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Planar Turán number and planar anti-Ramsey
number of graphs∗
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Abstract The planar Turán number of a graph G, denoted exP (n,G), is the
maximum number of edges in a planar graph on n vertices without containing G as a
subgraph. Given a positive integer n and a plane graph H, let Tn(H) be the family of all
plane triangulations T on n vertices such that T contains H as a subgraph. The planar
anti-Ramsey number of H, denoted arP (n,H), is the maximum number k such that no
edge-coloring of any plane triangulation in Tn(H) with k colors contains a rainbow copy of
H. The study of these two topics was initiated around 2015, and has attracted extensive
attention. This paper surveys results about planar Turán number and planar anti-Ramsey
number of graphs. The goal is to give a unified and comprehensive presentation of the
major results, as well as to highlight some open problems.
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All graphs considered in this paper are finite and simple. We use Pn, Cn and K1,n−1

to denote the path, cycle and star on n vertices, respectively. The join G+H (resp. union

G ∪H) of two vertex-disjoint graphs G and H is the graph having vertex set V (G) ∪ V (H)

and edge set E(G) ∪ E(H) ∪ {xy |x ∈ V (G), y ∈ V (H)} (resp. E(G) ∪ E(H)). For a

positive integer t and a graph G , we use tG to denote disjoint union of t copies of G; G the

complement of G; |G| the number of vertices of G; and e(G) the number of edges of G. For

any positive integer k, we define [k] := {1, 2, · · · , k}.
Let F be a family of graphs. A graph is F-free if it does not contain any graph in F

as a subgraph. When F = {F} we write F -free. One of the best known results in extremal

graph theory is Turán’s Theorem[1], which gives the maximum number of edges that a Kk-

free graph on n vertices can have. The celebrated Erdős-Stone Theorem[2] then extends this

to the case when Kk is replaced by an arbitrary graph H with at least one edge, showing

that the maximum number of edges possible is (1 + o(1))(χ(H)−2
χ(H)−1 )

(
n
2

)
, where χ(H) denotes

the chromatic number of H. This latter result has been called the “fundamental theorem

of extremal graph theory”[3]. Turán-type problems when host graphs are hypergraphs are

notoriously difficult. A large quantity of work in this area has been carried out in determining

the maximum number of edges in a k-uniform hypergraphs on n vertices without containing

k-uniform linear paths and cycles (see, for example, [4-6]). Surveys on Turán-type problems

of graphs and hypergraphs can be found in [7] and [8].

Dowden[9] in 2016 initiated the study of Turán-type problems when host graphs are

planar graphs, i.e., how many edges can an F-free planar graph on n vertices have? The

planar Turán number of F , denoted exP (n,F), is the maximum number of edges in an

F-free planar graph on n vertices. When F = {F} we write exP (n, F ). Dowden[9] observed

that it is straightforward to determine the exact values of exP (n,H) when H is a complete

graph or non-planar graph: for all n > 4, the planar graph K2 + Kn−2 is K3-free and so

exP (n,H) = 2n− 4; for all n > 6, the planar triangulation 2K1 + Cn−2 is K4-free. Hence,

exP (n,H) = 3n−6 for all graphs H which contains K4 as a subgraph and n > max{|H|, 6}.
In particular, exP (n,K−5 ) = 3n − 6 for all n > 6, where K−p denotes the graph obtained

from the complete graph Kp by deleting one edge. There are now a variety of papers mainly

focusing on the planar Turán number of paths, cycles, Theta graphs and graphs H with

exP (n,H) = 3n− 6.

