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Abstract

A proper edge-coloring of a graph with positive integers is an interval coloring if the colors
on the edges incident to any vertex are consecutive. It is NP-complete to determine whether a
graph has an interval coloring. A bipartite graph is (a, b)-biregular if every vertex in one part
has degree a and every vertex in the other part has degree b. It has been conjectured that
all such graphs have interval colorings. In this paper, we obtain several sufficient conditions
for complete tripartite graphs to have interval colorings. In particular, we consider the case of
complete tripartite graphs where one part has size 2. We also obtain two results on interval
colorings of (a, b)-biregular graphs by extending known proof techniques.
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1 Introduction

All graphs in this paper are finite and simple. For any positive integer k, let [k] := {1, 2, . . . , k}.
For a graph G, let c : E(G)→ [k] be a proper edge-coloring of G. For any v ∈ V (G), let c(v) denote

the set of colors on the edges incident to v under the coloring c. Then c is an interval k-coloring

of G (or G has an interval k-coloring) if for all v ∈ V (G), c(v) is an interval of integers, i.e. the

colors in c(v) are consecutive; and G has an interval coloring or consecutive coloring if G admits

an interval k-coloring for some positive integer k.
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Email addresses: jingpuning@163.com; zkmiao@jsnu.edu.cn; Zixia.Song@ucf.edu

1



The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [3, 4], mo-

tivated by the problem of constructing school timetables without “gaps” for teachers and classes,

namely, the lectures of each teacher and each class are scheduled in consecutive periods. Hansen [14]

introduced another scenario: a school wishes to schedule parent-teacher conferences in time slots

so that every person’s conferences occur in consecutive slots. A solution exists if and only if the

bipartite graph with vertices for the parents and teachers and edges for the required meetings has

an interval coloring.

Every k-regular bipartite graph admits an interval k-coloring, since such a graph has a proper

k-edge coloring. It is proved in [4] that if a graph G has an interval k-coloring, then G must have a

proper ∆(G)-edge coloring (obtained from the interval k-coloring by taking colors modulo ∆(G)).

Therefore, not every graph has an interval coloring. It is shown that deciding whether a graph has

an interval coloring is NP-complete even for regular graphs [3, 4] and bipartite graphs [19]. The first

example of a bipartite graph without an interval coloring was given in [19]. Since then, a number

of smaller examples of bipartite graphs have been found (see [16]), in particular, one such example

due to Erdős is constructed as follows: given a finite projective plane, say P , of order q ≥ 3, let X

and Y be the set of q2 + q+ 1 points and the set of q2 + q+ 1 lines in P , respectively. Let H be the

bipartite graph with bipartition (X,Y ) such that for any x ∈ X and any y ∈ Y , xy ∈ E(H) if and

only if the point x lies on the line y in P . Let G be a bipartite graph obtained from H by adding

a new vertex adjacent to all vertices in Y . One can easily see that G has no interval coloring.

Giaro [10] showed that one can decide in polynomial time whether bipartite graphs with maxi-

mum degree 4 have interval 4-colorings. Trees [4, 14], complete bipartite graphs [3, 14], grids [11],

and bipartite outplanar graphs [6, 12] all have interval colorings. Hansen [14] showed that all bi-

partite graphs of maximum degree 3 have interval 4-colorings. Let a and b be positive integers. A

bipartite graph G = (X ∪ Y,E) is (a, b)-biregular if X ∪ Y = V (G), d(x) = a for each x ∈ X and

d(y) = b for each y ∈ Y . It has been conjectured in [14, 16, 20] that:

Conjecture 1.1 Every (a, b)-biregular graph has an interval coloring.

By results of [14, 15], all (2, b)-biregular graphs admit interval coloring (the case when b is

odd was proved independently by Kostochka [17]). The smallest unsolved case of Conjecture 1.1

is (a, b) = (3, 4). Several sufficient conditions for a (3, 4)-biregular graph to admit an interval 6-

coloring have been obtained [5, 9, 18, 21]. In particular, Pyatkin [18] proved that if a (3, 4)-biregular

graph has a cubic subgraph covering all vertices of degree 4, then it has an interval 6-coloring. To

state the main result obtained in [5], we need to introduce more notation.

Let G = (X ∪ Y,E) be a (3, 4)-biregular graph. We say that F is a path-factor of G if F is a

spanning subgraph of G whose components are paths with two distinct endpoints in X; and that
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F is a path-factor with lengths in {`1, `2, . . . , `k} if each component of F has length `i for some

i ∈ {1, 2, . . . , k}, where 2 ≤ `1 ≤ `2 ≤ · · · ≤ `k. Under these circumstances, if k = 1, we simply say

that F is a P`1+1-factor, i.e., every component of F is isomorphic to a path on `1 + 1 vertices.

