.

Similarly, one can prove that if |Y | ≥ n+ 1, then G[Y ] has no blue edges. �

Lemma 1.12 For all integers ` ≥ 3 and n ≥ 1, let n1, n2, . . . , n` be positive integers such that

ni ≤ n for all i ∈ [`] and n1 + n2 + · · · + n` ≥ 2n + 1. Then the complete multipartite graph

Kn1,n2,...,n`
has a cycle of length 2n+ 1.

Proof. Let G := Kn′1,n
′
2,...,n

′
`

be an induced subgraph of Kn1,n2,...,n`
with `′ ≥ 3, n′1+n′2+ · · ·+n′` =

2n + 1 and for all i ∈ [`′], 1 ≤ n′i ≤ n. Then δ(G) ≥ n + 1 ≥ |G|/2. By a well-known theorem of

Dirac [7], G has a Hamilton cycle, and so Kn1,n2,...,n`
has a cycle of length 2n+ 1. �

2 Proof of Theorem 1.8

Let n ∈ {4, 5}. By the construction given by Erdős, Faudree, Rousseau and Schelp in 1976 (see

Section 2 in [8]) for classical Ramsey numbers of odd cycles, GRk(C2n+1) ≥ n · 2k + 1 for all k ≥ 1.

We next show that GRk(C2n+1) ≤ n·2k+1 for all k ≥ 1. This is trivially true for k = 1. By Theorem

1.9 and the fact that GR2(C2n+1) = R2(C2n+1), we may assume that k ≥ 3. Let G := Kn·2k+1 and
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let c be any Gallai k-coloring of G. We next show that G contains a monochromatic copy of C2n+1

under the coloring c.

Suppose that G does not contain any monochromatic C2n+1 under c. Then c is bad. Among all

complete graphs on n · 2k + 1 vertices with a bad Gallai k-coloring, we choose G with k minimum.

We next prove a series of claims.

Claim 2.1 Let W ⊆ V (G) and let ` ≥ 3 be an integer. Let x1, . . . , x` ∈ V (G) \ W such that

{x1, . . . , x`} is mc-complete, say blue-complete, to W under c. Let q ∈ {0, 1, . . . , k − 1} be the

number of colors, other than blue, missing on G[W ] under c.

(i) If ` ≥ n, then |W | ≤ n · 2k−1−q.

(ii) If ` = n− 1, then |W | ≤ n · 2k−1−q + 2.

(iii) If ` = n− 2, then n = 5 and |W | ≤ 8 · 2k−1−q − 1.

Proof. The statement in each of (i), (ii) and (iii) is trivially true if |W | < max{2n+ 1− `, n+ 1}.
So we may assume that |W | ≥ max{2n+ 1− `, n+ 1}. We may further assume that G[W ] contains

at least one blue edge, else, by minimality of k, |W | ≤ n · 2k−1−q, giving the result. Note that

q ≤ k − 1. If q = k − 1, then all the edges of G[W ] are colored only blue. Since {x1, . . . , x`} is

blue-complete to W and |W | ≥ max{2n + 1 − `, n + 1}, we see that G[W ∪ {x1, . . . , x`}] contains

a blue C2n+1, a contradiction. Thus q ≤ k − 2. Since |W | ≥ n + 1 and G[W ] contains at least

one blue edge, by Lemma 1.11, ` ≤ n − 1. Let W ∗ be a minimal set of vertices in W such that

G[W \W ∗] has no blue edges. By minimality of k, |W \W ∗| ≤ n · 2k−1−q.
We now consider the case when ` = n − 1. Then |W | ≥ 2n + 1 − ` = n + 2. If G[W ]

contains three blue edges, say u1v1, u2v2, u3v3, such that u1, u2, u3, v1, v2, v3 are all distinct, then we

obtain a blue C2n+1 with vertices x1, u1, v1, x2, u2, v2, x3, u3, v3 in order (when n = 4) and vertices

x1, u1, v1, x2, u2, v2, x3, u3, v3, x4, u in order (when n = 5, where u ∈ W \ {u1, u2, u3, v1, v2, v3}), a

contradiction. Thus |W ∗| ≤ 2, and so |W | ≤ n · 2k−1−q + 2.

It remains to consider the case when 3 ≤ ` ≤ n − 2. Then n = 5 and ` = n − 2 = 3. Note

that |W | ≥ 2n + 1 − ` ≥ 8. Let P be a longest blue path in G[W ] with vertices v1, . . . , v|P | in

order. Since {x1, x2, x3} is blue-complete to W , we see that |P | ≤ 5, else we obtain a blue C11

with vertices x1, v1, . . . , v6, x2, u1, x3, u2 in order, where u1, u2 ∈ W \ {v1, . . . , v6}, a contradiction.

