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a b s t r a c t

We study Ramsey-type problems in Gallai-colorings. Given a graphH and an integer k ≥ 1,
the Gallai–Ramsey number GRk(H) is the least positive integer n such that every k-coloring
of the edges of the complete graph on n vertices contains either a rainbow triangle or a
monochromatic copy of H . It turns out that GRk(H) behaves more nicely than the classic
Ramsey number Rk(H). However, finding exact values of GRk(H) is far from trivial. In this
paper, we prove that GRk(C7) = 3 · 2k

+ 1 for all k ≥ 1. Our technique relies heavily on the
structural result of Gallai on edge-colorings of complete graphs without rainbow triangles.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider finite simple graphs. The complete graph and the cycle on n vertices are denoted Kn and
Cn, respectively. We use |G| to denote the number of vertices of a graph G.

For an integer k ≥ 1, let c : E(G) → [k] be a k-edge-coloring of a complete graph G, where [k] := {1, 2, . . . , k}. Then
c is a Gallai-coloring of G if G contains no rainbow triangle (that is, a triangle with all its edges different colors) under
c. Gallai-colorings naturally arise in several areas including in information theory [14], in the study of partially ordered
sets, as in Gallai’s original paper [10], and in the study of perfect graphs [4]. There are now a variety of papers which
consider Ramsey-type problems in Gallai-colorings (see, e.g., [5,8,11–13]). These works mainly focus on finding various
monochromatic subgraphs in such colorings. More information on this topic can be found in [7,9].

For a graph G and a set A ⊆ V (G), we use G[A] to denote the subgraph of G obtained from G by deleting all vertices in
V (G)\A. A graph H is an induced subgraph of G if H = G[A] for some A ⊆ V (G). Recall that the classical Ramsey number Rk(H)
of a graphH is the least positive integer n such that every k-edge-coloring of Kn contains amonochromatic copy ofH . Ramsey
numbers are notoriously difficult to compute in general. In this paper, we consider Gallai–Ramsey problems. Given a graph
H and an integer k ≥ 1, the Gallai–Ramsey number GRk(H) is the least positive integer n such that every k-edge-coloring of
Kn contains either a rainbow triangle or a monochromatic copy of H . Clearly, GRk(H) ≤ Rk(H). We will utilize the following
important structural result of Gallai [10] on Gallai-colorings of complete graphs.

Theorem 1.1 ([10]). For any Gallai-coloring c of a complete graph G with |G| ≥ 2, V (G) can be partitioned into nonempty sets
V1, V2, . . . , Vp with p > 1 so that at most two colors are used on the edges in E(G)\(E(V1) ∪ · · · ∪ E(Vp)) and only one color is
used on the edges between any fixed pair (Vi, Vj) under c, where E(Vi) denotes the set of edges in G[Vi] for all i ∈ [p].

The partition given in Theorem 1.1 is called a Gallai-partition of G under c . Given a Gallai-partition V1, V2, . . . , Vp of the
complete graph G under c , let vi ∈ Vi for all i ∈ [p] and let R := G[{v1, v2, . . . , vp}]. Then R is the reduced graph of G
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corresponding to the given Gallai-partition under c. Clearly,R is isomorphic to Kp. By Theorem 1.1, all edges inR are colored
by at most two colors under c. One can see that any monochromatic H in R under c will result in a monochromatic H in
G under c. It is not a surprise then that Gallai–Ramsey numbers GRk(H) are related to the classical Ramsey numbers R2(H).
Recently, Fox, Grinshpun and Pach posed the following conjecture on GRk(H) when H is a complete graph.

Conjecture 1.2 ([7]). For all k ≥ 1 and t ≥ 3,

GRk(Kt ) =

{
(R2(Kt ) − 1)k/2 + 1 if k is even
(t − 1)(R2(Kt ) − 1)(k−1)/2

+ 1 if k is odd.