Motivated by anti-Ramsey number introduced by Erdős, Simonovits and Sós[10] in 1975,

Horňák, Jendrol′, Schiermeyer and Soták[11] (under the name of rainbow numbers) in 2015

initiated study of the anti-Ramsey problem when host graphs are plane triangulations. A

subgraph of an edge-colored graph is rainbow if all of its edges have different colors. Let F
be a family of planar graphs. For the purpose of this paper, we call an edge-coloring that

contains no rainbow copy of any graph in F an F-free edge-coloring. Let nF be the smallest

integer such that for any n > nF , there exists a plane triangulation on n vertices that is not

F-free. Such an integer nF is well-defined, because for any F ∈ F , we can obtain a plane

triangulation from a plane drawing of F by adding a new vertex to each face of size at least

four of F and then joining it to all vertices on the boundary of such a face. For each integer
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n > nF , let Tn(F) be the family of all plane triangulations T on n vertices such that T is not

F-free. The planar anti-Ramsey number of F , denoted arP (n,F), is the maximum number

of colors in an F-free edge-coloring of any plane triangulation in Tn(F). When F consists of

a single graph H, we write n
H

, arP (n,H) and exP (n,H) instead of n{H} , arP (n, {H}) and

exP (n, {H}). It is easy to see that arP (n,F) < 3n− 6, and this problem becomes trivial if

the host plane triangulation on n vertices is F-free, because 3n− 6 colors can be used.

Analogous to the relation between anti-Ramsey number and Turán number proved in

[10], the planar Turán number is closely related to the planar anti-Ramsey number of graphs,

as was observed by Lan, Shi and Song in [12]. We recall the proof here.

Proposition 1 [12] Given a planar graph H and a positive integer n > n
H

,

1 + exP (n,H) 6 arP (n,H) 6 exP (n,H),

where H = {H − e : e ∈ E(H)}.

Proof Given an edge-coloring c of a host graph T in Tn(H), we define a representing

graph of c to be a spanning subgraph R of T obtained by taking one edge of each color

under the coloring c (where R may contain isolated vertices). It is easy to check that, if

c is an H-free edge-coloring of T , then R is H-free. Thus arP (n,H) 6 exP (n,H) for any

n > n
H

. Next, let G be an H-free plane subgraph of a plane triangulation T ∈ Tn(H) with

e(G) = exP (n,H). We then obtain an H-free edge-coloring of T by coloring the edges of G

with distinct colors and then coloring the edges in E(T ) \ E(G) with a new color. Hence,

1 + exP (n,H) 6 arP (n,H) for any n > n
H

. �
This paper surveys results about planar Turán number of graphs and planar anti-

Ramsey number of graphs in Section 2 and Section 3, respectively. The goal is to give a

unified and comprehensive presentation of the major results, as well as to highlight several

open problems. We also collect recent results on counting subgraphs in planar graphs in

Section 4.

1 Planar Turán number of graphs

How many edges can an H-free planar graph on n vertices have? Since 2016, this topic

has attracted extensive attention. In this section, we collect all results on planar Turán

number of graphs. We begin with results in [13] on graphs H satisfying exP (n,H) = 3n−6,

which demonstrate that it is quite non-trivial to determine exP (n,H) when H is a planar

subcubic graph. Furthermore, the present authors[13] discovered that the chromatic number

of H does not play a role in exP (n,H), as it does in the celebrated Erdős-Stone Theorem.

1.1 Graphs H with exP (n,H) = 3n− 6

Before we state the main results, we need some definitions. For a graph G and v ∈
V (G), we use χ(G) and ∆(G) to denote the chromatic number and maximum degree of G,

respectively; NG(v) denotes the set of neighbors of v. Let NG[x] = NG(x) ∪ {x}. A vertex

is a k-vertex in G if it has degree k. We use n
k
(G) to denote the number of k-vertices in G.
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For any set S ⊂ V (G), the subgraph of G induced on S, denoted G[S], is the graph with

vertex set S and edge set {xy ∈ E(G) : x, y ∈ S}. We denote by G \ S the subgraph of G

induced on V (G) \ S.

As mentioned in the Introduction, exP (n,H) = 3n− 6 for all graphs H which contains

K4 as a subgraph and n > max{|H|, 6}. Lan, Shi and Song[13] established several sufficient

conditions for all K4-free planar graphs H with exP (n,H) = 3n− 6.

Theorem 1 [13] Let H be a K4-free planar graph and let n > |H| be an integer. Then

exP (n,H) = 3n− 6 if one of the following holds.

