Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Gallai–Ramsey numbers of C₇ with multiple colors

Dylan Bruce¹, Zi-Xia Song^{*}

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

ARTICLE INFO

Article history: Received 6 November 2017 Received in revised form 3 January 2019 Accepted 3 January 2019 Available online xxxx

Keywords: Gallai-coloring Gallai–Ramsey number Rainbow triangle

ABSTRACT

We study Ramsey-type problems in Gallai-colorings. Given a graph *H* and an integer $k \ge 1$, the Gallai–Ramsey number $GR_k(H)$ is the least positive integer *n* such that every *k*-coloring of the edges of the complete graph on *n* vertices contains either a rainbow triangle or a monochromatic copy of *H*. It turns out that $GR_k(H)$ behaves more nicely than the classic Ramsey number $R_k(H)$. However, finding exact values of $GR_k(H)$ is far from trivial. In this paper, we prove that $GR_k(C_7) = 3 \cdot 2^k + 1$ for all $k \ge 1$. Our technique relies heavily on the structural result of Gallai on edge-colorings of complete graphs without rainbow triangles. © 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. The complete graph and the cycle on *n* vertices are denoted K_n and C_n , respectively. We use |G| to denote the number of vertices of a graph *G*.

For an integer $k \ge 1$, let $c : E(G) \rightarrow [k]$ be a *k*-edge-coloring of a complete graph *G*, where $[k] := \{1, 2, ..., k\}$. Then *c* is a *Gallai-coloring* of *G* if *G* contains no rainbow triangle (that is, a triangle with all its edges different colors) under *c*. Gallai-colorings naturally arise in several areas including in information theory [14], in the study of partially ordered sets, as in Gallai's original paper [10], and in the study of perfect graphs [4]. There are now a variety of papers which consider Ramsey-type problems in Gallai-colorings (see, e.g., [5,8,11–13]). These works mainly focus on finding various monochromatic subgraphs in such colorings. More information on this topic can be found in [7,9].

For a graph *G* and a set $A \subseteq V(G)$, we use *G*[*A*] to denote the subgraph of *G* obtained from *G* by deleting all vertices in $V(G)\setminus A$. A graph *H* is an *induced subgraph* of *G* if H = G[A] for some $A \subseteq V(G)$. Recall that the classical Ramsey number $R_k(H)$ of a graph *H* is the least positive integer *n* such that every *k*-edge-coloring of K_n contains a monochromatic copy of *H*. Ramsey numbers are notoriously difficult to compute in general. In this paper, we consider Gallai–Ramsey problems. Given a graph *H* and an integer $k \ge 1$, the *Gallai–Ramsey number* $GR_k(H)$ is the least positive integer *n* such that every *k*-edge-coloring of *K*_n contains either a rainbow triangle or a monochromatic copy of *H*. Clearly, $GR_k(H) \le R_k(H)$. We will utilize the following important structural result of Gallai [10] on Gallai-colorings of complete graphs.

Theorem 1.1 ([10]). For any Gallai-coloring c of a complete graph G with $|G| \ge 2$, V(G) can be partitioned into nonempty sets V_1, V_2, \ldots, V_p with p > 1 so that at most two colors are used on the edges in $E(G) \setminus (E(V_1) \cup \cdots \cup E(V_p))$ and only one color is used on the edges between any fixed pair (V_i, V_j) under c, where $E(V_i)$ denotes the set of edges in $G[V_i]$ for all $i \in [p]$.

The partition given in Theorem 1.1 is called a *Gallai-partition* of *G* under *c*. Given a Gallai-partition V_1, V_2, \ldots, V_p of the complete graph *G* under *c*, let $v_i \in V_i$ for all $i \in [p]$ and let $\mathcal{R} := G[\{v_1, v_2, \ldots, v_p\}]$. Then \mathcal{R} is the *reduced graph* of *G*

https://doi.org/10.1016/j.disc.2019.01.003 0012-365X/© 2019 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail address: Zixia.Song@ucf.edu (Z.-X. Song).