The first case of Conjecture 1.2 was verified in 1983 due to Chung and Graham [5]. The next open case when t = 4 was
recently settled in [15]. A simpler proof of Theorem 1.3 can be found in [12].

Theorem 1.3 ([5]). For all k ≥ 1, GRk(C3) =

{
5k/2

+ 1 if k is even
2 · 5(k−1)/2

+ 1 if k is odd.

The following is a result in [12] on the general behavior of GRk(H).

Theorem 1.4 ([12]). Let H be a fixed graph with no isolated vertices and let k ≥ 1 be an integer. Then GRk(H) is exponential in k
if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRk(H) behaves nicely, while the order of magnitude of Rk(H)
seems hopelessly difficult to determine. It is worth noting that finding exact values of GRk(H) is far from trivial, even when
|H| is small. Theorem 1.5 is a result of Fujita andMagnant [8], which provides a lower bound for GRk(C2n+1) and exact values
of GRk(C5).

Theorem 1.5 ([8]). For all k ≥ 1 and n ≥ 2,

(a) GRk(C2n+1) ≥ n · 2k
+ 1,

(b) GRk(C5) = 2k+1
+ 1.

In this paper, we determine the Gallai–Ramsey numbers for C7. We state and prove our main result in Section 2. Very
recently, Gallai–Ramsey numbers of odd cycles of length at least 9 have been completely settled by Bosse and Song [2] for
C9 and C11, Bosse, Song and Zhang [3] for C13 and C15, and Zhang, Chen and Song [16] for all odd cycles of length at least 17.
We shall need the following two results in our proof of Gallai–Ramsey numbers of C7.

Theorem 1.6 ([1]). For all n ≥ 2, R2(C2n+1) = 4n + 1.

Theorem 1.7 ([6]). R3(C7) = 25.

Finally, we need to introduce more notation. For positive integers n, k and G = Kn, let c be any k-edge-coloring of Gwith
color classes E1, . . . , Ek. Then c is bad if G contains neither a rainbow K3 nor a monochromatic C7 under c. For any E ⊂ E(G),
let G[E] denote the subgraph of Gwith vertex set V (E) and edge set E. LetH be an induced subgraph of G and let E = Ei∩E(H)
for some i ∈ [k]. Then G[E] is an induced star in H if G[E] is isomorphic to K1,|V (E)|; and G[E] is an induced matching in H if E
is a matching in H . For two disjoint sets A, B ⊆ V (G), if all the edges between A and B in G are colored the same color under
c , say, blue, we say that A is blue-complete to B.

2. Main result

We are now ready to prove our main result below.

Theorem 2.1. For all k ≥ 1, GRk(C7) = 3 · 2k
+ 1.

Proof. By Theorem 1.5(a), GRk(C7) ≥ 3 · 2k
+ 1 for all k ≥ 1. We next show that GRk(C7) ≤ 3 · 2k

+ 1 for all k ≥ 1. Clearly,
GR1(C7) ≤ 7. By Theorems 1.6 and 1.7, GR2(C7) ≤ R2(C7) = 13 and GR3(C7) ≤ R3(C7) = 25. Therefore, GRk(C7) ≤ 3 · 2k

+ 1
for all k ∈ {1, 2, 3}. So we may assume that k ≥ 4. Let G = K3·2k+1 and let c be any k-edge-coloring of G such that G admits
no rainbow triangle. We next show that G contains a monochromatic C7 under c .

Suppose that G does not contain a monochromatic C7 under c . Then c is bad. Among all complete graphs on 3 · 2k
+ 1

vertices with a bad k-edge-coloring, we choose Gwith kminimum. We next prove a series of claims.