Assume first that |W ∗| ≤ 4. Then,

|W | = |W \W ∗|+ |W ∗| ≤ n · 2k−1−q + 4 < 8 · 2k−1−q − 1,

because q ≤ k − 2 and k ≥ 3. So we may assume that |W ∗| ≥ 5. By the choice of W ∗, we see

that |P | ∈ {2, 3}, else we obtain a blue C11. Furthermore, if |P | = 3, then G[W \ V (P )] has

no blue path on three vertices. Thus all the blue edges in G[W \ V (P )] induce a blue match-

ing. Let m := |W ∗ \ V (P )| and let u2w2, . . . , um+1wm+1 be all the blue edges in G[W \ V (P )],
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where u2, . . . , um+1, w2, . . . , wm+1 are all distinct. By the choice of W ∗, we may assume that

u2, . . . , um+1 ∈W ∗. Let u1 = v1 and w1 = v2, and A := W \(V (P )∪{u2, . . . , um+1, w2, . . . , wm+1}).
Let B := {u1, u2, . . . , um+1} when |A| ≤ 1 and let B := {u1, u2, . . . , um+1} ∪ {a1, a2} when |A| ≥ 2

and a1, a2 ∈ A with a1 6= a2. We claim that |B| ≤ 3 · 2k−1−q. Suppose |B| ≥ 3 · 2k−1−q + 1. By

Theorem 1.7, G[B] has a monochromatic, say green, C7. Then |V (C7)∩{u1, u2, . . . , um+1}| ≥ 5 and

so C7 \ {a1, a2} has a matching of size two. We may assume that u2u3, u4u5 ∈ E(C7). Since G has

no rainbow triangles under the coloring c, we see that for any i ∈ {2, 4}, {ui, wi} is green-complete

to {ui+1, wi+1}. Thus we obtain a green C11 from the C7 by replacing the edge u2u3 with the

path u2w3w2u3 and edge u4u5 with the path u4w5w4u5, a contradiction (see Figure 2.1). Thus

|B| ≤ 3 · 2k−1−q, as claimed.

Figure 2.1: An example of a green C11 arising from the green C7.

When |A| ≤ 1, we have |W | = |A|+ 2|B|+ |V (P ) \ {v1, v2}| ≤ 1 + 6 · 2k−1−q + 1 < 8 · 2k−1−q − 1

because q ≤ k − 2 and k ≥ 3. When |A| ≥ 2, since G[A ∪ {w1, w2, . . . , wm+1}] has no blue edges,

by minimality of k, |A ∪ {w1, w2, . . . , wm+1}| ≤ 5 · 2k−1−q. Hence,

|W | = |A ∪ {w1, w2, . . . , wm+1}|+ |B \ {a1, a2}|+ |V (P ) \ {v1, v2}|

≤ 5 · 2k−1−q + (3 · 2k−1−q − 2) + 1

= 8 · 2k−1−q − 1.

This completes the proof of Claim 2.1. �

Let X1, . . . , Xm be a maximum sequence of disjoint subsets of V (G) such that, for all j ∈ [m],

one of the following holds.

(a) 1 ≤ |Xj | ≤ 2, and Xj is mc-complete to V (G) \
⋃

i∈[j]Xi under c, or

(b) 3 ≤ |Xj | ≤ 4, and Xj can be partitioned into two non-empty sets Xj1 and Xj2 , where j1, j2 ∈ [k]

are two distinct colors, such that for each t ∈ {1, 2}, 1 ≤ |Xjt | ≤ 2, Xjt is jt-complete to

V (G) \
⋃

i∈[j]Xi but not jt-complete to Xj3−t , and all the edges between Xj1 and Xj2 in G are

colored using only the colors j1 and j2.

Note that such a sequence X1, . . . , Xm may not exist. Let X :=
⋃

j∈[m]Xj . For each x ∈ X,

let c(x) be the unique color on the edges between x and V (G) \ X under c. For all i ∈ [k], let
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X∗i := {x ∈ X : c(x) = color i}. Then X =
⋃

i∈[k]X
∗
i . It is worth noting that for all i ∈ [k],

X∗i is possibly empty. By abusing the notation, we use X∗b to denote X∗i when the color i is blue.

Similarly, we use X∗r to denote X∗i when the color i is red.

Claim 2.2 For all i ∈ [k], |X∗i | ≤ 2.

Proof. Suppose the statement is false. Then m ≥ 2. When choosing X1, X2, . . . , Xm, let

j ∈ [m − 1] be the largest index such that |X∗p ∩ (X1 ∪ X2 ∪ · · · ∪ Xj)| ≤ 2 for all p ∈ [k]. Then

3 ≤ |X∗i ∩ (X1 ∪ X2 ∪ · · · ∪ Xj ∪ Xj+1)| ≤ 4 for some color i ∈ [k] by the choice of j. Such a

color i and an index j exist due to the assumption that the statement of Claim 2.2 is false. Let

A := X1 ∪ X2 ∪ · · · ∪ Xj ∪ Xj+1. By the choice of X1, X2, . . . , Xm, there are at most two colors

i ∈ [k] such that 3 ≤ |X∗i ∩ A| ≤ 4. We may assume that such a color i is either blue or red. Let

Ab := {x ∈ A : c(x) is color blue} and Ar := {x ∈ A : c(x) is color red}. It suffices to consider the

worst case when 3 ≤ |Ab| ≤ 4 and 3 ≤ |Ar| ≤ 4. Then for any color p ∈ [k] other than red and blue,

|X∗p ∩A| ≤ 2. Thus by the choice of j, |A \ (Ab ∪Ar)| ≤ 2(k− 2). We may assume that |Ab| ≥ |Ar|.
Note that |Ab| ≤ n. If |Ab| ≥ n− 1, then by Claim 2.1(ii) applied to any n− 1 vertices in Ab and