¹ Supported by The Honors in the Major Program for undergraduate students at University of Central Florida, USA.

corresponding to the given Gallai-partition under c. Clearly, \mathcal{R} is isomorphic to K_n . By Theorem 1.1, all edges in \mathcal{R} are colored by at most two colors under c. One can see that any monochromatic H in \mathcal{R} under c will result in a monochromatic H in G under c. It is not a surprise then that Gallai–Ramsey numbers $GR_k(H)$ are related to the classical Ramsey numbers $R_2(H)$. Recently, Fox, Grinshpun and Pach posed the following conjecture on $GR_k(H)$ when H is a complete graph.

Conjecture 1.2 ([7]). For all $k \ge 1$ and $t \ge 3$, $GR_k(K_t) = \begin{cases} (R_2(K_t) - 1)^{k/2} + 1 & \text{if } k \text{ is even} \\ (t - 1)(R_2(K_t) - 1)^{(k-1)/2} + 1 & \text{if } k \text{ is odd.} \end{cases}$

The first case of Conjecture 1.2 was verified in 1983 due to Chung and Graham [5]. The next open case when t = 4 was recently settled in [15]. A simpler proof of Theorem 1.3 can be found in [12].

Theorem 1.3 ([5]). For all $k \ge 1$, $GR_k(C_3) = \begin{cases} 5^{k/2} + 1 & \text{if } k \text{ is even} \\ 2 \cdot 5^{(k-1)/2} + 1 & \text{if } k \text{ is odd.} \end{cases}$

The following is a result in [12] on the general behavior of $GR_k(H)$.

Theorem 1.4 ([12]). Let H be a fixed graph with no isolated vertices and let k > 1 be an integer. Then $GR_k(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when $H = C_3$), $GR_k(H)$ behaves nicely, while the order of magnitude of $R_k(H)$ seems hopelessly difficult to determine. It is worth noting that finding exact values of $GR_k(H)$ is far from trivial, even when |H| is small. Theorem 1.5 is a result of Fujita and Magnant [8], which provides a lower bound for $GR_k(C_{2n+1})$ and exact values of $GR_k(C_5)$.

Theorem 1.5 ([8]). For all k > 1 and n > 2,

- (a) $GR_k(C_{2n+1}) \ge n \cdot 2^k + 1$, (b) $GR_k(C_5) = 2^{k+1} + 1$.

In this paper, we determine the Gallai–Ramsey numbers for C_7 . We state and prove our main result in Section 2. Very recently, Gallai-Ramsey numbers of odd cycles of length at least 9 have been completely settled by Bosse and Song [2] for C_9 and C_{11} , Bosse, Song and Zhang [3] for C_{13} and C_{15} , and Zhang, Chen and Song [16] for all odd cycles of length at least 17. We shall need the following two results in our proof of Gallai–Ramsey numbers of C_7 .

Theorem 1.6 ([1]). For all n > 2, $R_2(C_{2n+1}) = 4n + 1$.

Theorem 1.7 ([6]). $R_3(C_7) = 25$.

Finally, we need to introduce more notation. For positive integers n, k and $G = K_n$, let c be any k-edge-coloring of G with color classes E_1, \ldots, E_k . Then c is bad if G contains neither a rainbow K_3 nor a monochromatic C_7 under c. For any $E \subset E(G)$, let G[E] denote the subgraph of G with vertex set V(E) and edge set E. Let H be an induced subgraph of G and let $E = E_i \cap E(H)$ for some $i \in [k]$. Then G[E] is an induced star in H if G[E] is isomorphic to $K_{1,|V(E)|}$; and G[E] is an induced matching in H if E is a matching in H. For two disjoint sets A, $B \subseteq V(G)$, if all the edges between A and B in G are colored the same color under *c*, say, blue, we say that *A* is *blue-complete* to *B*.

2. Main result

We are now ready to prove our main result below.

Theorem 2.1. For all k > 1, $GR_k(C_7) = 3 \cdot 2^k + 1$.

Proof. By Theorem 1.5(a), $GR_k(C_7) \ge 3 \cdot 2^k + 1$ for all $k \ge 1$. We next show that $GR_k(C_7) \le 3 \cdot 2^k + 1$ for all $k \ge 1$. Clearly, $GR_1(C_7) \le 7$. By Theorems 1.6 and 1.7, $GR_2(C_7) \le R_2(C_7) = 13$ and $GR_3(C_7) \le R_3(C_7) = 25$. Therefore, $GR_k(C_7) \le 3 \cdot 2^k + 1$ for all $k \in \{1, 2, 3\}$. So we may assume that $k \ge 4$. Let $G = K_{3 \cdot 2^k + 1}$ and let *c* be any *k*-edge-coloring of *G* such that *G* admits no rainbow triangle. We next show that G contains a monochromatic C_7 under c.

