Note

Gallai-Ramsey numbers of C_{7} with multiple colors

Dylan Bruce ${ }^{1}$, Zi-Xia Song*
Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

ARTICLE INFO

Article history:

Received 6 November 2017
Received in revised form 3 January 2019
Accepted 3 January 2019
Available online xxxx

Keywords:

Gallai-coloring
Gallai-Ramsey number
Rainbow triangle

Abstract

We study Ramsey-type problems in Gallai-colorings. Given a graph H and an integer $k \geq 1$, the Gallai-Ramsey number $G R_{k}(H)$ is the least positive integer n such that every k-coloring of the edges of the complete graph on n vertices contains either a rainbow triangle or a monochromatic copy of H. It turns out that $G R_{k}(H)$ behaves more nicely than the classic Ramsey number $R_{k}(H)$. However, finding exact values of $G R_{k}(H)$ is far from trivial. In this paper, we prove that $G R_{k}\left(C_{7}\right)=3 \cdot 2^{k}+1$ for all $k \geq 1$. Our technique relies heavily on the structural result of Gallai on edge-colorings of complete graphs without rainbow triangles. © 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. The complete graph and the cycle on n vertices are denoted K_{n} and C_{n}, respectively. We use $|G|$ to denote the number of vertices of a graph G.

For an integer $k \geq 1$, let $c: E(G) \rightarrow[k]$ be a k-edge-coloring of a complete graph G, where $[k]:=\{1,2, \ldots, k\}$. Then c is a Gallai-coloring of G if G contains no rainbow triangle (that is, a triangle with all its edges different colors) under c. Gallai-colorings naturally arise in several areas including in information theory [14], in the study of partially ordered sets, as in Gallai's original paper [10], and in the study of perfect graphs [4]. There are now a variety of papers which consider Ramsey-type problems in Gallai-colorings (see, e.g., [5,8,11-13]). These works mainly focus on finding various monochromatic subgraphs in such colorings. More information on this topic can be found in [7,9].

For a graph G and a set $A \subseteq V(G)$, we use $G[A]$ to denote the subgraph of G obtained from G by deleting all vertices in $V(G) \backslash A$. A graph H is an induced subgraph of G if $H=G[A]$ for some $A \subseteq V(G)$. Recall that the classical Ramsey number $R_{k}(H)$ of a graph H is the least positive integer n such that every k-edge-coloring of K_{n} contains a monochromatic copy of H. Ramsey numbers are notoriously difficult to compute in general. In this paper, we consider Gallai-Ramsey problems. Given a graph H and an integer $k \geq 1$, the Gallai-Ramsey number $G R_{k}(H)$ is the least positive integer n such that every k-edge-coloring of K_{n} contains either a rainbow triangle or a monochromatic copy of H. Clearly, $G R_{k}(H) \leq R_{k}(H)$. We will utilize the following important structural result of Gallai [10] on Gallai-colorings of complete graphs.

Theorem 1.1 ([10]). For any Gallai-coloring c of a complete graph G with $|G| \geq 2, V(G)$ can be partitioned into nonempty sets $V_{1}, V_{2}, \ldots, V_{p}$ with $p>1$ so that at most two colors are used on the edges in $E(G) \backslash\left(E\left(V_{1}\right) \cup \ldots \cup E\left(V_{p}\right)\right)$ and only one color is used on the edges between any fixed pair $\left(V_{i}, V_{j}\right)$ under c, where $E\left(V_{i}\right)$ denotes the set of edges in $G\left[V_{i}\right]$ for all $i \in[p]$.