V (G) \A, we see that |V (G) \A| ≤ n · 2k−1 + 2. Thus,

|G| = |A \ (Ab ∪Ar)|+ |Ab|+ |Ar|+ |V (G) \A| ≤ 2(k − 2) + n+ n+ (n · 2k−1 + 2) < n · 2k + 1

for all k ≥ 3 and n ∈ {4, 5}, a contradiction. Thus 3 ≤ |Ab| ≤ n− 2. Then |Ab| = 3 and n = 5. By

Claim 2.1(iii) applied to Ab and V (G) \A, we see that |V (G) \A| ≤ 8 · 2k−1 − 1. Thus,

|G| = |A \ (Ab ∪Ar)|+ |Ab|+ |Ar|+ |V (G) \A| ≤ 2(k − 2) + 3 + 3 + (8 · 2k−1 − 1) < 5 · 2k + 1

for all k ≥ 3, a contradiction. �

By Claim 2.2, |X| ≤ 2k. Let X ′ ⊆ X be such that for all i ∈ [k], |X ′ ∩X∗i | = 1 when X∗i 6= ∅.
Let X ′′ := X \ X ′. Now consider a Gallai partition A1, . . . , Ap of G \ X with p ≥ 2. We may

assume that 1 ≤ |A1| ≤ · · · ≤ |As| < 3 ≤ |As+1| ≤ · · · ≤ |Ap|, where 0 ≤ s ≤ p. Let R be the

reduced graph of G \X with vertices a1, a2, . . . , ap, where ai ∈ Ai for all i ∈ [p]. By Theorem 1.2,

we may assume that the edges of R are colored red and blue. Note that any monochromatic C2n+1

in R would yield a monochromatic C2n+1 in G. Thus R has neither a red nor a blue C2n+1. By

Theorem 1.9, p ≤ 4n. Then |Ap| ≥ 2 because |G \X| ≥ n · 2k + 1− 2k ≥ 8n− 5. If |Ap| = 2, then

k = 3. Thus |Ap−4n+8| = 2, else |G| ≤ 2(4n − 8) + (p − (4n − 8)) + |X| ≤ 8n − 2 < n · 23 + 1, a

contradiction. Since R2(C2n−3) = 4n−7 by Theorem 1.9, we see that R[{ap−4n+8, ap−4n+9, . . . , ap}]
has a monochromatic, say blue, C2n−3, and so G[Ap−4n+8 ∪Ap−4n+9 ∪ · · · ∪Ap] has a blue C2n+1,

a contradiction. Thus |Ap| ≥ 3 and so p− s ≥ 1. Let

B := {ai ∈ {a1, . . . , ap−1} | aia1 is colored blue in R}

R := {aj ∈ {a1, . . . , ap−1} | aja1 is colored red in R}

Then |B|+ |R| = p− 1. Let BG :=
⋃

ai∈B Ai and RG :=
⋃

aj∈RAj .
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Claim 2.3 If |Ap| ≥ n and |B| ≥ 3 (resp. |R| ≥ 3), then |BG| ≤ 2n (resp. |RG| ≤ 2n).

Proof. Suppose |Ap| ≥ n and |B| ≥ 3 but |BG| ≥ 2n + 1. By Lemma 1.11, G[BG] has no

blue edges and no vertex in X is blue-complete to V (G) \ X. Thus all the edges of R[B] are

colored red in R. Let m := |B| and let B := {ai1 , ai2 , . . . , aim} with |Ai1 | ≥ |Ai2 | ≥ · · · ≥
|Aim |. Then G[BG] −

⋃m
j=1E(G[Aij ]) is a complete multipartite graph with at least three parts.

If |Ai1 | ≤ n, then by Lemma 1.12 applied to G[BG] −
⋃m

j=1E(G[Aij ]), G[BG] has a red C2n+1,

a contradiction. Thus |Ai1 | ≥ n + 1. Let Qb := {v ∈ RG : v is blue-complete to Ai1}, and

Qr := {v ∈ RG : v is red-complete to Ai1}. Then Qb ∪Qr = RG. Let Q := (BG \ Ai1) ∪Qr ∪X∗r .

Then Ai1 is red-complete to Q and G[Q] must contain red edges, because |B| ≥ 3 and all the

edges of R[B] are colored red. By Lemma 1.11 applied to Ai1 and Q, |Q| ≤ n. Note that

|Ap ∪Qb| ≥ |Ap| ≥ |Ai1 | ≥ n+ 1 and Ap ∪Qb is blue-complete to Ai1 . By Lemma 1.11 applied to

Ai1 and Ap∪Qb, G[Ap∪Qb] has no blue edges. Since no vertex in X is blue-complete to V (G)\X,

we see that neither G[Ap ∪Qb ∪ (X ′′ \X∗r )] nor G[BG ∪X ′] (and thus G[Ai1 ∪ (X ′ \X∗r )]) has blue

edges. By minimality of k, |Ap ∪Qb ∪ (X ′′ \X∗r )| ≤ n · 2k−1. Suppose first that Qr ∪X∗r = ∅. Then

Qb = RG, so that

|G| = |BG ∪X ′|+ |Ap ∪Qb ∪X ′′| ≤ n · 2k−1 + n · 2k−1 < n · 2k + 1,

a contradiction. Thus Qr ∪X∗r 6= ∅. Since |B| ≥ 3, we see that |BG \ Ai1 | ≥ 2. Thus n ≥ |Q| ≥ 3.