Suppose that G does not contain a monochromatic C_7 under c. Then c is bad. Among all complete graphs on $3 \cdot 2^k + 1$ vertices with a bad k-edge-coloring, we choose G with k minimum. We next prove a series of claims.

Claim 1. For any induced subgraph H of G, if there exist two vertices, say, u and v, in $V(G \setminus H)$, such that all edges between $\{u, v\}$ and V(H) are colored the same color, say blue, then $|H| < 3 \cdot 2^{k-1-q} + 2^{k-q}$, where 0 < q < k-1 is the number of colors missing on the edges of H under c, other than blue.

Proof. Suppose that $|H| \ge 3 \cdot 2^{k-1-q} + 2^{k-q} + 1$. Let *E* be the set of all blue edges in *H*. Then $q \le k-2$, otherwise we obtain a blue C_7 in $G[V(H) \cup \{u, v\}]$, a contradiction. If $|V(E)| \le 4$ or G[E] is an induced star with its center vertex, say *w*, in *H*, then $H \setminus A$ has no blue edges and the edges of $H \setminus A$ are colored by at most k-1-q colors under *c*, where A = V(E) when $|V(E)| \le 4$ and $A = \{w\}$ when G[E] is an induced star. Clearly, $|A| \le 4$ and $|H \setminus A| \ge 3 \cdot 2^{k-1-q} + 2^{k-q} + 1 - 4 \ge 3 \cdot 2^{k-1-q} + 1$. By the choice of *k*, $H \setminus A$ has a monochromatic C_7 , a contradiction. Thus $|V(E)| \ge 5$ and *E* is not an induced star in *H*.

Next suppose *E* is an induced matching in *H*. Let $E := \{u_1v_1, u_2v_2, \ldots, u_{|E|}v_{|E|}\}$, and let $U := \{u_1, u_2, \ldots, u_{|E|}\}$. Since *E* is an induced matching in *H*, we see that $H \setminus U$ has no blue edges, and so the edges of $H \setminus U$ are colored by at most k - 1 - q colors under *c*. By the minimality of k, $|H \setminus U| \le 3 \cdot 2^{k-1-q}$. Thus $|U| \ge 2^{k-q} + 1 = 2 \cdot 2^{k-1-q} + 1$. Note that $|U| \ge 5$ and *G*[*U*] has no blue edges because *E* is an induced matching in *H*. Thus the edges of *G*[*U*] are colored by at most k - 1 - q colors under *c*. By Theorem 1.5(b), *G*[*U*] contains a monochromatic, say red, C_5 . We may further assume that C_5 has vertices u_1, u_2, u_3, u_4, u_5 in order. Since *G*[*U*] has no rainbow triangle under *c*, and *E* is an induced matching, we see that $\{u_1, v_1\}$ is red-complete to $\{u_2, v_2\}$ in *G*. We then obtain a red C_7 with vertices $u_1, v_2, v_1, u_2, u_3, u_4, u_5$ in order, a contradiction. Thus *E* is not an induced matching in *H*.

Finally, let *P* be a longest blue path in *H* with vertices $b_1, b_2, ..., b_q$ in order. Since *E* is not an induced matching in *H* and $|V(E)| \ge 5$, we see that $q \ge 3$. Let b_4b_5 be a blue edge in $H \setminus \{b_1, b_2, b_3\}$ if q = 3, and let $b \in V(E) \setminus \{b_1, b_2, b_3, b_4\}$ if $q \ge 4$. This is possible because $|V(E)| \ge 5$ and *E* is not an induced star in *H*. We then obtain a blue C_7 with vertices $u, b_1, b_2, b_3, v, b_4, b_5$ in order when q = 3; and vertices $u, b_1, b_2, b_3, b_4, v, b$ in order when $q \ge 4$, a contradiction.