(a) χ(H) = 4 and n > |H|+ 2,

(b) ∆(H) > 7,

(c) ∆(H) = 6 and either n
6
(H) + n

5
(H) > 2 or n

6
(H) + n

5
(H) = 1 and n

4
(H) > 5,

(d) ∆(H) = 5 and either H has at least three 5-vertices or H has exactly two adjacent

5-vertices,

(e) ∆(H) = 4 and n
4
(H) > 7,

(f) H is 3-regular (except for the case |H| = 6 and n 6 9) or H has at least three

vertex-disjoint cycles or H has exactly one vertex u of degree ∆(H) ∈ {4, 5, 6} such that

∆(H[N(u)]) > 3,

(g) δ(H) > 4 or H has exactly one vertex of degree at most 3.

Theorem 1 implies that exP (n,H) = 3n − 6 for all H with n > |H| + 2 and either

χ(H) = 4 or χ(H) = 3 and ∆(H) > 7. Note that both K−4 and K1 + 2K2 have chromatic

number 3. Theorem 8(a) and Theorem 2(c) (see below) then demonstrate that the chromatic

number of H does not play a role in exP (n,H), as it does in the celebrated Erdős-Stone

Theorem.

By Theorem 1, exP (n,H) remains unknown for K4-free planar graphs H with ∆(H) =

6, n
6
(H) + n

5
(H) = 1 and n

4
(H) 6 4; or ∆(H) = 5 and n

5
(H) 6 2 (and the two 5-vertices

are not adjacent when n
5
(H) = 2); or ∆(H) = 4 and n

4
(H) 6 6; or ∆(H) 6 3. It seems

quite hard to determine exP (n,H) when H is planar subcubic graph. In particular, by

Theorem 1(f), exP (n,H) remains unknown for K4-free planar graphs H with exactly one

vertex, say u, of degree ∆(H) 6 6 and ∆(H[N(u)]) 6 2. It seems quite non-trivial to

determine exP (n,H) for all such H. Let Wk := K1 + Ck, the wheel on k + 1 > 5 vertices.

Unlike the classic Turán number of Wk (see [14,15] for more information), the planar Turán

number of Wk can be completely determined. Moreover, the exact values of exP (n,K1,k)

have also been settled completely. We summarize all other results from [13] in Theorem 2.

Theorem 2 [13] Let n, k and t be positive integers.

(a) For n > k + 1 > 5,

exP (n,K1 + Ck) =


3n− 6, if k > 6, or k = 5 and n 6= 7, or k = 4 and n > 12,

3n− 7, if k = 4 and n ∈ {5, 6}, or k = 5 and n = 7,

3n− 8, if k = 4 and 7 6 n 6 11.
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(b) For n > t+ 1 > 4,

exP (n,K1,t) =



3n− 6, if t > 7, or t = 6 and n ∈ {7, 8, 9, 10, 12},
3n− 7, if t = 6 and n = 11,

3n− 8, if t = 6 and n ∈ {13, 14}, or t = 5 and n = 7,⌊
(t− 1)n

2

⌋
, if t ∈ {3, 4}, or t = 5 and n 6= 7, or t = 6 and n > 15.

(c) For n > 5, 2n−3 6 exP (n,K1 +2K2) 6 19n
8 −4. Furthermore, exP (n,K1 +2K2) =

19n
8 − 4 if and only if n is divisible by 8.

(d) For all n > 15,
⌊
5n
2

⌋
6 exP (n,K1 + 3K2) < 17n

6 − 4. Furthermore,

exP (n,K1 + 3K2) =


3n− 6, if n ∈ {7, 8, 9, 10, 12},
3n− 7, if n = 11,

3n− 8, if n ∈ {13, 14}.

(e) exP (n,K1 + P ) 6 13(t−1)n
4t−2 − 12(t−1)

2t−1 for all n > t+ 1, where 4 6 t 6 6 and P is a

disjoint union of paths with |P | = t.

The upper bound in Theorem 2(c) is tight for infinitely many n. To see that, let

n = 8(k + 1). We recall the construction of Fk in [13] by the illustration given in Figure

1: the graph F0 is depicted in Figure 1(a), and the graph Fk for all k > 1 is obtained by

placing the entire graph Fk−1 into the center quadrangle of Figure 1(b) (in such a way that

the center bold quadrangle of Figure 1(b) is identified with the outer quadrangle of Fk−1).