Since G[Ai1 ∪ (X ′ \X∗r )] has no blue edges, by Claim 2.1 applied to Q and Ai1 we see that

|Ai1 ∪ (X ′ \X∗r )| ≤

{
n · 2k−2 + 2, if |Q| ∈ {n− 1, n}
8 · 2k−2 − 1, if |Q| = n− 2 and n = 5.

But then

|G| = |Q|+ |Ai1 ∪ (X ′ \X∗r )|+ |Ap ∪Qb ∪ (X ′′ \X∗r )|

≤

{
n+ (n · 2k−2 + 2) + n · 2k−1, if |Q| ∈ {n− 1, n}
3 + (8 · 2k−2 − 1) + n · 2k−1, if |Q| = n− 2 and n = 5.

< n · 2k + 1

for all k ≥ 3 and n ∈ {4, 5}, a contradiction. Hence, |BG| ≤ 2n. Similarly, one can prove that if

|Ap| ≥ n and |R| ≥ 3, then |RG| ≤ 2n. �

Claim 2.4 p ≤ 2n− 1.

Proof. Suppose p ≥ 2n. Then |B|+ |R| = p− 1 ≥ 2n− 1. We claim that |Ap| ≤ n− 1. Suppose

|Ap| ≥ n. We may assume that |B| ≥ |R|. Then |BG| ≥ |B| ≥ n > 3. By Claim 2.3, |BG| ≤ 2n. If

|RG| ≥ n+ 1, then by Lemma 1.11 to Ap and RG, G[RG] has no red edges, and no vertex in X is

8



red-complete to V (G) \X. Then |X ′′| ≤ k− 1 and G[RG ∪X ′] has no red edges. By minimality of

k, |RG ∪X ′| ≤ n · 2k−1. Then

|Ap| = |G| − |BG| − |RG ∪X ′| − |X ′′| ≥ n · 2k + 1− 2n− n · 2k−1 − (k − 1) ≥ 2n− 1,

for all k ≥ 3. By Lemma 1.11 applied to Ap and BG, G[Ap] has no blue edges and no vertex

in X is blue-complete to V (G) \ X. Thus G[Ap ∪ X ′′] has neither red nor blue edges, and so

|Ap ∪X ′′| ≤ n · 2k−2 by the choice of k. But then

|BG| = |G| − |RG ∪X ′| − |Ap ∪X ′′| ≥ n · 2k + 1− n · 2k−1 − n · 2k−2 ≥ 2n+ 1,

contrary to Claim 2.3. This proves that |RG| ≤ n. Then

|Ap ∪X ′| = |G| − |BG| − |RG| − |X ′′| ≥ (n · 2k + 1)− 2n− n− k > n · 2k−1 + 1.

By minimality of k, G[Ap∪X ′] must have blue edges. Since |Ap| ≥ n and |BG| ≥ n, by Lemma 1.11

applied to Ap and BG, |Ap| = n and no vertex in X is blue-complete to V (G) \ X. Thus |X| ≤
2(k − 1). But then

|G| = |BG|+ |RG|+ |Ap|+ |X| ≤ 2n+ n+ n+ 2(k − 1) < n · 2k + 1,

for all k ≥ 3, a contradiction. This proves that |Ap| ≤ n− 1, as claimed.

Since |Ap| ≥ 3, we have 3 ≤ |Ap| ≤ n−1. Then k = 3 because n ∈ {4, 5} and |G| = n ·2k +1. It

follows that |G| = 8n+1 and |X| ≤ 6. Therefore, |BG|+|RG| = |G|−|Ap|−|X| ≥ (8n+1)−(n−1)−
6 = 7n− 4. We may thus assume that |BG| > 2n+ 3. We next prove that |Ap| ≤ n− 2. Suppose

|Ap| = n − 1. If G[BG] contains three blue edges u1v1, u2v2, u3v3 such that u1, u2, u3, v1, v2, v3

are all distinct, then we obtain a blue C2n+1 with vertices in Ap ∪ {u1, u2, u3, u4, v1, v2, v3}, where

u4 ∈ BG\{u1, u2, u3, v1, v2, v3}, a contradiction. Thus there exists B∗ ⊆ BG such that |B∗| ≤ 2 and

G[BG \B∗] has no blue edges. Then |BG \B∗| > 2n+ 1, and so |B \B∗| ≥ 3 because |Ai| ≤ n− 1

for all i ∈ [p]. By the choice of B∗, all the edges in R[B \B∗] are colored red. But then by Lemma