Let $x_1, x_2, \ldots, x_m \in V(G)$ be a maximum sequence of vertices chosen as follows: for each $j \in [m]$, all edges between x_j and $V(G) \setminus \{x_1, \ldots, x_j\}$ are colored the same color under c. Let $X := \{x_1, x_2, \ldots, x_m\}$. Notice that X is possibly empty. For each $x_j \in X$, let $c(x_j)$ be the unique color on the edges between x_j and $V(G) \setminus \{x_1, \ldots, x_j\}$.

Claim 2. $c(x_i) \neq c(x_j)$ for all $i, j \in [m]$ with $i \neq j$.

Proof. Suppose that $c(x_i) = c(x_j)$ for some $i, j \in [m]$. We may assume that the color $c(x_i)$ is blue, i < j, and x_j is the first vertex in the sequence x_1, \ldots, x_m such that $c(x_j) = c(x_i)$ for some $i \in [m]$ with i < j. By the pigeonhole principle, $j \le k + 1$. Let $A := \{x_1, x_2, \ldots, x_j\}$. By Claim 1, $|G \setminus A| \le 3 \cdot 2^{k-1} + 2^k$, contrary to the fact that $|G \setminus A| = 3 \cdot 2^k + 1 - |A| \ge 3 \cdot 2^k + 1 - k - 1 > 3 \cdot 2^{k-1} + 2^k$.

By Claim 2, $|X| \le k$. Let $G^* := G \setminus X$. Then G^* has no monochromatic copy of C_7 under c. Consider a Gallai-partition of G^* , as given in Theorem 1.1, with parts A_1, A_2, \ldots, A_p such that $p \ge 2$ is as small as possible. We may assume that $1 \le |A_1| \le \cdots \le |A_s| < 3 \le |A_{s+1}| \le \cdots \le |A_p|$, where $0 \le s \le p$. Let \mathcal{R} be the reduced graph of G^* with vertices a_1, a_2, \ldots, a_p . By Theorem 1.1, we may assume that the edges of \mathcal{R} are colored red and blue. Notice that any monochromatic C_7 in \mathcal{R} would yield a monochromatic C_7 in G^* . Thus \mathcal{R} has no red or blue C_7 . Since $R_2(C_7) = 13$, we see that $p \le 12$. Then $|A_p| > 4$ because $|G| \ge 3 \cdot 2^4 + 1$. Thus $p - s \ge 1$.

Claim 3. For any two disjoint sets $Y, Z \subseteq V(G)$ with $|Y|, |Z| \ge 3$, if all edges between Y and Z are colored the same color, say blue, then no vertex $x \in V(G) \setminus (Y \cup Z)$ is blue-complete to $Y \cup Z$ in G. Moreover, if $|Y| \ge 4$, then G[Y] has no blue edges.

Proof. Let $y_1, y_2, y_3 \in Y$ and $z_1, z_2, z_3 \in Z$. Suppose that there exists a vertex $x \in V(G) \setminus (Y \cup Z)$ such that x is blue complete to $Y \cup Z$ in G. Then we obtain a blue C_7 with vertices $x, y_1, z_2, y_2, z_3, y_3, z_1$ in order, a contradiction. Next suppose that $|Y| \ge 4$ and G[Y] has a blue edge, say y_1y_2 . We obtain a blue C_7 with vertices $z_1, y_1, y_2, z_2, y_3, z_3, y_4$ in order, where $y_4 \in Y \setminus \{y_1, y_2, y_3\}$, a contradiction.

Claim 4. $p \ge s + 3$.

Proof. Suppose that $p \le s + 2$. Since $p - s \ge 1$, we see that p = s + 1 or p = s + 2. Let $A_b := \{a_i \in \{a_1, \ldots, a_s\} : a_i a_p \text{ is colored blue in } \mathcal{R}\}$ and $A_r := \{a_j \in \{a_1, \ldots, a_s\} : a_j a_p \text{ is colored red in } \mathcal{R}\}$. Let $C := \bigcup_{a_i \in A_b} A_i \text{ and } D := \bigcup_{a_i \in A_r} A_j$.