(a) (b)

Fk−1

Figure 1 Construction of the sharp upper bound for exP (n,K1 + 2K2)

Using a similar constructing method, the present authors in [13] also constructed a

graph Gk with n = 24(k + 1) vertices and 67n/23 − 4 edges for all k > 0 such that Gk is

K1 + 3K2-free, as depicted in Figure 2. Very recently, Fang, Zhai and Wang[16] proved that

graphs Gk for all k > 0 indeed yield the desired tight upper bounds for exP (n,K1 + 3K2);

they further obtained the sharp upper bounds for exP (n,K1 +Pt+1) for each t ∈ {2, 3, 4, 5}.
Moreover, each t ∈ {2, 3, 4, 5}, the extremal graph for exP (n,K1 + Pt+1) is the graph G∗k
obtained from Gk depicted in Figure 5 by placing K3,K4, R1, R5 into each 3-face of Gk,

respectively, where R1 is a 4-regular triangulation on 6 vertices and R5 is depicted in Figure

2(a).

Theorem 3 [16] Let n and t be positive integers and t ∈ {2, 3, 4, 5}.
(a) exP (n,K1 + 3K2) 6 67n

24 − 4 for all n > 13, with equality if and only if n is divisible

by 24.
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(b)(a) (c)

Gk−1

R5

R5

R5 R5

R5

Figure 2 Construction of the sharp upper bound for exP (n,K1 + 3K2)

(b) exP (n,K1 + Pt+1) 6 24t
7t+6 (n − 2) for all n > 12

6−t + 1, with equality if and only if
12(t+2)

6−t ≡ n mod 28t+24
6−t .

1.2 Planar Turán number of cycles

Wang and Lih[17] in 2007 studied upper bounds on the sizes of F-free graphs that are

2-cell embedded in a surface of nonnegative Euler characteristic to confirm the List Edge

Coloring Conjecture for such graphs with maximum degree exceeding prescribed thresholds.

We summarize their results on planar graphs below and refer the reader to [17] for further

information.

Theorem 4 [17] Let n be a positive integer.

(a) exP (n,C4) 6 15(n− 2)/7.

(b) exP (n,C5) 6 12(n− 2)/5.

(c) exP (n,C6) 6 63(n− 2)/25.

(d) exP (n,C7) 6 (8n− 11)/3.

(e) exP (n, {C4, C5}) 6 2(n− 2).

We believe when Dowden[9] in 2016 initiated the study of planar Turán number of

graphs, he was unaware of results by Wang and Lih[17]. Dowden[9] studied the upper bounds

for exP (n,Ck) when k ∈ {4, 5}.

Theorem 5 [9] Let n be a positive integer.

(a) exP (n,C4) 6 15(n− 2)/7, with equality when 30 ≡ nmod70.

(b) exP (n,C5) 6 12(n− 2)/5, and the bound is sharp for infinitely many n.

Note that Wang and Lih[17] did not prove that each upper bound in Theorem 4 holds for

infinitely many n. Dowden[9] provided clever and involved constructions for both exP (n,C4)

and exP (n,C5). For exP (n,C4), the extremal graph Gk with n = 70k+30 vertices is depicted

in Figure 3. We refer the reader to [9] for their construction of the extremal graphs for C5.

Lan, Shi and Song[18] continued this topic and independently proved the following result.

Theorem 6 [18] exP (n,C6) 6 18
7 (n− 2) for n > 6, with equality when n = 9.

All extremal graphs are depicted in Figure 4 when n = 9. Very recently, Theorem 6

was subsequently improved by Ghosh, Győri, Martin, Paulos and Xiao[19], who gave a sharp

upper bound for exP (n,C6) for all n > 18. We refer the reader to [19] for their construction

of the extremal graphs.
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(a) G0

G0

(b) Gk (k 1)

Gk−1

Figure 3 Construction of the sharp upper bound for exP (n,C4)

Figure 4 All extremal graphs achieving equality in Theorems 6 and 8(c) when n = 9

Theorem 7 [19] exP (n,C6) 6 5n
2 − 7 for n > 18, and the bound is sharp for infinitely

many n.