1.12, G[BG \ B∗] has a red C2n+1, a contradiction. This proves that 3 ≤ |Ap| ≤ n − 2. Then

|Ap| = 3, n = 5, |G| = 41, and p ≤ 20. If |Ap−7| = 3 or |Ap−12| ≥ 2, then R[{ap−8, ap−7, . . . , ap}]
has a monochromatic C5, or R[{ap−12, ap−11, . . . , ap}] has a monochromatic C7 because R2(C5) = 9

and R2(C7) = 13. In either case, we see that G has a monochromatic C11, a contradiction. Thus

|Ap−7| ≤ 2 and |Ap−12| ≤ 1. Then |Ap−7| = 2, else |G| ≤ 7 ·3+13 ·1+6 < 41, a contradiction. Since

R2(C6) = 8, we see thatR[{ap−7, ap−6, . . . , ap}] has a monochromatic, say blue, C6, and so G\X has

a blue C10. Thus no vertex in X is blue-complete to G\X and so |X| ≤ 2(k−1) = 4. Furthermore,

if |Ap−8| = 2, then |Ap−4| = 2, else R[{ap−8, ap−7, . . . , ap}] has a monochromatic C5, and so G has

a monochromatic C11, a contradiction. But then |G| ≤ 4 · 3 + 8 · 2 + (p − 12) · 1 + |X| ≤ 40 < 41

when |Ap−8| = 2; and |G| ≤ 7 · 3 + 2 + (p− 8) · 1 + |X| ≤ 39 < 41 when |Ap−8| ≤ 1. In both cases,

we obtain a contradiction. �

Claim 2.5 |Ap| ≥ n+ 1.
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Proof. Suppose |Ap| ≤ n. By Claim 2.4, p ≤ 2n− 1. We may assume that apap−1 is colored blue

in R. Then |Ap ∪Ap−1 ∪X| ≤ 2n+ 2(k − 1), else we obtain a blue C2n+1. If |Ap−4| ≥ n− 1, then

R[{ap−4, ap−3, . . . , ap}] has a monochromatic C3 or C5, and so G contains a monochromatic C2n+1,

a contradiction. Thus |Ap−4| ≤ n− 2. But then

|G| ≤ (2n+ 2(k − 1)) + 2n+ (p− 4)(n− 2) ≤ 4n+ (2n− 5)(n− 2) + 2k − 2 < n · 2k + 1.

for all n ∈ {4, 5} and k ≥ 3, a contradiction. �

For the remainder of the proof, let B∗G := BG ∪X∗b and R∗G := RG ∪X∗r .

Claim 2.6 2 ≤ p− s ≤ 3n− 7.

Proof. Suppose p − s ≥ 3n − 6. Then R[{ap−3n+7, ap−3n+8, . . . , ap}] has a monochromatic C2n−5

because R2(C2n−5) = 3n−6 when n ∈ {4, 5}. But then G would contain a monochromatic C2n+1.

Next suppose p − s ≤ 1. Then p − s = 1 because p − s ≥ 1. Thus |Ai| ≤ 2 for all i ∈ [p − 1]

by the choice of p and s. By Claim 2.4, p ≤ 2n − 1. Then |BG ∪ RG| ≤ 2(p − 1) and so

|B∗G ∪R∗G| ≤ 2(p− 1) + 2 + 2 = 2(p+ 1) ≤ 4n. We may assume that |B∗G| ≥ |R∗G|. If |R∗G| ≥ n, then

|B∗G| ≥ n. By Claim 2.5 and Lemma 1.11, G[Ap] has neither blue nor red edges. By minimality of

k, |Ap| ≤ n · 2k−2. But then

|G| = |B∗G ∪R∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ 4n+ n · 2k−2 + 2(k − 2) < n · 2k + 1

for all k ≥ 3, a contradiction. Thus |R∗G| ≤ n − 1. We claim that |B∗G| ≤ 2n + 2. This is trivially

true if |B| ≤ n. If |B| ≥ n + 1, then |BG| ≤ 2n by Claim 2.3. Thus |B∗G| ≤ 2n + 2, as claimed. If

|B∗G| ≥ n− 1, then applying Claim 2.1(i,ii) to B∗G and Ap implies that

|B∗G|+ |Ap| ≤

{
(n− 1) + (n · 2k−1 + 2), if |B∗G| = n− 1

(2n+ 2) + n · 2k−1, if |B∗G| ≥ n.

In either case, |B∗G|+ |Ap| ≤ 2n+ n · 2k−1 + 2. But then

|G| = |R∗G|+ |B∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ (n− 1) + (2n+ n · 2k−1 + 2) + 2(k − 2) < n · 2k + 1,

for all k ≥ 3 and n ∈ {4, 5}, a contradiction. Thus n− 2 ≥ |B∗G| ≥ |R∗G|. If |B∗G| = 3, then n = 5.

By Claim 2.1(iii) applied to B∗G and Ap, |Ap| ≤ 8 · 2k−1 − 1. But then,

|G| = |B∗G|+ |R∗G|+ |Ap|+ |X \ (B∗G ∪R∗G)| ≤ 3 + 3 + (8 · 2k−1 − 1) + 2(k − 2) < 5 · 2k + 1

for all k ≥ 3, a contradiction. Thus 2 ≥ |B∗G| ≥ |R∗G|. Since p ≥ 2, we see that B 6= ∅ or R 6= ∅.
Then by maximality of m (see condition (a) when choosing X1, X2, . . . , Xm), B∗ 6= ∅, R∗ 6= ∅,
and B∗G is neither blue- nor red-complete to R∗G in G. But then, by maximality of m again (see

condition (b) when choosing X1, X2, . . . , Xm), B∗G = ∅ and R∗G = ∅, contrary to p ≥ 2. �
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Claim 2.7 |Ap−2| ≤ n− 1.