Suppose first that p = s + 1. Then $s \le 11$ and so $|C \cup D| \le 22$. If $|C| \ge 3$ or $|D| \ge 3$, say the former, by Claim 3 applied to *C* and A_p , we see that $G[A_p]$ has no blue edges, and no vertex $x \in X$ has c(x) being the blue color. By the choice of k, $|A_p \cup X| \le 3 \cdot 2^{k-1}$, contrary to the fact that $|A_p \cup X| = 3 \cdot 2^k + 1 - |C \cup D| \ge 3 \cdot 2^k + 1 - 22 > 3 \cdot 2^{k-1}$. Thus $|C| \le 2$ and $|D| \le 2$. By the choice of *X*, either |C| = 2 or |D| = 2, say the former. By Claim 1, $|A_p| \le 3 \cdot 2^{k-1} + 2^k$, contrary to the fact that $|A_p| = 3 \cdot 2^k + 1 - |C \cup D| = 3 \cdot 2^{k-1} + 2^k$.

Next suppose that p = s + 2. We may assume that $a_{p-1}a_p$ is colored blue in \mathcal{R} . Then $a_{p-1} \in A_b$ and so $A_{p-1} \subseteq C$. Thus $|C| \ge |A_{p-1}| \ge 3$. By Claim 3, no vertex $x \in X$ has c(x) being the blue color, and $G[A_p]$ has no blue edges. We claim that G[D] has blue edges. Suppose that G[D] has no blue edges. Then $G[A_p \cup D \cup X]$ has no blue edges. By the choice of k, $|A_p \cup D \cup X| \le 3 \cdot 2^{k-1}$, and so $|C| \ge 3 \cdot 2^{k-1} + 1$. By Claim 3, G[C] has no blue edges. By the choice of k, G[C] must have a monochromatic C_7 , a contradiction. Thus G[D] has blue edges, as claimed.

Since G[D] has blue edges, we have $|D| \ge 2$. Suppose that $|D| \ge 4$. By Claim 3, $G[A_p]$ and G[D] have no red edges, and no vertex $x \in X$ has c(x) being the red color. In particular, $\mathcal{R}[A_r]$ has no red edges and so all the edges in $\mathcal{R}[A_r]$ are colored blue. Since \mathcal{R} has no blue C_7 , we see that $|A_r| \le 6$ and so $|D| \le 12$. Since $G[A_p \cup X]$ has neither red nor blue edges, by the choice

of k, $|A_n \cup X| < 3 \cdot 2^{k-2}$. Hence $|C| > 3 \cdot 2^k + 1 - 12 - 3 \cdot 2^{k-2} > 3 \cdot 2^{k-1} + 1$. By Claim 3, G[C] has no blue edges. By the choice of k, G[C] contains a monochromatic C_7 , a contradiction. This proves that $2 \le |D| \le 3$.

Note that $G[A_p]$ has no blue edges. By Claim 1 applied to D and $G[A_p]$, $|A_p| \leq 3 \cdot 2^{k-2} + 2^{k-1}$. Thus $|C \cup X| \geq 3 \cdot 2^k + 1 - 3 - 3 \cdot 2^{k-2} - 2^{k-1} > 3 \cdot 2^{k-1} + 1$. By Claim 3, $G[C \cup X]$ has no blue edges. By the choice of k, $G[C \cup X]$ contains a monochromatic C_7 , a contradiction.