The partition given in Theorem 1.1 is called a Gallai-partition of G under c. Given a Gallai-partition $V_{1}, V_{2}, \ldots, V_{p}$ of the complete graph G under c, let $v_{i} \in V_{i}$ for all $i \in[p]$ and let $\mathcal{R}:=G\left[\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}\right]$. Then \mathcal{R} is the reduced graph of G

[^0]corresponding to the given Gallai-partition under c. Clearly, \mathcal{R} is isomorphic to K_{p}. By Theorem 1.1, all edges in \mathcal{R} are colored by at most two colors under c. One can see that any monochromatic H in \mathcal{R} under c will result in a monochromatic H in G under c. It is not a surprise then that Gallai-Ramsey numbers $G R_{k}(H)$ are related to the classical Ramsey numbers $R_{2}(H)$. Recently, Fox, Grinshpun and Pach posed the following conjecture on $G R_{k}(H)$ when H is a complete graph.

Conjecture $1.2([7])$. For all $k \geq 1$ and $t \geq 3$,

$$
G R_{k}\left(K_{t}\right)= \begin{cases}\left(R_{2}\left(K_{t}\right)-1\right)^{k / 2}+1 & \text { if } k \text { is even } \\ (t-1)\left(R_{2}\left(K_{t}\right)-1\right)^{(k-1) / 2}+1 & \text { if } k \text { is odd }\end{cases}
$$

The first case of Conjecture 1.2 was verified in 1983 due to Chung and Graham [5]. The next open case when $t=4$ was recently settled in [15]. A simpler proof of Theorem 1.3 can be found in [12].

Theorem $1.3([5])$. For all $k \geq 1, G R_{k}\left(C_{3}\right)= \begin{cases}5^{k / 2}+1 & \text { if } k \text { is even } \\ 2 \cdot 5^{(k-1) / 2}+1 & \text { if } k \text { is odd. }\end{cases}$
The following is a result in [12] on the general behavior of $G R_{k}(H)$.
Theorem 1.4 ([12]). Let H be a fixed graph with no isolated vertices and let $k \geq 1$ be an integer. Then $G R_{k}(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when $H=C_{3}$), $G R_{k}(H)$ behaves nicely, while the order of magnitude of $R_{k}(H)$ seems hopelessly difficult to determine. It is worth noting that finding exact values of $G R_{k}(H)$ is far from trivial, even when $|H|$ is small. Theorem 1.5 is a result of Fujita and Magnant [8], which provides a lower bound for $G R_{k}\left(C_{2 n+1}\right)$ and exact values of $G R_{k}\left(C_{5}\right)$.

Theorem 1.5 ([8]). For all $k \geq 1$ and $n \geq 2$,
(a) $G R_{k}\left(C_{2 n+1}\right) \geq n \cdot 2^{k}+1$,
(b) $G R_{k}\left(C_{5}\right)=2^{k+1}+1$.

In this paper, we determine the Gallai-Ramsey numbers for C_{7}. We state and prove our main result in Section 2. Very recently, Gallai-Ramsey numbers of odd cycles of length at least 9 have been completely settled by Bosse and Song [2] for C_{9} and C_{11}, Bosse, Song and Zhang [3] for C_{13} and C_{15}, and Zhang, Chen and Song [16] for all odd cycles of length at least 17. We shall need the following two results in our proof of Gallai-Ramsey numbers of C_{7}.

Theorem 1.6 ([1]). For all $n \geq 2, R_{2}\left(C_{2 n+1}\right)=4 n+1$.
Theorem 1.7 ([6]). $R_{3}\left(C_{7}\right)=25$.
Finally, we need to introduce more notation. For positive integers n, k and $G=K_{n}$, let c be any k-edge-coloring of G with color classes E_{1}, \ldots, E_{k}. Then c is bad if G contains neither a rainbow K_{3} nor a monochromatic C_{7} under c. For any $E \subset E(G)$, let $G[E]$ denote the subgraph of G with vertex set $V(E)$ and edge set E. Let H be an induced subgraph of G and let $E=E_{i} \cap E(H)$ for some $i \in[k]$. Then $G[E]$ is an induced star in H if $G[E]$ is isomorphic to $K_{1,|V(E)|}$; and $G[E]$ is an induced matching in H if E is a matching in H. For two disjoint sets $A, B \subseteq V(G)$, if all the edges between A and B in G are colored the same color under c, say, blue, we say that A is blue-complete to B.