Claim 1. For any induced subgraph H of G, if there exist two vertices, say, u and v, in V (G\H), such that all edges between {u, v}

and V (H) are colored the same color, say blue, then |H| ≤ 3 · 2k−1−q
+ 2k−q, where 0 ≤ q ≤ k− 1 is the number of colors missing

on the edges of H under c, other than blue.
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Proof. Suppose that |H| ≥ 3 · 2k−1−q
+ 2k−q

+ 1. Let E be the set of all blue edges in H . Then q ≤ k− 2, otherwise we obtain
a blue C7 in G[V (H) ∪ {u, v}], a contradiction. If |V (E)| ≤ 4 or G[E] is an induced star with its center vertex, say w, in H , then
H\A has no blue edges and the edges ofH\A are colored by atmost k−1−q colors under c , where A = V (E) when |V (E)| ≤ 4
and A = {w} when G[E] is an induced star. Clearly, |A| ≤ 4 and |H\A| ≥ 3 · 2k−1−q

+ 2k−q
+ 1 − 4 ≥ 3 · 2k−1−q

+ 1. By the
choice of k, H\A has a monochromatic C7, a contradiction. Thus |V (E)| ≥ 5 and E is not an induced star in H .

Next suppose E is an induced matching in H . Let E := {u1v1, u2v2, . . . , u|E|v|E|}, and let U := {u1, u2, . . . , u|E|}. Since E is
an induced matching in H , we see that H\U has no blue edges, and so the edges of H\U are colored by at most k − 1 − q
colors under c. By the minimality of k, |H\U | ≤ 3 · 2k−1−q. Thus |U | ≥ 2k−q

+ 1 = 2 · 2k−1−q
+ 1. Note that |U | ≥ 5 and

G[U] has no blue edges because E is an induced matching in H . Thus the edges of G[U] are colored by at most k − 1 − q
colors under c. By Theorem 1.5(b), G[U] contains a monochromatic, say red, C5. We may further assume that C5 has vertices
u1, u2, u3, u4, u5 in order. Since G[U] has no rainbow triangle under c , and E is an induced matching, we see that {u1, v1} is
red-complete to {u2, v2} in G. We then obtain a red C7 with vertices u1, v2, v1, u2, u3, u4, u5 in order, a contradiction. Thus E
is not an induced matching in H .

Finally, let P be a longest blue path in H with vertices b1, b2, . . . , bq in order. Since E is not an induced matching in H and
|V (E)| ≥ 5, we see that q ≥ 3. Let b4b5 be a blue edge in H\{b1, b2, b3} if q = 3, and let b ∈ V (E)\{b1, b2, b3, b4} if q ≥ 4. This
is possible because |V (E)| ≥ 5 and E is not an induced star in H . We then obtain a blue C7 with vertices u, b1, b2, b3, v, b4, b5
in order when q = 3; and vertices u, b1, b2, b3, b4, v, b in order when q ≥ 4, a contradiction. ■

Let x1, x2, . . . , xm ∈ V (G) be a maximum sequence of vertices chosen as follows: for each j ∈ [m], all edges between xj
and V (G)\{x1, . . . , xj} are colored the same color under c . Let X := {x1, x2, . . . , xm}. Notice that X is possibly empty. For each
xj ∈ X , let c(xj) be the unique color on the edges between xj and V (G)\{x1, . . . , xj}.

Claim 2. c(xi) ̸= c(xj) for all i, j ∈ [m] with i ̸= j.

Proof. Suppose that c(xi) = c(xj) for some i, j ∈ [m]. Wemay assume that the color c(xi) is blue, i < j, and xj is the first vertex
in the sequence x1, . . . , xm such that c(xj) = c(xi) for some i ∈ [m] with i < j. By the pigeonhole principle, j ≤ k + 1. Let
A := {x1, x2, . . . , xj}. By Claim 1, |G\A| ≤ 3 ·2k−1