Proof. Suppose |Ap−2| ≥ n. Then n ≤ |Ap−2| ≤ |Ap−1| ≤ |Ap| and so R[{ap−2, ap−1, ap}] is not

a monochromatic triangle in R (else we obtain a monochromatic C2n+1). Let B1, B2, B3 be a

permutation of Ap−2, Ap−1, Ap such that B2 is, say blue-complete, to B1∪B3 in G. Then B1 must

be red-complete to B3 in G. We may assume that |B1| ≥ |B3|. By Lemma 1.11, no vertex in X is

blue- or red-complete to V (G) \X. Let A := V (G) \ (B1 ∪ B2 ∪ B3 ∪X). Then by Lemma 1.11,

no vertex in A is red-complete to B1 ∪B3 in G, and no vertex in A is blue-complete to B1 ∪B2 or

B2 ∪B3 in G. This implies that A must be red-complete to B2 in G. We next show that G[A] has

no blue edges. Suppose that G[A] has a blue edge, say, uv. Let

B∗1 := {b ∈ A | b is blue-complete to B1 only in G}

B∗2 := {b ∈ A | b is blue-complete to both B1 and B3 in G}

B∗3 := {b ∈ A | b is blue-complete to B3 only in G}.

Then A = B∗1 ∪ B∗2 ∪ B∗3 . Note that B∗1 , B
∗
2 , B

∗
3 are pairwise disjoint and possibly empty. Let

b1, . . . , bn−1 ∈ B1, bn, . . . , b2n−2 ∈ B2, and b2n−1 ∈ B3. If uv is an edge in G[B∗1 ∪ B∗2 ], then

we obtain a blue C2n+1 with vertices b1, u, v, b2, bn, b2n−1, bn+1, b3, bn+2, . . . , bn−1, b2n−2 in order, a

contradiction. Similarly, uv is not an edge in G[B∗2 ∪B∗3 ]. Thus uv must be an edge in G[B∗1 ∪B∗3 ]

with one end in B∗1 and the other in B∗3 . We may assume that u ∈ B∗1 and v ∈ B∗3 . Then we obtain

a blue C2n+1 with vertices b1, u, v, b2n−1, bn, b2, bn+1, . . . , bn−1, b2n−2 in order, a contradiction. This

proves that G[A] has no blue edges. By minimality of k, |A| ≤ n · 2k−1.
We next show that |B2 ∪ A ∪ X ′| ≤ n · 2k−1. Suppose |B2 ∪ A ∪ X ′| ≥ n · 2k−1 + 1. Then

by minimality of k, G[B2 ∪ A ∪X ′] must contain blue edges. Since G[A] has no blue edges, A is

red-complete to B2, and no vertex in X is blue-complete to V (G) \ X, we see that G[B2] must

contain blue edges. By Lemma 1.11, |B2| = n. Then B2 6= Ap. We may assume that B1 = Ap.

By Lemma 1.11, G[B1] has neither blue nor red edges and so G[B1 ∪X ′] has neither blue nor red

edges. By minimality of k, |B1 ∪X ′| ≤ n · 2k−2 and so |B3 ∪X ′′| ≤ |B1 ∪X ′| ≤ n · 2k−2. Note that

A = ∅, else, let v ∈ A. Then G[B2 ∪ {v}] has blue edges and B2 ∪ {v} is blue-complete to either

B1 or B3, contrary to Lemma 1.11. But then

|G| = |B1 ∪X ′|+ |B2|+ |B3 ∪X ′′| ≤ n · 2k−2 + n+ n · 2k−2 < n · 2k + 1,

for all k ≥ 3, a contradiction. This proves that |B2 ∪A ∪X ′| ≤ n · 2k−1.
Since |B1| ≥ |B3| and |B1|+ |B3| = |G| − |B2 ∪A∪X ′| − |X ′′| ≥ n · 2k−1 + 1− (k− 2) ≥ 2n+ 1,

we see that |B1| ≥ n + 1. Note that |B2| ≥ n and |B3| ≥ n. By Lemma 1.11, G[B1] has neither

red nor blue edges. Since each vertex in X is neither red- nor blue-complete to B1, G[B1 ∪X ′′] has

neither red nor blue edges. By minimality of k, |B1 ∪X ′′| ≤ n · 2k−2 and so |B3| ≤ |B1| ≤ n · 2k−2.
But then

|G| = |B2 ∪A ∪X ′|+ |B1 ∪X ′′|+ |B3| ≤ n · 2k−1 + n · 2k−2 + n · 2k−2 = n · 2k,
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a contradiction. �

By Claim 2.6, 2 ≤ p−s ≤ 3n−7 and so |Ap−1| ≥ 3. We may now assume that apap−1 is colored

blue in R. Then ap−1 ∈ B and so Ap−1 ⊆ BG. Thus |BG| ≥ |Ap−1| ≥ 3.