Theorem 1.2 ([5]) If a (3, 4)-biregular graph has a path-factor with lengths in {2, 4, 6, 8}, then it

has an interval 6-coloring.

Asratian and Casselgren [2] proved that every (3, 4)-biregular graph has a path-factor. Cassel-

gren [7] further proved that every (3, 4)-biregular graph has a path-factor with each path of length

at most 22. Casselgren and Toft [8] recently proved that Conjecture 1.1 is true for (3, 6)-biregular

graphs. They proved the following two results.

Theorem 1.3 ([8]) Every (3, 6)-biregular graph has an interval 7-coloring.

Corollary 1.4 ([8]) If G is a (3, 9)-biregular graph having a cubic subgraph covering all vertices

of degree 9, then G has an interval 10-coloring.

Grzesik and Khachatrian [13] recently studied interval colorings of complete tripartite graphs.

They proved the following.

Theorem 1.5 ([13]) Let ` ≥ 2,m, n be positive integers.

(a) K1,m,n has an interval coloring if and only if gcd(m+ 1, n+ 1) = 1.

(b) K`,m,n admits no interval coloring if `,m and n are odd.

(c) K`,m,`+m admits an interval coloring.

They also made the following conjecture.

Conjecture 1.6 ([13]) Let ` ≤ m ≤ n be positive integers.

(a) For n > ` + m, K`,m,n has an interval coloring if and only if K`,m,n−`−m has an interval

coloring.

(b) For n ≤ `+m, K`,m,n has an interval coloring if and only if `+m+ n is even.

In this paper, we first study interval colorings of complete tripartite graphs in Section 2. We

obtain several sufficient conditions for a complete tripartite graph to admit an interval coloring, in

particular, we consider the case of complete tripartite graphs where one part has size 2. We then

study interval colorings of (a, b)-biregular graphs in Section 3. Using proof techniques developed

in [5, 9, 1, 8], we obtain two results on interval colorings of (a, b)-biregular graphs.
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2 Interval coloring complete tripartite graphs

In this section, we study interval colorings of complete tripartite graphs. We provide several

sufficient conditions for such graphs to admit internal colorings. In particular, we consider the case

of complete tripartite graphs where one part has size 2. It is worth noting that Theorem 2.1 below

generalizes Theorem 10 from [13].

Theorem 2.1 Let ` ≥ 2, m ≥ 2, k ≥ 1 be integers. Then K`,m, k(`+m) has an interval p-coloring,

where p = (k + 1)(`+m)− 1.

Proof. Let `,m, k, p be given. Let U, V,W be the three parts of G := K`,m,k(`+m) with U :=

{u1, u2, ..., u`}, V := {v1, v2, ..., vm} and W being partitioned into W1, . . . ,Wk such that for all

q ∈ [k], Wq := {wq
1, . . . , w

q
`+m}. Let c be a p-edge-coloring of G defined as follows.

We first color the edges between U and V in G. For all i ∈ [`] and j ∈ [m], let c(uivj) :=

i + j − 1. We then color the edges between U and W in G. For all q ∈ [k] and i ∈ [`], let

c(uiw
q
j ) := q(` + m) + i + j − 1 when j ∈ [m] and c(uiw

q
j ) := (q − 1)(` + m) + i + j − 1 when

j ∈ {m+ 1, . . . , `+m}. Finally, we color the edges between V and W in G. For all i ∈ [m], q ∈ [k]

and j ∈ [`+m], let c(viw
q
j ) = (q − 1)(`+m) + `+ i+ j − 1.

It can be checked that for all i ∈ [`], c(ui) = {i, . . . , k(`+m)+m+ i−1}; for all j ∈ [m], c(vj) =

{j, . . . , k(`+m)+`+j−1}; and for all q ∈ [k], c(wq
s) = {(q−1)(`+m)+`+s, . . . , q(`+m)+`+s−1}

when s ∈ [m], and c(wq
s) = {(q− 1)(`+m) + s, . . . , q(`+m) + s− 1} when s ∈ {m+ 1, . . . , `+m}.

Hence c is an interval p-coloring of G and so K`,m,k(`+m) admits an interval p-coloring, where

p = (k + 1)(`+m)− 1.