2. Main result

We are now ready to prove our main result below.
Theorem 2.1. For all $k \geq 1, G R_{k}\left(C_{7}\right)=3 \cdot 2^{k}+1$.
Proof. By Theorem 1.5(a), $G R_{k}\left(C_{7}\right) \geq 3 \cdot 2^{k}+1$ for all $k \geq 1$. We next show that $G R_{k}\left(C_{7}\right) \leq 3 \cdot 2^{k}+1$ for all $k \geq 1$. Clearly, $G R_{1}\left(C_{7}\right) \leq 7$. By Theorems 1.6 and 1.7, $G R_{2}\left(C_{7}\right) \leq R_{2}\left(C_{7}\right)=13$ and $G R_{3}\left(C_{7}\right) \leq R_{3}\left(C_{7}\right)=25$. Therefore, $G R_{k}\left(C_{7}\right) \leq 3 \cdot 2^{k}+1$ for all $k \in\{1,2,3\}$. So we may assume that $k \geq 4$. Let $G=K_{3 \cdot 2^{k}+1}$ and let c be any k-edge-coloring of G such that G admits no rainbow triangle. We next show that G contains a monochromatic C_{7} under c.

Suppose that G does not contain a monochromatic C_{7} under c. Then c is bad. Among all complete graphs on $3 \cdot 2^{k}+1$ vertices with a bad k-edge-coloring, we choose G with k minimum. We next prove a series of claims.

Claim 1. For any induced subgraph H of G, if there exist two vertices, say, u and v, in $V(G \backslash H)$, such that all edges between $\{u, v\}$ and $V(H)$ are colored the same color, say blue, then $|H| \leq 3 \cdot 2^{k-1-q}+2^{k-q}$, where $0 \leq q \leq k-1$ is the number of colors missing on the edges of H under c, other than blue.

Proof. Suppose that $|H| \geq 3 \cdot 2^{k-1-q}+2^{k-q}+1$. Let E be the set of all blue edges in H. Then $q \leq k-2$, otherwise we obtain a blue C_{7} in $G[V(H) \cup\{u, v\}]$, a contradiction. If $|V(E)| \leq 4$ or $G[E]$ is an induced star with its center vertex, say w, in H, then $H \backslash A$ has no blue edges and the edges of $H \backslash A$ are colored by at most $k-1-q$ colors under c, where $A=V(E)$ when $|V(E)| \leq 4$ and $A=\{w\}$ when $G[E]$ is an induced star. Clearly, $|A| \leq 4$ and $|H \backslash A| \geq 3 \cdot 2^{k-1-q}+2^{k-q}+1-4 \geq 3 \cdot 2^{k-1-q}+1$. By the choice of $k, H \backslash A$ has a monochromatic C_{7}, a contradiction. Thus $|V(E)| \geq 5$ and E is not an induced star in H.

Next suppose E is an induced matching in H. Let $E:=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{|E|} v_{|E|}\right\}$, and let $U:=\left\{u_{1}, u_{2}, \ldots, u_{|E|}\right\}$. Since E is an induced matching in H, we see that $H \backslash U$ has no blue edges, and so the edges of $H \backslash U$ are colored by at most $k-1-q$ colors under c. By the minimality of $k,|H \backslash U| \leq 3 \cdot 2^{k-1-q}$. Thus $|U| \geq 2^{k-q}+1=2 \cdot 2^{k-1-q}+1$. Note that $|U| \geq 5$ and $G[U]$ has no blue edges because E is an induced matching in H. Thus the edges of $G[U]$ are colored by at most $k-1-q$ colors under c. By Theorem 1.5(b), $G[U]$ contains a monochromatic, say red, C_{5}. We may further assume that C_{5} has vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ in order. Since $G[U]$ has no rainbow triangle under c, and E is an induced matching, we see that $\left\{u_{1}, v_{1}\right\}$ is red-complete to $\left\{u_{2}, v_{2}\right\}$ in G. We then obtain a red C_{7} with vertices $u_{1}, v_{2}, v_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ in order, a contradiction. Thus E is not an induced matching in H.

