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Rainbow triangle

1. Introduction

In this paper, we only consider finite simple graphs. The complete graph and the cycle on n vertices are denoted K, and
C,, respectively. We use |G| to denote the number of vertices of a graph G.

For an integer k > 1, let c : E(G) — [k] be a k-edge-coloring of a complete graph G, where [k] := {1, 2, ..., k}. Then
¢ is a Gallai-coloring of G if G contains no rainbow triangle (that is, a triangle with all its edges different colors) under
c. Gallai-colorings naturally arise in several areas including in information theory [14], in the study of partially ordered
sets, as in Gallai's original paper [10], and in the study of perfect graphs [4]. There are now a variety of papers which
consider Ramsey-type problems in Gallai-colorings (see, e.g., [5,8,11-13]). These works mainly focus on finding various
monochromatic subgraphs in such colorings. More information on this topic can be found in [7,9].

For a graph G and a set A C V(G), we use G[A] to denote the subgraph of G obtained from G by deleting all vertices in
V(G)\A. A graph H is an induced subgraph of G if H = G[A] for some A C V(G). Recall that the classical Ramsey number Ry(H)
of a graph H is the least positive integer n such that every k-edge-coloring of K, contains a monochromatic copy of H. Ramsey
numbers are notoriously difficult to compute in general. In this paper, we consider Gallai-Ramsey problems. Given a graph
H and an integer k > 1, the Gallai-Ramsey number GR(H) is the least positive integer n such that every k-edge-coloring of
K, contains either a rainbow triangle or a monochromatic copy of H. Clearly, GR,(H) < Ry(H). We will utilize the following
important structural result of Gallai [ 10] on Gallai-colorings of complete graphs.

Theorem 1.1 ([10]). For any Gallai-coloring c of a complete graph G with |G| > 2, V(G) can be partitioned into nonempty sets
Vi, Vo, ..., V, withp > 1 so that at most two colors are used on the edges in E(G)\(E(V1) U - - - U E(V})) and only one color is
used on the edges between any fixed pair (V;, V;) under ¢, where E(V;) denotes the set of edges in G[V;] for all i € [p].

The partition given in Theorem 1.1 is called a Gallai-partition of G under c. Given a Gallai-partition Vy, V5, ..., V, of the
complete graph G under c, let v; € V;foralli € [p] and let R = G[{v1, v2, ..., vp}]. Then R is the reduced graph of G
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corresponding to the given Gallai-partition under c. Clearly, R is isomorphic to Kj,. By Theorem 1.1, all edges in R are colored
by at most two colors under c. One can see that any monochromatic H in R under ¢ will result in a monochromatic H in
G under c. It is not a surprise then that Gallai-Ramsey numbers GR,(H) are related to the classical Ramsey numbers R,(H).
Recently, Fox, Grinshpun and Pach posed the following conjecture on GR,(H) when H is a complete graph.

Conjecture 1.2 ([7]). Forallk > 1and t > 3,
(Ro(Ke) — 12 +1 ifk is even
GRy(K;) =
K(Ke) {(t — 1)(Ra(Ke) — 1 D2 41 ifkis odd.

The first case of Conjecture 1.2 was verified in 1983 due to Chung and Graham [5]. The next open case when t = 4 was
recently settled in [15]. A simpler proof of Theorem 1.3 can be found in [12].

5k2 41 if k is even

Theorem 1.3 ([5]). For all k > 1, GR(C3) = {2 5602 41 ifkis odd,

The following is a result in [ 12] on the general behavior of GR,(H).

Theorem 1.4 ([12]). Let H be a fixed graph with no isolated vertices and let k > 1 be an integer. Then GR,(H) is exponential in k
if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRy(H) behaves nicely, while the order of magnitude of Ri(H)
seems hopelessly difficult to determine. It is worth noting that finding exact values of GR,(H) is far from trivial, even when
|H| is small. Theorem 1.5 is a result of Fujita and Magnant [8], which provides a lower bound for GR(Cy,+1) and exact values
of GR,<(C5 )

Theorem 1.5 ([8]). Forallk > 1andn > 2,

(a) GR.(Capy1) = 11 - 2k + 1,
(b) GR(Cs) =21 + 1.