Theorem 2.2 For all k ≥ 1, K2, 3k+1, 3k+4 has an interval (6k + 6)-coloring.

Proof. Let W,U, V be the three parts of G := K2,3k+1,3k+4 with W := {w1, w2}, U being par-

titioned into U1, . . . , Uk+1 and V being partitioned into V1, . . . , Vk+1 such that Uk+1 = {uk+1
1 },

Vk+1 := {vk+1
1 , vk+1

2 , vk+1
3 , vk+1

4 }, and for all q ∈ [k], Uq := {uq1, u
q
2, u

q
3} and Vq := {vq1, v

q
2, v

q
3}. We

define a (6k + 6)-edge-coloring c of G below.

We first color the edges between W and U ∪ V in G. For all q ∈ [k] and j ∈ [3], let c(w1u
q
j) :=

3q+j−3, c(w1u
k+1
1 ) := 3k+1, c(w1v

q
j ) := 3k+3q+j−1, c(w1v

k+1
j ) := 6k+2+j, c(w1v

k+1
4 ) := 3k+2,

c(w2u
q
j) := 3q + j − 2, c(w2u

k+1
1 ) := 3k + 2, c(w2v

q
j ) := 3k + 3q + j + 1, c(w2v

k+1
1 ) := 6k + 5,

c(w2v
k+1
2 ) := 3k + 3, c(w2v

k+1
3 ) := 3k + 4, and c(w2v

k+1
4 ) := 1. It can be easily checked that

c(w1) = c(w2) = {1, 2, . . . , 6k + 5}.
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We then color the edges between {uk1, uk2, uk3, u
k+1
1 } and V in G. For all ` ∈ [k] and j ∈ [3], let

c(uk1v
`
j) := 3`+ 3k+ j − 3, c(uk1v

k+1
j ) := 6k+ j, c(uk2v

`
j) := 3`+ 3k+ j − 2, c(uk2v

k+1
j ) := 6k+ j + 1,

c(uk3v
`
1) := 3` + 3k + 3, c(uk3v

`
2) := 3` + 3k + 4, c(uk3v

`
3) := 3` + 3k − 1, c(uk3v

k+1
1 ) := 3k + 3,

c(uk3v
k+1
2 ) := 3k + 4, c(uk3v

k+1
3 ) := 6k + 2, c(uk+1

1 v`j) := 3k + 3` + j, c(uk+1
1 vk+1

j ) := 6k + j + 3,

c(uk1v
k+1
4 ) := 3k, c(uk2v

k+1
4 ) := 3k+1, c(uk3v

k+1
4 ) := 3k−1, and c(uk+1

1 vk+1
4 ) := 3k+3. It follows that

c(uk1) = {3k− 2, . . . , 6k + 3}, c(uk2) = c(uk3) = {3k− 1, . . . , 6k + 4}, c(uk+1
1 ) = {3k + 1, . . . , 6k + 6}.

In particular, when k = 1, this yields an interval 12-coloring of G.

When k ≥ 2, we color the edges between V and U1 ∪ · · · ∪Uk−1 in G as follows. For all ` ∈ [k],

q ∈ [k−1] and j ∈ [3], c(v`ju
q
1) := 3`+3q+ j−3, c(v`ju

q
2) := 3`+3q+ j−2, c(v`ju

k+1
1 ) := 3k+3`+ j,

c(v`1u
q
3) = 3` + 3q, c(v`2u

q
3) = 3` + 3q + 1, c(vk+1

j uq1) := 3k + 3q + j, c(vk+1
j uq2) := 3k + 3q + j + 1,

c(vk+1
j uk+1

1 ) := 6k+ 3 + j, c(vk+1
1 uq3) = 3k+ 3q+ 3, c(vk+1

2 uq3) = 3k+ 3q+ 4, c(v`3u
q
3) = 3`+ 3q− 1,

Finally, let c(vk+1
4 uq1) := 3q, c(vk+1

4 uq2) := 3q+ 1, c(vk+1
4 uq3) := 3q− 1. It can be easily checked that

for all q ∈ [k − 1], c(uq1) = {3q − 2, . . . , 3k + 3q + 3} and c(uq2) = c(uq3) = {3q − 1, . . . , 3k + 3q + 4}.
For all ` ∈ [k], c(v`1) = {3`+ 1, . . . , 3k+ 3`+ 3}, c(v`2) = c(v`3) = {3`+ 2, . . . , 3k+ 3`+ 4}, c(vk+1

1 ) =

c(vk+1
2 ) = {3k + 3, . . . , 6k + 5}, c(vk+1

3 ) = {3k + 4, . . . , 6k + 6}, and c(vk+1
4 ) = {1, . . . , 3k + 3}.