All proofs of the results are in the same spirit and rely on the Euler’s formula for planar

graphs, except that Wang and Lih[17] applied the Discharging Method to prove Theorem

4(c) for C6-free planar graphs.

With the support of Theorem 6, the present authors proposed a conjecture for exP (n,Ck)

for all k > 6. The extremal graph for the conjectured upper bound can be obtained from

vertex-disjoint copies of T1 ∈ Tk−1 and T2 ∈ Tk−1 by identifying one vertex in T1 with a

vertex in T2, see Figure 4 for an example when k = 6.

Conjecture 1 [18] Let n > k > 6 be positive integers. Then exP (n,Ck) 6 (3 −
3

2k−5 )(n− 2), with equality when n = 2k − 3.

Ghosh, Győri, Martin, Paulos and Xiao[19] then posed a better conjecture for exP (n,Ck)

for all k > 7, which remains open.

Conjecture 2 [19] Let n > k > 7 be positive integers. Then there exists an integer

N0 > 0 such that exP (n,Ck) 6 3(k − 1)n/k − 6(k + 1)/k for all n > N0.

1.3 Planar Turán number of Theta graphs

A graph on at least 4 vertices is a Theta graph if it can be obtained from a cycle by

adding an additional edge joining two non-consecutive vertices. For each integer k > 4, let

Θk be the family of non-isomorphic Theta graphs on k vertices. Note that the only graph in

Θ4 is isomorphic to K−4 , and Θ5 has only one graph. By abusing notation, we also use Θ4

and Θ5 to denote the only graph in Θ4 and Θ5, respectively. It is worth noting that every

Ck-free graph is also Θk-free. Lan, Shi and Song[18] initiated the study of exP (n,Θk), which
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was inspired by a question of Dowden[9] when k = 4. They determined the upper bounds for

exP (n,Θk) for each k ∈ {4, 5, 6}. In particular, these bounds are tight for infinitely many n

for each k ∈ {4, 5}.

Theorem 8 [18] Let n be a positive integer.

(a) exP (n,Θ4) 6 12(n− 2)/5 for all n > 4, with equality when 12 ≡ n mod 20.

(b) exP (n,Θ5) 6 5(n− 2)/2 for all n > 5, with equality when 50 ≡ n mod 120.

(c) exP (n,Θ6) 6 (18n− 36)/7 for all n > 6, with equality when n = 9.

The extremal graph Gk for exP (n,Θ4) with n = 20k+ 12 vertices and exP (n,Θ5) with

n = 120k+ 50 vertices are given in Figure 5 and Figure 6, respectively. All extremal graphs

for exP (n,Θ6) are depicted in Figure 4 when n = 9.

(a) G0

G0

(b) Gk (k 1)

Gk−1

Figure 5 Construction of the sharp upper bounds for exP (n,Θ4)

(a) G0

G0

(b) Gk (k 1)

Gk−1

Figure 6 Construction of the sharp upper bounds for Θ5

Recently, Ghosh, Győri, Paulos, Xiao and Zamora[20] improved further the upper bound

in Theorem 8(c) for Θ6. We refer the reader to [20] for their construction of the extremal

graphs.

Theorem 9 [20] Let n be a positive integer. Then exP (n,Θ6) 6 (18n − 48)/7 for all

n > 14, and the bound is sharp for infinitely many n.

Note that Θ6 contains exactly two non-isomorphic graphs. We use Θ1
6 and Θ2

6 to denote

the symmetric (containing no 3-cycle) and asymmetric (containing 3-cycle) Theta graphs in

Θ6. The authors in [20] also proposed asymptotic conjectures for Θ1
6 and Θ2

6, respectively.

For general Θk, this problem remains wide open.
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Conjecture 3 [20] Let n be a positive integer.

(a) exP (n,Θ1
6) = 45n/17 + Θ(1).