By Claim 4, $p \ge s + 3$, and so $3 \le |A_{p-2}| \le |A_{p-1}| \le |A_p|$. By Claim 3, $\mathcal{R}[\{a_{p-2}, a_{p-1}, a_p\}]$ is not a monochromatic triangle. Let B_1, B_2, B_3 be a permutation of A_{p-2}, A_{p-1}, A_p such that B_2 is, say, blue-complete, to $B_1 \cup B_3$ in G. Then B_1 is red-complete to B_3 in G. We may assume that $|B_1| > |B_3|$. By Claim 3, no vertex $x \in X$ has c(x) being red or blue. Let $B := V(G) \setminus (B_1 \cup B_2 \cup B_3 \cup X)$. Then by Claim 3, no vertex in B is red-complete to $B_1 \cup B_3$ in G, and no vertex in B is blue-complete to $B_1 \cup B_2$ or $B_2 \cup B_3$ in G. This implies that B must be red-complete to B_2 in G. We next show that G[B] has no blue edges. Suppose that G[B] has a blue edge, say, uv. Let $B_1^* := \{b \in B : b \text{ is blue-complete to } B_1 \text{ only}\}, B_2^* := \{b \in B : b \text{ is blue-complete to } B_1 \cup B_3\}$, and $B_3^* := \{b \in B : b \text{ is blue-complete to } B_3 \text{ only}\}$. Notice that B_1^*, B_2^*, B_3^* are possibly empty, $B = B_1^* \cup B_2^* \cup B_3^*, B_1^*$ is red-complete to B_3 , and B_3^* is red-complete to B_1 . Let $b_1, b_2 \in B_1, b_3, b_4 \in B_2$, and $b_5, b_6 \in B_3$. If uv is an edge in $G[B_1^* \cup B_2^*]$, then we obtain a blue C_7 with vertices b_1 , u, v, b_2 , b_3 , b_5 , b_4 in order, a contradiction. Similarly, uv is not an edge in $G[B_2^* \cup B_3^*]$. Thus uv must be an edge in $G[B_1^* \cup B_3^*]$ with one end in B_1^* and the other in B_3^* . We may assume that $u \in B_1^*$ and $v \in B_3^*$. Then we obtain a blue C_7 with vertices b_1 , u, v, b_5 , b_3 , b_2 , b_4 in order, a contradiction. This proves that G[B] has no blue edges.

Since G[B] has no blue edges and B is red-complete to B_2 , we see that $G[B_2 \cup B \cup X]$ has no blue edges. By the choice of k, $|B_2 \cup B \cup X| \le 3 \cdot 2^{k-1}$. Then $|B_1| > 4$. Since $|B_3| \ge 3$, by Claim 3, $G[B_1]$ has neither red nor blue edges. By the choice of k, $|B_1| \le 3 \cdot 2^{k-2}$ and so $|B_3| \le |B_1| \le 3 \cdot 2^{k-2}$. But then $|B_2 \cup B \cup X| \ge 3 \cdot 2^{k-1} + 1$, a contradiction. This completes the proof of Theorem 2.1.

References

- [1] J.A. Bondy, P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B 14 (1973) 46–54.
- [2] C. Bosse, Z.-X. Song, Multicolor Gallai-Ramsey numbers of C₉ and C₁₁, 2018, arXiv:180206503, submitted for publication.
- [3] C. Bosse, Z.-X. Song, J. Zhang, Improved upper bounds for Gallai-Ramsey numbers of odd cycles, 2018, arXiv: 1808.09963, submitted for publication. [4] K. Cameron, J. Edmonds, L. Lovász, A note on perfect graphs, Period. Math. Hungar. 17 (1986) 173-175.
- [5] F.R.K. Chung, R. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983) 315–324.
- [6] R.J. Faudree, A. Schelten, I. Schiermeyer, The Ramsey Number r(C₇, C₇, C₇), Discuss. Math. Graph Theory 23 (2003) 141–158.
- [7] J. Fox, A. Grinshpun, J. Pach, The Erdős-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015) 75–125.
- [8] S. Fujita, C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247–1254.
- [9] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of ramsey theory: a survey, Graphs Combin. 26 (2010) 1–30.
- [10] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hung. 18 (1967) 25-67.
- [11] A. Gyárfás, G. Sárközy, Gallai colorings of non-complete graphs, Discrete Math. 310 (2010) 977–980.
- [12] A. Gyárfás, G. Sárközy, A. Sebő, S. Selkow, Ramsey-type results for gallai colorings, J. Graph Theory 64 (2010) 233–243.
- [13] M. Hall, C. Magnant, K. Ozeki, M. Tsugaki, Improved upper bounds for gallai-ramsey numbers of paths and cycles, J. Graph Theory 75 (2014) 59–74.
- [14] J. Körner, G. Simonyi, Graph pairs and their entropies: modularity problems, Combinatorica 20 (2000) 227–240.
- [15] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, Y. Shi, Gallai-Ramsey number for k₄, 2018, submitted for publication.
- [16] F. Zhang, Y. Chen, Z.-X. Song, Gallai-Ramsey numbers of cycles, 2018, arXiv:1809.00227, submitted for publication.