It follows from above that c is an interval (6k + 6)-coloring of G, as desired.

Theorem 2.3 For all k ≥ 1 and m ≥ 2,

(a) K2,m,m has an interval (2m+ 1)-coloring.

(b) K2,m,m+k(m+2) has an interval p-coloring, where p = (k + 1)(m+ 2) +m− 1.

(c) K2, 2, 2(m−1) has an interval (2m+ 1)-coloring.

Proof. To prove (a), let m ≥ 2 be given, and let W,U, V be the three parts of G := K2,m,m

with W := {w1, w2}, U := {u1, u2, ..., um} and V := {v1, v2, ..., vm}. We next define an interval

(2m+ 1)-coloring c of G. We first color the edges between U and V in G. For all i ∈ {2, 3, . . . ,m}
and j ∈ [m], let c(u1vj) := m + 1 + j and c(uivj) := i + j − 1. We then color the edges between

W and U ∪ V in G. Let c(w1u1) := m and for all i ∈ {2, . . . ,m}, let c(w1ui) := i − 1; and then

for all j ∈ [m], let c(w1vj) = c(w2uj) := m+ j and c(w2vj) := j. One can easily check that c is an

interval (2m+ 1)-coloring of G. Thus K2,m,m has an interval (2m+ 1)-coloring. This proves (a).

To prove (b), let k,m, p be given. Let W,U, V be the three parts of G := K2,m,m+k(m+2)

with W := {w1, w2}, U := {u1, u2, ..., um} and V being partitioned into V0, V1, . . . , Vk such that

V0 := {v1, v2, ..., vm} and for all i ∈ [k], Vi := {vi1, . . . , vim+2}. Note that G[U ∪W ∪ V0] = K2,m,m.

Let c0 be an interval (2m+ 1)-coloring of G[U ∪W ∪ V0] given as in the proof of Theorem 2.3(a).
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Note that c0(w1) = c0(w2) = {1, . . . , 2m}, c0(u1) = {m, . . . , 2m + 1}, and for all i ∈ {2, . . . ,m},
c0(ui) = {i− 1, . . . ,m+ i}, and for all j ∈ [m], c0(vj) = {j, . . . ,m+ j + 1}. We next construct an

interval p-coloring c of G from c0 by coloring the edges between V1 ∪ · · · ∪ Vk and U ∪W .

For each q ∈ [k], we color the edges between Vq and U ∪ W in G as follows: for all j ∈
[m + 2], let c(u1v

q
j ) := q(m + 2) + (m − 1) + j; for all i ∈ {2, . . . ,m} and j ∈ [m + 2], let

c(uiv
q
j ) := q(m+ 2) + (i− 2) + j; and finally, for all j ∈ [m− 1], let c(w1v

q
j ) := q(m+ 2) +m+ j,

c(w2v
q
j ) := q(m + 2) + m + 1 + j, c(w1v

q
m) := q(m + 2) + 2m, c(w1v

q
m+1) := q(m + 2) + m − 1,

c(w1v
q
m+2) := q(m+2)+m, c(w2v

q
m) := q(m+2)+m−1, c(w2v

q
m+1) := q(m+2)+m, c(w2v

q
m+2) :=

q(m+ 2) +m+ 1.

It can be easily checked that c(w1) = c(w2) = {1, . . . , p − 1}, c(u1) = {m, . . . , p}, for all

i ∈ {2, . . . ,m}, c(ui) = {i − 1, . . . , k(m + 2) + m + i}, for all j ∈ [m], c(vj) = {j, . . . ,m + 1 + j},
and finally, for all q ∈ [k] and j ∈ [m − 1], c(vqj ) = {q(m + 2) + j, . . . , q(m + 2) + m + 1 + j},
c(vqm) = {q(m+ 2) +m− 1, . . . , q(m+ 2) + 2m}, c(vqm+1) = {q(m+ 2) +m− 1, . . . , q(m+ 2) + 2m},
and c(vqm+2) = {q(m+ 2) +m, . . . , q(m+ 2) + 2m+ 1}. This proves that c is an internal p-coloring

of G, as desired. This proves (b).