Finally, let P be a longest blue path in H with vertices $b_{1}, b_{2}, \ldots, b_{q}$ in order. Since E is not an induced matching in H and $|V(E)| \geq 5$, we see that $q \geq 3$. Let $b_{4} b_{5}$ be a blue edge in $H \backslash\left\{b_{1}, b_{2}, b_{3}\right\}$ if $q=3$, and let $b \in V(E) \backslash\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ if $q \geq 4$. This is possible because $|V(E)| \geq 5$ and E is not an induced star in H. We then obtain a blue C_{7} with vertices $u, b_{1}, b_{2}, b_{3}, v, b_{4}, b_{5}$ in order when $q=3$; and vertices $u, b_{1}, b_{2}, b_{3}, b_{4}, v, b$ in order when $q \geq 4$, a contradiction.

Let $x_{1}, x_{2}, \ldots, x_{m} \in V(G)$ be a maximum sequence of vertices chosen as follows: for each $j \in[m]$, all edges between x_{j} and $V(G) \backslash\left\{x_{1}, \ldots, x_{j}\right\}$ are colored the same color under c. Let $X:=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Notice that X is possibly empty. For each $x_{j} \in X$, let $c\left(x_{j}\right)$ be the unique color on the edges between x_{j} and $V(G) \backslash\left\{x_{1}, \ldots, x_{j}\right\}$.

Claim 2. $c\left(x_{i}\right) \neq c\left(x_{j}\right)$ for all $i, j \in[m]$ with $i \neq j$.
Proof. Suppose that $c\left(x_{i}\right)=c\left(x_{j}\right)$ for some $i, j \in[m]$. We may assume that the color $c\left(x_{i}\right)$ is blue, $i<j$, and x_{j} is the first vertex in the sequence x_{1}, \ldots, x_{m} such that $c\left(x_{j}\right)=c\left(x_{i}\right)$ for some $i \in[m]$ with $i<j$. By the pigeonhole principle, $j \leq k+1$. Let $A:=\left\{x_{1}, x_{2}, \ldots, x_{j}\right\}$. By Claim $1,|G \backslash A| \leq 3 \cdot 2^{k-1}+2^{k}$, contrary to the fact that $|G \backslash A|=3 \cdot 2^{k}+1-|A| \geq 3 \cdot 2^{k}+1-k-1>$ $3 \cdot 2^{k-1}+2^{k}$.

By Claim 2, $|X| \leq k$. Let $G^{*}:=G \backslash X$. Then G^{*} has no monochromatic copy of C_{7} under c. Consider a Gallai-partition of G^{*}, as given in Theorem 1.1, with parts $A_{1}, A_{2}, \ldots, A_{p}$ such that $p \geq 2$ is as small as possible. We may assume that $1 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{s}\right|<3 \leq\left|A_{s+1}\right| \leq \cdots \leq\left|A_{p}\right|$, where $0 \leq s \leq p$. Let \mathcal{R} be the reduced graph of G^{*} with vertices $a_{1}, a_{2}, \ldots, a_{p}$. By Theorem 1.1, we may assume that the edges of \mathcal{R} are colored red and blue. Notice that any monochromatic C_{7} in \mathcal{R} would yield a monochromatic C_{7} in G^{*}. Thus \mathcal{R} has no red or blue C_{7}. Since $R_{2}\left(C_{7}\right)=13$, we see that $p \leq 12$. Then $\left|A_{p}\right|>4$ because $|G| \geq 3 \cdot 2^{4}+1$. Thus $p-s \geq 1$.