In this paper, we determine the Gallai-Ramsey numbers for C;. We state and prove our main result in Section 2. Very
recently, Gallai-Ramsey numbers of odd cycles of length at least 9 have been completely settled by Bosse and Song [2] for
Co and Cyq4, Bosse, Song and Zhang [3] for C;3 and Cy5, and Zhang, Chen and Song [ 16] for all odd cycles of length at least 17.
We shall need the following two results in our proof of Gallai-Ramsey numbers of C;.

Theorem 1.6 ([1]). Foralln > 2, Ry(Capyq) = 4n + 1.

Theorem 1.7 ([6]). R3(C7) = 25.

Finally, we need to introduce more notation. For positive integers n, k and G = Kj,, let ¢ be any k-edge-coloring of G with
color classes Eq, ..., Ex. Then c is bad if G contains neither a rainbow K3 nor a monochromatic C; under c. For any E C E(G),
let G[E] denote the subgraph of G with vertex set V(E) and edge set E. Let H be an induced subgraph of G and let E = E;NE(H)
for some i € [k]. Then G[E] is an induced star in H if G[E] is isomorphic to Ky vy ; and G[E] is an induced matching in H if E
is a matching in H. For two disjoint sets A, B C V(G), if all the edges between A and B in G are colored the same color under
c, say, blue, we say that A is blue-complete to B.

2. Main result
We are now ready to prove our main result below.
Theorem 2.1. Forallk > 1, GRy(C;) =3 - 2K + 1.

Proof. By Theorem 1.5(a), GR¢(C7) > 3 - 2X + 1 for all k > 1. We next show that GR,(Cy) < 3 - 2% + 1 for all k > 1. Clearly,
GR1(Cy) < 7.By Theorems 1.6 and 1.7, GRy(C7) < Ry(C7) = 13 and GR3(C;) < R3(C;) = 25. Therefore, GR(C7) < 3 - 2K+ 1
forall k € {1, 2, 3}. So we may assume that k > 4. Let G = K3 ,x,; and let ¢ be any k-edge-coloring of G such that G admits
no rainbow triangle. We next show that G contains a monochromatic C; under c.

Suppose that G does not contain a monochromatic C; under c. Then c is bad. Among all complete graphs on 3 - 2% + 1
vertices with a bad k-edge-coloring, we choose G with k minimum. We next prove a series of claims.

Claim 1. For any induced subgraph H of G, if there exist two vertices, say, u and v, in V(G\H), such that all edges between {u, v}
and V(H) are colored the same color, say blue, then |[H| < 3-2k=179 4 2k=9 where 0 < q < k — 1 is the number of colors missing
on the edges of H under c, other than blue.
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Proof. Suppose that [H| > 3-2k=179 4 2k=9 4 1, Let E be the set of all blue edges in H. Then q < k — 2, otherwise we obtain
ablue G; in G[V(H) U {u, v}], a contradiction. If [V(E)| < 4 or G[E] is an induced star with its center vertex, say w, in H, then
H\A has no blue edges and the edges of H\A are colored by at most k — 1 —q colors under c, where A = V(E) when |V(E)| < 4
and A = {w} when G[E] is an induced star. Clearly, |A| < 4 and |[H\A| > 3- 219 4 2k=9 4 1 — 4 > 3.2%k"1-9 4 1 By the
choice of k, H\A has a monochromatic (7, a contradiction. Thus |[V(E)| > 5 and E is not an induced star in H.

Next suppose E is an induced matching in H. Let E := {ujvq, Upvy, ..., U vg ), and let U == {uq, up, ..., ug}. Since E is
an induced matching in H, we see that H\U has no blue edges, and so the edges of H\U are colored by at most k — 1 — g
colors under c. By the minimality of k, [H\U| < 3 - 2¥=179. Thus |U| > 29+ 1 = 2. 2¥"179 & 1. Note that |U| > 5 and
G[U] has no blue edges because E is an induced matching in H. Thus the edges of G[U] are colored by at most k — 1 — q
colors under c. By Theorem 1.5(b), G[U] contains a monochromatic, say red, Cs. We may further assume that Cs has vertices
Uy, Uy, U3, Uy, Us in order. Since G[U] has no rainbow triangle under c, and E is an induced matching, we see that {uq, v} is
red-complete to {u,, v,} in G. We then obtain a red C; with vertices uy, v,, v1, Uz, U3, Uy, Us in order, a contradiction. Thus E
is not an induced matching in H.