It remains to prove (c). By Theorem 2.3(a), the statement is true when m = 2. We may assume

that m ≥ 3. Then 2(m − 1) = 4` or 2(m − 1) = 4` + 2 for some integer ` ≥ 1. Assume first that

2(m− 1) = 4`+ 2. By Theorem 2.3(b), K2, 2, 4`+2 has an interval (2m+ 1)-coloring. It remains to

consider the case when 2(m− 1) = 4`. By Theorem 2.1, K2, 2, 4` has an interval (2m+ 1)-coloring.

This completes the proof of Theorem 2.3.

3 Some remarks on interval colorings of biregular graphs

In this section, we study interval colorings of (a, b)-biregular graphs. Using a method developed in

[5, 9], we begin with a result which provides a sufficient condition for any (3, 4)-biregular graph to

have an interval 6-coloring. Before doing so, we need one more notation.

Let G = (X ∪ Y,E) denote a (3, 4)-biregular graph. For any path-factor F of G, we write

P ∈ F if P is a component of F . We use P = x1y1 . . . xiyixi+1 to denote a path P ∈ F with

vertices x1, y1, . . . , xi, yi, xi+1 in order, where x1, . . . , xi+1 ∈ X, y1, . . . , yi ∈ Y , and 2i = |P | − 1.

Note that G\E(F ) consists of disjoint even cycles and even paths with both endpoints in X. Thus

χ′(G\E(F )) = 2. Furthermore, for any P = x1y1 . . . xiyixi+1 ∈ F with i ≥ 2, each of x2, . . . , xi−1

is an endpoint of a path component of G\E(F ).
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Theorem 3.1 Let G = (X ∪ Y,E) be a (3, 4)-biregular graph. If G has a path-factor F such that

G\E(F ) has a proper 2-edge-coloring c with the property that for any P = x1y1 . . . xiyixi+1 ∈ F
with i ≥ 4, either c(x2) = · · · = c(xi) or there exists an integer s with 2 ≤ s ≤ i − 1 such that

c(x2) = · · · = c(xs) 6= c(xs+1) = · · · = c(xi), then G has an interval 6-coloring.

Proof. Let G, F and c be given as in the statement. We may assume that the edges of G\E(F )

are colored by colors in {3, 4} under the coloring c. We next extend c to E(G) to obtain an interval

6-coloring of G by coloring the edges of each component of F using colors in {1, 2, 5, 6}.

Let P ∈ F be any path with vertices x1, y1, . . . , xi, yi, xi+1 in order, where 2i = |P | − 1. Then

i ≥ 1. Assume first that i = 1. Let c(x1y1) = 5 and c(y1x2) = 2. Then c(x1) = {3, 4, 5},
c(y1) = {2, 3, 4, 5} and c(x2) = {2, 3, 4}. Next assume that i ≥ 2 and c(x2) = · · · = c(xi). If

c(x2) = · · · = c(xi) = {3}, then color the edge x1y1 by color 5 and the edges of the subpath

y1x2 . . . xiyixi+1 alternatively using colors in {1, 2} by letting c(y1x2) = 2. If c(x2) = · · · = c(xi) =

{4}, then color the edge x1y1 by color 2 and the edges of the subpath y1x2 . . . xiyixi+1 alternatively

using colors in {5, 6} by letting c(y1x2) = 5. In either case, one can easily check that for any

v ∈ {x1, y1, . . . , xi, yi, xi+1}, all the edges incident to v are properly colored in G and c(v) is an

interval of integers.

It remains to consider the case when i ≥ 2 and c(x2) = · · · = c(xs) 6= c(xs+1) = · · · = c(xi) for

some integer integer s with 2 ≤ s ≤ i− 1. Then i ≥ 3. By renaming the vertices of P if necessary,

we may further assume that c(x2) = · · · = c(xs) = {3} and c(xs+1) = · · · = c(xi) = {4}. Let

c(x1y1) = 2 and c(ysxs+1) = 5. Now color the edges of the subpath x1y1x2 . . . xsys alternatively

using colors in {1, 2} and the edges of the subpath ysxs+1 . . . xiyixi+1 alternatively using colors in

{5, 6}. Clearly, c(x1) = {2, 3, 4}, c(x2) = · · · = c(xs) = {1, 2, 3}, c(xs+1) = · · · = c(xi) = {4, 5, 6},
c(xi+1) = {3, 4, 5}, and c(y1) = · · · = c(ys−1) = {1, 2, 3, 4}, c(ys) = {2, 3, 4, 5}, c(ys+1) = · · · =

c(yi) = {3, 4, 5, 6}. By the arbitrary choice of P , we obtain an interval 6-coloring of G.

This completes the proof of Theorem 3.1.