Claim 3. For any two disjoint sets $Y, Z \subseteq V(G)$ with $|Y|,|Z| \geq 3$, if all edges between Y and Z are colored the same color, say blue, then no vertex $x \in V(G) \backslash(Y \cup Z)$ is blue-complete to $Y \cup Z$ in G. Moreover, if $|Y| \geq 4$, then $G[Y]$ has no blue edges.

Proof. Let $y_{1}, y_{2}, y_{3} \in Y$ and $z_{1}, z_{2}, z_{3} \in Z$. Suppose that there exists a vertex $x \in V(G) \backslash(Y \cup Z)$ such that x is blue complete to $Y \cup Z$ in G. Then we obtain a blue C_{7} with vertices $x, y_{1}, z_{2}, y_{2}, z_{3}, y_{3}, z_{1}$ in order, a contradiction. Next suppose that $|Y| \geq 4$ and $G[Y]$ has a blue edge, say $y_{1} y_{2}$. We obtain a blue C_{7} with vertices $z_{1}, y_{1}, y_{2}, z_{2}, y_{3}, z_{3}, y_{4}$ in order, where $y_{4} \in Y \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$, a contradiction.

Claim 4. $p \geq s+3$.
Proof. Suppose that $p \leq s+2$. Since $p-s \geq 1$, we see that $p=s+1$ or $p=s+2$. Let $A_{b}:=\left\{a_{i} \in\left\{a_{1}, \ldots, a_{s}\right\}\right.$: $a_{i} a_{p}$ is colored blue in $\left.\mathcal{R}\right\}$ and $A_{r}:=\left\{a_{j} \in\left\{a_{1}, \ldots, a_{s}\right\}: a_{j} a_{p}\right.$ is colored red in $\left.\mathcal{R}\right\}$. Let $C:=\bigcup_{a_{i} \in A_{b}} A_{i}$ and $D:=\bigcup_{a_{j} \in A_{r}} A_{j}$.

Suppose first that $p=s+1$. Then $s \leq 11$ and so $|C \cup D| \leq 22$. If $|C| \geq 3$ or $|D| \geq 3$, say the former, by Claim 3 applied to C and A_{p}, we see that $G\left[A_{p}\right]$ has no blue edges, and no vertex $x \in X$ has $c(x)$ being the blue color. By the choice of k, $\left|A_{p} \cup X\right| \leq 3 \cdot 2^{k-1}$, contrary to the fact that $\left|A_{p} \cup X\right|=3 \cdot 2^{k}+1-|C \cup D| \geq 3 \cdot 2^{k}+1-22>3 \cdot 2^{k-1}$. Thus $|C| \leq 2$ and $|D| \leq 2$. By the choice of X, either $|C|=2$ or $|D|=2$, say the former. By Claim $1,\left|A_{p}\right| \leq 3 \cdot 2^{k-1}+2^{k}$, contrary to the fact that $\left|A_{p}\right|=3 \cdot 2^{k}+1-|C \cup D|-|X| \geq 3 \cdot 2^{k}+1-4-k>3 \cdot 2^{k-1}+2^{k}$.

Next suppose that $p=s+2$. We may assume that $a_{p-1} a_{p}$ is colored blue in \mathcal{R}. Then $a_{p-1} \in A_{b}$ and so $A_{p-1} \subseteq C$. Thus $|C| \geq\left|A_{p-1}\right| \geq 3$. By Claim 3, no vertex $x \in X$ has $c(x)$ being the blue color, and $G\left[A_{p}\right]$ has no blue edges. We claim that $G[D]$ has blue edges. Suppose that $G[D]$ has no blue edges. Then $G\left[A_{p} \cup D \cup X\right]$ has no blue edges. By the choice of k, $\left|A_{p} \cup D \cup X\right| \leq 3 \cdot 2^{k-1}$, and so $|C| \geq 3 \cdot 2^{k-1}+1$. By Claim $3, G[C]$ has no blue edges. By the choice of $k, G[C]$ must have a monochromatic C_{7}, a contradiction. Thus $G[D]$ has blue edges, as claimed.