Claim 2.8 |R∗G| ≤ 2n.

Proof. Suppose |R∗G| ≥ 2n + 1. By Claim 2.5, |Ap| ≥ n + 1. By Lemma 1.11, G[R∗G] has no red

edges. Thus |R∗G| = |RG| and so no vertex in X is red-complete to V (G) \ X. In particular, all

the edges in R[R] are colored blue. By Claim 2.3, |R| ≤ 2. By Claim 2.7, |Ap−2| ≤ n − 1. Since

Ap−1 ∩RG = ∅ and |RG| ≥ 2n+ 1, we see that |R| ≥ 3, a contradiction. �

Claim 2.9 |Ap−1| ≤ n.

Proof. Suppose |Ap−1| ≥ n+ 1. Then |BG| ≥ |Ap−1| ≥ n+ 1. By Lemma 1.11, neither G[Ap] nor

G[BG] has blue edges, and no vertex in X is blue-complete to V (G) \X. Thus |X| ≤ 2(k− 1). By

the choice of k, |BG∪X ′′| ≤ n ·2k−1 and |Ap∪X ′| ≤ n ·2k−1. We claim that G[RG] has blue edges.

Suppose G[RG] has no blue edges. Then G[Ap ∪ RG ∪X ′] has no blue edges. By the choice of k,

|Ap∪RG∪X ′| ≤ n ·2k−1. But then |BG∪X ′′| = |G|− |Ap∪RG∪X ′| ≥ n ·2k−1 +1, a contradiction.

Thus G[RG] has blue edges, as claimed. Then |RG| ≥ 2. By Claim 2.8, 2 ≤ |RG| ≤ |R∗G| ≤ 2n.

We first consider the case when |R∗G| ≥ n − 1. We claim that |Ap ∪ (X ′ \ R∗G)| + |R∗G| ≤
n · 2k−2 + max{2n, k + n − 1}. If |R∗G| ≥ n, then by Lemma 1.11, G[Ap] has no red edges and

so G[Ap ∪ (X ′ \ R∗G)] has no red edges. By the choice of k, |Ap ∪ (X ′ \ R∗G)| ≤ n · 2k−2 and so

|Ap ∪ (X ′ \R∗G)|+ |R∗G| ≤ n · 2k−2 + 2n. If |R∗G| = n− 1, then applying Claim 2.1(ii) to R∗G and Ap,

|Ap| ≤ n ·2k−2+2. Thus |Ap∪(X ′\R∗G)|+ |R∗G| ≤ n ·2k−2+2+(k−2)+(n−1) = n ·2k−2+k+n−1.

Thus |Ap ∪ (X ′ \R∗G)|+ |R∗G| ≤ n · 2k−2 + max{2n, k + n− 1}, as claimed. But then

|G| = |Ap∪(X ′\R∗G)|+|R∗G|+|BG∪(X ′′\R∗G)| ≤ (n·2k−2+max{2n, k+n−1})+n·2k−1 < n·2k+1,

for all k ≥ 3, a contradiction.

It remains to consider the case 2 ≤ |RG| ≤ |R∗G| ≤ n− 2. If |R∗G| = 3, then n = 5. By applying

Claim 2.1(iii) to R∗G and Ap, |Ap| ≤ 8 · 2k−2 − 1. But then

|G| ≤ |Ap|+ |BG ∪X ′′|+ |R∗G|+ |X ′ \R∗G| ≤ (8 · 2k−2 − 1) + 5 · 2k−1 + 3 + (k − 2) < 5 · 2k + 1,

for all k ≥ 3, a contradiction. Thus |R∗G| = |RG| = 2. Then no vertex in X is red-complete

to V (G) \ X. Thus |X ′′| ≤ k − 2. Let RG = {a, b}. Then ab must be colored blue under

c because G[RG] has blue edges. If a or b, say b, is red-complete to BG in G, then neither

G[Ap∪{a}∪X ′] nor G[BG∪{b}∪X ′′] has blue edges. By minimality of k, |Ap∪{a}∪X ′| ≤ n ·2k−1

and |BG∪{b}∪X ′′| ≤ n·2k−1. But then |G| = |Ap∪{a}∪X ′|+|BG∪{b}∪X ′′| ≤ n·2k−1+n·2k−1 <
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n · 2k + 1 for all k ≥ 3, a contradiction. Thus neither a nor b is red-complete to BG in G. Let

a′, b′ ∈ BG be such that aa′ and bb′ are colored blue under c. Then a′ = b′, else we obtain a blue