+2k, contrary to the fact that |G\A| = 3 ·2k
+1−|A| ≥ 3 ·2k

+1− k−1 >

3 · 2k−1
+ 2k. ■

By Claim 2, |X | ≤ k. Let G∗
:= G\X . Then G∗ has no monochromatic copy of C7 under c. Consider a Gallai-partition

of G∗, as given in Theorem 1.1, with parts A1, A2, . . . , Ap such that p ≥ 2 is as small as possible. We may assume that
1 ≤ |A1| ≤ · · · ≤ |As| < 3 ≤ |As+1| ≤ · · · ≤ |Ap|, where 0 ≤ s ≤ p. Let R be the reduced graph of G∗ with vertices
a1, a2, . . . , ap. By Theorem 1.1, wemay assume that the edges ofR are colored red and blue. Notice that anymonochromatic
C7 in R would yield a monochromatic C7 in G∗. Thus R has no red or blue C7. Since R2(C7) = 13, we see that p ≤ 12. Then
|Ap| > 4 because |G| ≥ 3 · 24

+ 1. Thus p − s ≥ 1.

Claim 3. For any two disjoint sets Y , Z ⊆ V (G) with |Y |, |Z | ≥ 3, if all edges between Y and Z are colored the same color, say
blue, then no vertex x ∈ V (G)\(Y ∪ Z) is blue-complete to Y ∪ Z in G. Moreover, if |Y | ≥ 4, then G[Y ] has no blue edges.

Proof. Let y1, y2, y3 ∈ Y and z1, z2, z3 ∈ Z . Suppose that there exists a vertex x ∈ V (G)\(Y ∪Z) such that x is blue complete to
Y∪Z inG. Thenweobtain a blueC7 with vertices x, y1, z2, y2, z3, y3, z1 in order, a contradiction. Next suppose that |Y | ≥ 4 and
G[Y ] has a blue edge, say y1y2. We obtain a blue C7 with vertices z1, y1, y2, z2, y3, z3, y4 in order, where y4 ∈ Y\{y1, y2, y3},
a contradiction. ■

Claim 4. p ≥ s + 3.

Proof. Suppose that p ≤ s + 2. Since p − s ≥ 1, we see that p = s + 1 or p = s + 2. Let Ab := {ai ∈ {a1, . . . , as} :

aiap is colored blue in R} and Ar := {aj ∈ {a1, . . . , as} : ajap is colored red in R}. Let C :=
⋃

ai∈Ab
Ai and D :=

⋃
aj∈Ar

Aj.
Suppose first that p = s + 1. Then s ≤ 11 and so |C ∪ D| ≤ 22. If |C | ≥ 3 or |D| ≥ 3, say the former, by Claim 3 applied

to C and Ap, we see that G[Ap] has no blue edges, and no vertex x ∈ X has c(x) being the blue color. By the choice of k,
|Ap ∪ X | ≤ 3 · 2k−1, contrary to the fact that |Ap ∪ X | = 3 · 2k

+ 1 − |C ∪ D| ≥ 3 · 2k
+ 1 − 22 > 3 · 2k−1. Thus |C | ≤ 2 and

|D| ≤ 2. By the choice of X , either |C | = 2 or |D| = 2, say the former. By Claim 1, |Ap| ≤ 3 · 2k−1
+ 2k, contrary to the fact

that |Ap| = 3 · 2k
+ 1 − |C ∪ D| − |X | ≥ 3 · 2k

+ 1 − 4 − k > 3 · 2k−1
+ 2k.

Next suppose that p = s + 2. We may assume that ap−1ap is colored blue in R. Then ap−1 ∈ Ab and so Ap−1 ⊆ C .
Thus |C | ≥ |Ap−1| ≥ 3. By Claim 3, no vertex x ∈ X has c(x) being the blue color, and G[Ap] has no blue edges. We claim
that G[D] has blue edges. Suppose that G[D] has no blue edges. Then G[Ap ∪ D ∪ X] has no blue edges. By the choice of k,
|Ap ∪ D ∪ X | ≤ 3 · 2k−1, and so |C | ≥ 3 · 2k−1

+ 1. By Claim 3, G[C] has no blue edges. By the choice of k, G[C] must have a
monochromatic C7, a contradiction. Thus G[D] has blue edges, as claimed.