Since $G[D]$ has blue edges, we have $|D| \geq 2$. Suppose that $|D| \geq 4$. By Claim $3, G\left[A_{p}\right]$ and $G[D]$ have no red edges, and no vertex $x \in X$ has $c(x)$ being the red color. In particular, $\mathcal{R}\left[A_{r}\right]$ has no red edges and so all the edges in $\mathcal{R}\left[A_{r}\right]$ are colored blue. Since \mathcal{R} has no blue C_{7}, we see that $\left|A_{r}\right| \leq 6$ and so $|D| \leq 12$. Since $G\left[A_{p} \cup X\right]$ has neither red nor blue edges, by the choice
of $k,\left|A_{p} \cup X\right| \leq 3 \cdot 2^{k-2}$. Hence $|C| \geq 3 \cdot 2^{k}+1-12-3 \cdot 2^{k-2} \geq 3 \cdot 2^{k-1}+1$. By Claim $3, G[C]$ has no blue edges. By the choice of $k, G[C]$ contains a monochromatic C_{7}, a contradiction. This proves that $2 \leq|D| \leq 3$.

Note that $G\left[A_{p}\right]$ has no blue edges. By Claim 1 applied to D and $G\left[A_{p}\right],\left|A_{p}\right| \leq 3 \cdot 2^{k-2}+2^{k-1}$. Thus $|C \cup X| \geq$ $3 \cdot 2^{k}+1-3-3 \cdot 2^{k-2}-2^{k-1}>3 \cdot 2^{k-1}+1$. By Claim $3, G[C \cup X]$ has no blue edges. By the choice of $k, G[C \cup X]$ contains a monochromatic C_{7}, a contradiction.

By Claim 4, $p \geq s+3$, and so $3 \leq\left|A_{p-2}\right| \leq\left|A_{p-1}\right| \leq\left|A_{p}\right|$. By Claim 3, $\mathcal{R}\left[\left\{a_{p-2}, a_{p-1}, a_{p}\right\}\right]$ is not a monochromatic triangle. Let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is, say, blue-complete, to $B_{1} \cup B_{3}$ in G. Then B_{1} is red-complete to B_{3} in G. We may assume that $\left|B_{1}\right| \geq\left|B_{3}\right|$. By Claim 3, no vertex $x \in X$ has $c(x)$ being red or blue. Let $B:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X\right)$. Then by Claim 3, no vertex in B is red-complete to $B_{1} \cup B_{3}$ in G, and no vertex in B is blue-complete to $B_{1} \cup B_{2}$ or $B_{2} \cup B_{3}$ in G. This implies that B must be red-complete to B_{2} in G. We next show that $G[B]$ has no blue edges. Suppose that $G[B]$ has a blue edge, say, $u v$. Let $B_{1}^{*}:=\left\{b \in B: b\right.$ is blue-complete to B_{1} only $\}, B_{2}^{*}:=\left\{b \in B: b\right.$ is blue-complete to $\left.B_{1} \cup B_{3}\right\}$, and $B_{3}^{*}:=\left\{b \in B: b\right.$ is blue-complete to B_{3} only $\}$. Notice that $B_{1}^{*}, B_{2}^{*}, B_{3}^{*}$ are possibly empty, $B=B_{1}^{*} \cup B_{2}^{*} \cup B_{3}^{*}, B_{1}^{*}$ is red-complete to B_{3}, and B_{3}^{*} is red-complete to B_{1}. Let $b_{1}, b_{2} \in B_{1}, b_{3}, b_{4} \in B_{2}$, and $b_{5}, b_{6} \in B_{3}$. If $u v$ is an edge in $G\left[B_{1}^{*} \cup B_{2}^{*}\right]$, then we obtain a blue C_{7} with vertices $b_{1}, u, v, b_{2}, b_{3}, b_{5}, b_{4}$ in order, a contradiction. Similarly, $u v$ is not an edge in $G\left[B_{2}^{*} \cup B_{3}^{*}\right]$. Thus $u v$ must be an edge in $G\left[B_{1}^{*} \cup B_{3}^{*}\right]$ with one end in B_{1}^{*} and the other in B_{3}^{*}. We may assume that $u \in B_{1}^{*}$ and $v \in B_{3}^{*}$. Then we obtain a blue C_{7} with vertices $b_{1}, u, v, b_{5}, b_{3}, b_{2}, b_{4}$ in order, a contradiction. This proves that $G[B]$ has no blue edges.