(b) exP (n,Θ2
6) = 18n/7 + Θ(1).

1.4 Planar Turán number of paths and matchings

Let Mn denote a matching with n edges. The classic Turán number for paths and

matching were well studied. In 1975, Faudree and Schelp[21] have determined the classical

Turán number of paths and all extremal graphs were characterized. Motivated by the

classical Turán number of paths, Lan, Shi and Song[22] began the study of exP (n, Pk). It is

worth noting that for all k ∈ {2, 3, 4, 5}, every Pk-free graph must be planar. Hence, when

k ∈ {2, 3, 4, 5}, the exact values of exP (n, Pk) and the extremal graphs have been determined

by Faudree and Schelp. The authors in [23] obtained the planar Turán number for Pk with

6 6 k 6 11.

Theorem 10 [23] If G is a P6-free planar graph of order n > 6, then e(G) 6 2n−2 with

equality when G = 2K−5 if n = 10; and e(G) 6 2n − 3 with equality when G = K2 + Kn−2

if n 6= 10. Moreover, the equality holds when G ∈ {K−5 ∪K1,K
−
5 ∪K4, 3K

−
5 }.

Theorem 11 [23] Let G be a P7-free planar graph of order n > 7.

(a) If n = 6t, then e(G) 6 2n with equality when G = T1 ∪ · · · ∪ Tt.
(b) If n = 6t+ 5, then e(G) 6 2n− 1 with equality when G = T1 ∪ · · · ∪ Tt ∪K−5 .

(c) If n = 6t+ r for r ∈ [4], then e(G) 6 2n− 2 with equality when G ∈ {K2 + (Kn−4 +

K2), T1 ∪ · · · ∪ Tt−1 ∪ (K2 + (K2+r ∪K2))}.
Moreover, the equality holds when G ∈ {T1 ∪ · · · ∪ Tt ∪K1, T1 ∪ · · · ∪ Tt ∪K4, T1 ∪ · · · ∪

Tt−1 ∪ 2K−5 }, where Ti ∈ T6 for all i ∈ [t].

Theorem 12 [23] Let n > 3 be an integer. Let G be a P8-free planar graph on n

vertices. Then e(G) 6 15n/7, with equality when n = 7t for any positive integer t and

G = T1 ∪ · · · ∪ Tt, where Ti ∈ T7 for all i ∈ [t].

T0∈τ
k/3+1+ ∋*

T1∈τ
k/3+1
*

T
t
∈τ

k/3+1

..
..
..

*

T
t+1
∈τ

r+2
*

Figure 7 Construction of Gbk/3c+1+ε, n

To illustrate the results for Pk with k > 9, we need to introduce more notation. Let

T ∗t ⊆ Tt denote the family of all plane triangulations with a Hamilton cycle. Given positive
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integers k > 9, n = bk/3c − 1 + ε+ t(bk/3c − 1) + r + 2, t > 2, where ε = k mod 3 and r =

(n−ε−2) mod (bk/3c−1), we next construct Gbk/3c+1+ε, n, depicted in Figure 7, as follows:

let (a0, b0), · · · , (at+1, bt+1) be the edge of one fixed Hamilton cycle of T0, T1, · · · , Tt+1,

respectively, and identify all ai as a and all bi as b, where

T0 ∈ T ∗bk/3c+1+ε, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any i ∈ [t] when ε ∈ {0, 1};

T0, T1 ∈ T ∗bk/3c+2, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any 2 6 i 6 t, or

T0 ∈ T ∗bk/3c+3, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any i ∈ [t] when ε = 2.

Clearly, e(Gbk/3c+1+ε, n) = (3− 1
bk/3c−1 )n−5+ ε+r+2

bk/3c−1−(3r+1−max{3r, 1}). For n > k−1,

it is easy to see that the longest path of Gbk/3c+1+ε, n has (|T0|−2)+(|T1|−2)+(|T2|−2)+2 =

k − 1 vertices and so Gbk/3c+1+ε, n is Pk-free, where ε = k mod 3.