Since G[D] has blue edges, we have |D| ≥ 2. Suppose that |D| ≥ 4. By Claim 3, G[Ap] and G[D] have no red edges, and no
vertex x ∈ X has c(x) being the red color. In particular,R[Ar ] has no red edges and so all the edges inR[Ar ] are colored blue.
Since R has no blue C7, we see that |Ar | ≤ 6 and so |D| ≤ 12. Since G[Ap ∪ X] has neither red nor blue edges, by the choice
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of k, |Ap ∪ X | ≤ 3 · 2k−2. Hence |C | ≥ 3 · 2k
+ 1 − 12 − 3 · 2k−2

≥ 3 · 2k−1
+ 1. By Claim 3, G[C] has no blue edges. By the

choice of k, G[C] contains a monochromatic C7, a contradiction. This proves that 2 ≤ |D| ≤ 3.
Note that G[Ap] has no blue edges. By Claim 1 applied to D and G[Ap], |Ap| ≤ 3 · 2k−2

+ 2k−1. Thus |C ∪ X | ≥

3 · 2k
+ 1 − 3 − 3 · 2k−2

− 2k−1 > 3 · 2k−1
+ 1. By Claim 3, G[C ∪ X] has no blue edges. By the choice of k, G[C ∪ X]

contains a monochromatic C7, a contradiction. ■

By Claim 4, p ≥ s+ 3, and so 3 ≤ |Ap−2| ≤ |Ap−1| ≤ |Ap|. By Claim 3,R[{ap−2, ap−1, ap}] is not a monochromatic triangle.
Let B1, B2, B3 be a permutation of Ap−2, Ap−1, Ap such that B2 is, say, blue-complete, to B1∪B3 in G. Then B1 is red-complete to
B3 inG.Wemay assume that |B1| ≥ |B3|. By Claim3, no vertex x ∈ X has c(x) being red or blue. Let B := V (G)\(B1∪B2∪B3∪X).
Then by Claim 3, no vertex in B is red-complete to B1 ∪ B3 in G, and no vertex in B is blue-complete to B1 ∪ B2 or B2 ∪ B3
in G. This implies that B must be red-complete to B2 in G. We next show that G[B] has no blue edges. Suppose that G[B] has
a blue edge, say, uv. Let B∗

1 := {b ∈ B : b is blue-complete to B1 only}, B∗

2 := {b ∈ B : b is blue-complete to B1 ∪ B3}, and
B∗

3 := {b ∈ B : b is blue-complete to B3 only}. Notice that B∗

1, B
∗

2, B
∗

3 are possibly empty, B = B∗

1 ∪ B∗

2 ∪ B∗

3, B
∗

1 is red-complete
to B3, and B∗

3 is red-complete to B1. Let b1, b2 ∈ B1, b3, b4 ∈ B2, and b5, b6 ∈ B3. If uv is an edge in G[B∗

1 ∪B∗

2], then we obtain a
blue C7 with vertices b1, u, v, b2, b3, b5, b4 in order, a contradiction. Similarly, uv is not an edge in G[B∗

2 ∪ B∗

3]. Thus uv must
be an edge in G[B∗

1 ∪ B∗

3] with one end in B∗

1 and the other in B∗

3. We may assume that u ∈ B∗

1 and v ∈ B∗

3. Then we obtain a
blue C7 with vertices b1, u, v, b5, b3, b2, b4 in order, a contradiction. This proves that G[B] has no blue edges.

Since G[B] has no blue edges and B is red-complete to B2, we see that G[B2 ∪ B ∪ X] has no blue edges. By the choice of k,
|B2 ∪ B ∪ X | ≤ 3 · 2k−1. Then |B1| > 4. Since |B3| ≥ 3, by Claim 3, G[B1] has neither red nor blue edges. By the choice of k,
|B1| ≤ 3 · 2k−2 and so |B3| ≤ |B1| ≤ 3 · 2k−2. But then |B2 ∪ B ∪ X | ≥ 3 · 2k−1

+ 1, a contradiction.
This completes the proof of Theorem 2.1. ■
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