Since $G[B]$ has no blue edges and B is red-complete to B_{2}, we see that $G\left[B_{2} \cup B \cup X\right]$ has no blue edges. By the choice of k, $\left|B_{2} \cup B \cup X\right| \leq 3 \cdot 2^{k-1}$. Then $\left|B_{1}\right|>4$. Since $\left|B_{3}\right| \geq 3$, by Claim 3, $G\left[B_{1}\right]$ has neither red nor blue edges. By the choice of k, $\left|B_{1}\right| \leq 3 \cdot 2^{k-2}$ and so $\left|B_{3}\right| \leq\left|B_{1}\right| \leq 3 \cdot 2^{k-2}$. But then $\left|B_{2} \cup B \cup X\right| \geq 3 \cdot 2^{k-1}+1$, a contradiction.

This completes the proof of Theorem 2.1.

References

[1] J.A. Bondy, P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B 14 (1973) 46-54.
[2] C. Bosse, Z.-X. Song, Multicolor Gallai-Ramsey numbers of C_{9} and $C_{11}, 2018$, arXiv: 180206503, submitted for publication.
[3] C. Bosse, Z.-X. Song, J. Zhang, Improved upper bounds for Gallai-Ramsey numbers of odd cycles, 2018, arXiv:1808.09963, submitted for publication.
[4] K. Cameron, J. Edmonds, L. Lovász, A note on perfect graphs, Period. Math. Hungar. 17 (1986) 173-175.
[5] F.R.K. Chung, R. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983) 315-324.
[6] R.J. Faudree, A. Schelten, I. Schiermeyer, The Ramsey Number $r\left(C_{7}, C_{7}, C_{7}\right)$, Discuss. Math. Graph Theory 23 (2003) 141-158.
[7] J. Fox, A. Grinshpun, J. Pach, The Erdős-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015) 75-125.
[8] S. Fujita, C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247-1254.
[9] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30.
[10] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hung. 18 (1967) 25-67.
[11] A. Gyárfás, G. Sárközy, Gallai colorings of non-complete graphs, Discrete Math. 310 (2010) 977-980.
[12] A. Gyárfás, G. Sárközy, A. Sebő, S. Selkow, Ramsey-type results for gallai colorings, J. Graph Theory 64 (2010) 233-243.
[13] M. Hall, C. Magnant, K. Ozeki, M. Tsugaki, Improved upper bounds for gallai-ramsey numbers of paths and cycles, J. Graph Theory 75 (2014) $59-74$.
[14] J. Körner, G. Simonyi, Graph pairs and their entropies: modularity problems, Combinatorica 20 (2000) 227-240.
[15] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, Y. Shi, Gallai-Ramsey number for $k_{4}, 2018$, submitted for publication.
[16] F. Zhang, Y. Chen, Z.-X. Song, Gallai-Ramsey numbers of cycles, 2018, arXiv:1809.00227, submitted for publication.

[^0]: * Corresponding author.

 E-mail address: Zixia.Song@ucf.edu (Z.-X. Song).
 1 Supported by The Honors in the Major Program for undergraduate students at University of Central Florida, USA.