Finally, let P be a longest blue path in H with vertices by, by, ..., by in order. Since E is not an induced matching in H and
|[V(E)| > 5, we see that g > 3. Let bybs be a blue edge in H\{by, b, b3} ifq = 3,and let b € V(E)\{b4, ba, b3, by} if ¢ > 4. This
is possible because |V(E)| > 5 and E is not an induced star in H. We then obtain a blue C; with vertices u, by, b,, bs, v, by, bs
in order when g = 3; and vertices u, by, b, bz, by, v, b in order when q > 4, a contradiction. H

Let X1, X2, ..., Xy € V(G) be a maximum sequence of vertices chosen as follows: for each j € [m], all edges between x;
and V(G)\{x1, ..., x;} are colored the same color under c. Let X := {x1, X, ..., X5 }. Notice that X is possibly empty. For each
X; € X, let c(x;) be the unique color on the edges between x; and V(G)\{x1, ..., x;}.

Claim 2. c(x;) # c(x;) foralli, j € [m] withi # j.

Proof. Suppose that c(x;) = c(x;) for somei, j € [m]. We may assume that the color c(x;) is blue, i < j, and x; is the first vertex
in the sequence xi, ..., X, such that c(x;) = c(x;) for some i € [m] with i < j. By the pigeonhole principle, j < k + 1. Let
A= {x1,%X, ..., %}.By Claim 1, |G\A| < 32K+ 2% contrary to the fact that |G\A| = 3- 2+ 1—JA| > 3- 2K+ 1—k—1 >
3.261 426 m

By Claim 2, |X| < k. Let G* := G\X. Then G* has no monochromatic copy of C; under c. Consider a Gallai-partition
of G*, as given in Theorem 1.1, with parts Ay, A;, ..., Ap such that p > 2 is as small as possible. We may assume that
1 <A -+ 2 Al <3 < JAs41]l < -+ < |Ap], where 0 < s < p. Let R be the reduced graph of G* with vertices
ai, dy, ..., ap. By Theorem 1.1, we may assume that the edges of R are colored red and blue. Notice that any monochromatic
C; in R would yield a monochromatic C; in G*. Thus R has no red or blue C;. Since R(C;) = 13, we see that p < 12. Then
|Ap| > 4 because |G| > 3-2%+ 1.Thusp —s > 1.

Claim 3. For any two disjoint sets Y, Z C V(G) with |Y|, |Z| > 3, if all edges between Y and Z are colored the same color, say
blue, then no vertex x € V(G)\(Y U Z) is blue-complete to Y U Z in G. Moreover, if |Y| > 4, then G[Y] has no blue edges.

Proof. Lety1, y2,y3 € Y and zq, z,, z3 € Z. Suppose that there exists a vertex x € V(G)\(Y UZ) such that x is blue complete to
YUZ in G. Then we obtain a blue C; with vertices x, y1, z2, y2, z3, ¥3, z1 in order, a contradiction. Next suppose that |Y| > 4and
G[Y] has a blue edge, say y1y,. We obtain a blue C; with vertices z1, y1, ¥2, 22, ¥3, 23, ¥4 in order, where y4 € Y\{y1, y2,¥s},
a contradiction. W

Claim4.p > s+ 3.

Proof. Suppose thatp < s+ 2.Sincep —s > 1, weseethatp = s+ lorp = s+ 2. LetAy, = {aq; € {a1,...,a} :
aiap is colored blue in R} and A := {g; € {a1, ..., a} : gap is colored red in R}. Let C := | J, o, Ai and D := UajeAr Aj.