C2n+1 in G with vertices a′, a, b, b′, x1, y1, x2, . . . , yn−2, xn−1 in order, where x1, . . . , xn−1 ∈ Ap and

y1, . . . , yn−2 ∈ BG \ {a′, b′}, a contradiction. Thus {a, b} is red-complete to BG \ a′ in G. Then

there exists i ∈ [s] such that Ai = {a′}. Since G[BG] has no blue edges, we see that {a, b, a′} must

be red-complete to BG \a′ in G. By Claim 2.1(ii,iii) applied to the three vertices a, b, a′ and BG \a′,
we see that |BG \ a′| ≤ 4 · 2k−2 + 2 when n = 4 and |BG \ a′| ≤ 8 · 2k−2 − 1 when n = 5. But then

|G| = |Ap ∪X ′|+ |BG \ a′|+ |{a, b, a′}|+ |X ′′|

≤

{
4 · 2k−1 + (4 · 2k−2 + 2) + 3 + (k − 2), when n = 4

5 · 2k−1 + (8 · 2k−2 − 1) + 3 + (k − 2), when n = 5

< n · 2k + 1

for all k ≥ 3, a contradiction. Hence, |Ap−1| ≤ n. �

By Claim 2.8, |RG| ≤ |R∗G| ≤ 2n. We first consider the case when |RG| ≥ n. Since |Ap| ≥ n+ 1,

by Lemma 1.11, G[Ap] has no red edges and no vertex in X is red-complete to V (G) \ X. Thus

|X| ≤ 2(k − 1). We first claim that |BG| ≥ n. Suppose |BG| ≤ n − 1. If |BG| = n − 1, then

|Ap| ≤ n · 2k−2 + 2 by Claim 2.1(ii) applied to BG and Ap. But then

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (n · 2k−2 + 2) + (n− 1) + 2n+ 2(k − 1) < n · 2k + 1,

for all k ≥ 3, a contradiction. Thus 3 ≤ |BG| ≤ n− 2. Then n = 5 and |BG| = 3. By Claim 2.1(iii)

applied to BG and Ap, |Ap| ≤ 8 · 2k−2 − 1. But then

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (8 · 2k−2 − 1) + 3 + 10 + 2(k − 1) < 5 · 2k + 1,

for all k ≥ 3, a contradiction. Thus |BG| ≥ n, as claimed. By Lemma 1.11, G[Ap] has no blue

edges and no vertex in X is blue-complete to Ap in G. Since G[Ap ∪X ′] has neither red nor blue

edges, and no vertex in X is red- or blue-complete to Ap in G, it follows that |X ′′| ≤ k − 2 and

|Ap ∪X ′| ≤ n · 2k−2 by minimality of k. Then |BG| ≥ n+ 1, else

|G| = |Ap ∪X ′|+ |X ′′|+ (|BG|+ |RG|) ≤ n · 2k−2 + (k − 2) + (n+ 2n) < n · 2k + 1,

for all k ≥ 3, a contradiction. By Lemma 1.11, G[BG] has no blue edges and so G[BG ∪X ′′] has

no blue edges. By minimality of k, |BG ∪X ′′| ≤ n · 2k−1. But then

|G| = |Ap ∪X ′|+ |BG ∪X ′′|+ |RG| ≤ n · 2k−2 + n · 2k−1 + 2n < n · 2k + 1,

for all k ≥ 3, a contradiction.

It remains to consider the case when |RG| ≤ n−1. Suppose first that |BG| ≥ 2n+1. By Lemma

1.11, G[BG] has no blue edges. Thus all the edges in R[B] are colored red. Since |Ap−1| ≤ n by
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Claim 2.9, we see that |B| ≥ 3, contrary to Claim 2.3. Thus 3 ≤ |Ap−1| ≤ |BG| ≤ 2n. If

|BG| ≥ n− 1, by Claim 2.1(i,ii) applied to BG and Ap (and Lemma 1.11 applied to BG and Ap to

obtain |X| ≤ 2(k − 1) when |BG| ≥ n), we have

|Ap|+ |BG|+ |X| ≤

{
(n · 2k−1 + 2) + (n− 1) + 2k, if |BG| = n− 1

n · 2k−1 + 2n+ 2(k − 1), if |BG| ≥ n.

Thus in either case, |Ap|+ |BG|+ |X| ≤ n · 2k−1 + 2n+ 2k − 2. But then

|G| = (|Ap|+ |BG|+ |X|) + |RG| ≤ (n · 2k−1 + 2n+ 2k − 2) + (n− 1) < n · 2k + 1,

for all k ≥ 3, a contradiction. Thus 3 ≤ |BG| ≤ n − 2. Then |BG| = 3 and n = 5. If |R∗G| ≥ 4

or |B∗G| ≥ 4, by applying Claim 2.1(ii) to any four vertices in R∗G or B∗G and Ap, we have |Ap| ≤
5 · 2k−1 + 2. But then

|G| = |Ap|+ |BG|+ |RG|+ |X| ≤ (5 · 2k−1 + 2) + 3 + 4 + 2k < 5 · 2k + 1,

for all k ≥ 3, a contradiction. Thus |BG| = |B∗G| = 3 and |RG| ≤ |R∗G| ≤ 3. Then no vertex in X

is blue-complete to V (G) \X. Thus |X \R∗G| ≤ 2(k− 2). By Claim 2.1(iii) applied to BG and Ap,

|Ap| ≤ 8 · 2k−1 − 1. But then

|G| = |Ap|+ |BG|+ |R∗G|+ |X \R∗G| ≤ (8 · 2k−1 − 1) + 3 + 3 + 2(k − 2) < 5 · 2k + 1,

for all k ≥ 3, a contradiction.

This completes the proof of Theorem 1.8. �
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