We next study interval colorings of (a, ka)-biregular graphs, where a, k are positive integers.

Using a method developed in [1, 8], we prove the following result. Note that Proposition 3.2(c)

generalizes Theorem 1.4.

Proposition 3.2 Let G = (X∪Y,E) be an (a, ka)-biregular graph, where a, k are positive integers.

(a) G has an interval ka-coloring if and only if it admits a decomposition into k edge-disjoint

a-regular subgraphs covering Y .
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(b) If a = 3, k ≥ 3 and X can be partitioned into X1, X2, . . . , Xk−1 such that G[Xi∪Y ] is 3-regular

for all i ∈ [k − 2], then G has an interval (3k + 1)-coloring.

(c) If a ≥ 3, k = 3 and there exists X1 ⊂ X such that G[X1 ∪ Y ] is a-regular and G\X1 has an

interval (2a+ 1)-coloring, then G admits an interval (3a+ 1)-coloring.

Proof. Let G, k, and a be given as in the statement. To prove (a), assume G has an interval

ka-coloring. Let c be an interval ka-coloring of G using colors 1, 2, . . . , ka. For every j ∈ [k], let Ej

be the set of edges of G colored by color a(j − 1) + 1. Since c is an interval coloring of G and G is

(a, ka)-biregular, we see that |Ej | = |Y | for all j ∈ [k] and V (Ei)∩V (Ej) = Y for all i, j ∈ [k] with

i 6= j. Moreover, for all j ∈ [k], Gj := G[V (Ej)] must be a-regular and so G1, G2, . . . , Gk are k

edge-disjoint a-regular subgraphs of G, each covering Y . Conversely, assume G has a decomposition

into k edge-disjoint a-regular subgraphs, say G1, G2, . . . , Gk, such that each Gj is a-regular and

covers Y . We obtain an interval ka-coloring of G by properly coloring the edges of Gj with colors

in {a(j − 1) + 1, . . . , a(j − 1) + a} for all j ∈ [k]. This proves (a).

We next prove (b). Assume a = 3, k ≥ 3 and X can be partitioned into X1, X2, . . . , Xk−1

such that G[Xi ∪ Y ] is 3-regular for all i ∈ [k − 2]. We proceed the proof by induction on k. By

Corollary 1.4, the statement is true when k = 3. So we may assume that k ≥ 4. Let H := G\X1.

Then H is a (3, 3(k−1))-biregular graph such that each of H[X2∪Y ], . . . ,H[Xk−2∪Y ] is 3-regular.

By the induction hypothesis, H has an interval (3k−2)-coloring, say c∗, using colors 1, 2, . . . , 3k−2.

Clearly, c∗(y) = {1, 2, . . . , 3k − 3} or c∗(y) = {2, 3, . . . , 3k − 2} for all y ∈ Y . Let M1, M2, M3 be

pairwise disjoint perfect matchings of G[X1 ∪ Y ]. Let c be obtained from c∗ as follows:

c(xy) =



3k − 2 if xy ∈M1 and c∗(y) = {1, 2, . . . , 3k − 3}
3k + 1 if xy ∈M1 and c∗(y) = {2, 3, . . . , 3k − 2}
3k − 1 if xy ∈M2

3k if xy ∈M3

c∗(e) if xy ∈ E(H)

Then c is an interval (3k + 1)-coloring of G, as desired. This proves (b).

To prove (c), assume a ≥ 3, k = 3 and there exists X1 ⊂ X such that G[X1∪Y ] is a-regular and

G\X1 has an interval (2a+1)-coloring. Clearly, G\X1 is (a, 2a)-biregular. By assumption, let c∗ be

an interval (2a+1)-edge-coloring of G\X1 using colors 1, 2, . . . , 2a+1. Clearly, c∗(y) = {1, 2, . . . , 2a}
or c∗(y) = {2, 3, ..., 2a+1} for all y ∈ Y . Let M1,M2, . . . ,Ma be pairwise disjoint perfect matchings
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of G[X1 ∪ Y ]. Let c be an edge-coloring of G obtained from c∗ as follows:

c(xy) =


2a+ 1 if xy ∈M1 and c∗(y) = {1, 2, . . . , 2a}
3a+ 1 if xy ∈M1 and c∗(y) = {2, 3, . . . , 2a+ 1}
2a+ i if xy ∈Mi, where i ∈ {2, 3, . . . , a}
c∗(e) if xy ∈ E(G\X1)

Then c is an interval (3a+ 1)-coloring of G, as desired. This proves (c).
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