Suppose first that p = s + 1. Thens < 11 and so |C UD| < 22.1If |C| > 3 or |D| > 3, say the former, by Claim 3 applied
to C and Ap, we see that G[Ap] has no blue edges, and no vertex x € X has c(x) being the blue color. By the choice of k,
|Ap UX| < 3-2K1, contrary to the fact that |[A, UX| =3-2K+1—|CUD| > 3-2¥+1—-22> 3.2 Thus |C| < 2and
ID| < 2. By the choice of X, either |C| = 2 or |D| = 2, say the former. By Claim 1, |A,| < 3 - 2¥=1 4 2k, contrary to the fact
that |[A)| =3-2+1—|CUD| - |X| >3- 2K+ 1—-4—k> 3.2 42k

Next suppose that p = s + 2. We may assume that a,_;a, is colored blue in R. Then a,_; € A, and so A,_; € C.
Thus |C| > |A,—1] = 3. By Claim 3, no vertex x € X has c(x) being the blue color, and G[A,] has no blue edges. We claim
that G[D] has blue edges. Suppose that G[D] has no blue edges. Then G[A, U D U X] has no blue edges. By the choice of k,
[A,UDUX| < 3. 2%=1 and so |C| > 3 - 21 4 1. By Claim 3, G[C] has no blue edges. By the choice of k, G[C] must have a
monochromatic C;, a contradiction. Thus G[D] has blue edges, as claimed.

Since G[D] has blue edges, we have |D| > 2. Suppose that |D| > 4. By Claim 3, G[A,] and G[D] have no red edges, and no
vertex x € X has c(x) being the red color. In particular, R[A;] has no red edges and so all the edges in R[A,] are colored blue.
Since R has no blue C;, we see that |A;| < 6 and so |D| < 12. Since G[A, U X] has neither red nor blue edges, by the choice
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of k, [Ay UX| < 3-2K2 Hence [C| > 3-2K+1— 12— 322 > 3.2k 4 1, By Claim 3, G[C] has no blue edges. By the
choice of k, G[C] contains a monochromatic C;, a contradiction. This proves that 2 < |D| < 3.

Note that G[A,] has no blue edges. By Claim 1 applied to D and G[A,], |A,] < 3 -2K2 4 21 Thus [CUX| >
3.2k41—-3—-3.2k2_ k=1 5 3.2k"1 4 1 By Claim 3, G[C U X] has no blue edges. By the choice of k, G[C U X]
contains a monochromatic C;, a contradiction. M

By Claim4,p > s+ 3,and so 3 < |Ap,_»| < |Ap—1]| < |Ap|. By Claim 3, R[{a,_>, ap_1, ap}] is not a monochromatic triangle.
Let By, By, B3 be a permutation of A,_, A,—1, Ap such that B, is, say, blue-complete, to B; UBs in G. Then B; is red-complete to
Bs in G. We may assume that |By| > |B3|. By Claim 3, no vertex x € X has c(x) being red or blue. Let B := V(G)\(B;UB,UB3UX).
Then by Claim 3, no vertex in B is red-complete to B; U B3 in G, and no vertex in B is blue-complete to B; U B, or B, U B3
in G. This implies that B must be red-complete to B, in G. We next show that G[B] has no blue edges. Suppose that G[B] has
a blue edge, say, uv. Let B} := {b € B : b is blue-complete to By only}, B} := {b € B : bis blue-complete to B; U B3}, and
B% := {b € B : b is blue-complete to B3 only}. Notice that B}, B}, Bj are possibly empty, B = B} U B U B}, B} is red-complete
to B3, and Bj is red-complete to By. Let by, b, € By, b3, by € By, and bs, bg € Bs.If uv is an edge in G[B} UBj], then we obtain a
blue C; with vertices by, u, v, b, bs, bs, b4 in order, a contradiction. Similarly, uv is not an edge in G[B; U B3]. Thus uv must
be an edge in G[B] U B3] with one end in B} and the other in Bj. We may assume that u € B} and v € Bj. Then we obtain a
blue C; with vertices by, u, v, bs, bs, by, b4 in order, a contradiction. This proves that G[B] has no blue edges.

Since G[B] has no blue edges and B is red-complete to B, we see that G[B, U B U X] has no blue edges. By the choice of k,
B, UBUX| < 3-2%1.Then |B;| > 4.Since |B3| > 3, by Claim 3, G[B;] has neither red nor blue edges. By the choice of k,
|B;] < 3-2%2andso |Bs| < |By| < 3-2%2. Butthen|B, UBUX]| > 3214+ 1, a contradiction.

This completes the proof of Theorem 2.1. ®
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