Theorem 13 [23] Let n > 3 be an integer. Let G be a Pk-free planar graph on n vertices

with k ∈ {9, 10, 11}. Then e(G) 6 max{ 3k−9k−1 n,
5n−8+ε

2 }, with equality when n > 2k + 1

are different from k in parity and G ∈ Gbk/3c+1+ε,n, or when G ∈ {T1, T1 ∪ T2}, where

ε = k mod 3 and T1, T2 ∈ Tk−1.

In view of Theorem 13, we believe that the following conjecture is true.

Conjecture 4 Let n > 3 be an integer and k > 12. Let G be a Pk-free planar graph on

n vertices. Then e(G) 6 max{ 3k−9k−1 n, e(Gbk/3c+1+ε,n)}, with equality when G ∈ Gbk/3c+1+ε,n

or when n = s(k − 1) and G = T1 ∪ · · · ∪ Ts, where Ti ∈ Tk−1 for all i ∈ [s].

The planar Turán number for matchings has been settled recently by Qin, Lan, Shi and

Yue[24].

Theorem 14 [24] Let n, t be positive integers with n > 2t > 8. Then

exP (n,Mt) = min{3n− 6, 2n+ 3t− 13}.

2 Planar anti-Ramsey number of graphs

We have seen from Proposition 1 that arP (Tn, H) and exP (n,H) are intimately related,

that is,

1 + exP (n,H) 6 arP (Tn, H) 6 exP (n,H),

where H = {H − e : e ∈ E(H)}.
We want to point out that finding the exact values of arP (n,H) is far from trivial.

As observed by Horňák, Jendrol′, Schiermeyer and Soták in [11], an induction argument

in general cannot be applied to compute arP (n,H) because deleting a vertex from a plane

triangulation may result in a graph that is no longer a plane triangulation. Let ar(Wn, H)

denote the maximum number of colors in an H-free edge-coloring of Wn. As observed again

in [11], the exact value of ar(Wn, Ck) plays a key role in determining the planar anti-Ramsey

number of Ck. In this section, we collect results on anti-Ramsey number when host graphs

are plane triangulations and wheels. We refer the reader to [25,26] on anti-Ramsey number

when host graphs are outer-planar graphs and Halin graphs.
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2.1 Planar anti-Ramsey number of cycles

Horňák, Jendrol′, Schiermeyer and Soták[11] initialed the study of planar anti-Ramsey

number of cycles under the name of rainbow number. They determined the exact value for

arP (n,C3), and obtained lower and upper bounds for arP (n,Ck) when k ∈ {4, 5}; lower

bounds for arP (n,Ck) for all n > k > 6.

Theorem 15 [11] Let n, k be positive integers.

(a) arP (n,C3) = b(3n− 6)/2c for n > 4.

(b) arP (n,C4) 6 2(n− 2) for n > 4.

(c) arP (n,C5) 6 5(n− 2)/2 for n > 11.

(d) arP (n,C4) > (9(n− 2)− 4r)/5 for n > 42 and r = (n− 2)mod20.

(e) arP (n,C5) > (19(n− 2)− 10r)/9 for n > 20 and r = (n− 2)mod18.

(f) arP (n,Ck) > k−3
k−2 (3n− 6)− 2k−7

k−2 for 6 6 k 6 n.

Recently, Lan, Shi and Song[12] obtained upper bounds for arP (n,Ck) when k ∈ {6, 7},
and improved further lower bounds for arP (n,Ck) for all k > 5.

Theorem 16 [12] Let n, k be positive integers.

(a) arP (n,C6) 6 17(n− 2)/6 for n > 8.

(b) arP (n,C7) 6 (59n− 113)/20 for n > 13.

(c) arP (n,C5) > (39n− 123− 21r)/9 for n > 119 and r ≡ (n+ 7)mod18.

(d) arP (n,Ck) >
(
k−3
k−2 + 2

3(k+1)(k−2)

)
(3n − 6) − 2k2−5k−5

k2−k−2 r for k > 6 and n > k2 − k
and r ≡ (n− 2)mod(k2 − k − 2).

By Proposition 1, we see that Theorem 5(b) and Theorem 7 yield better upper bounds

for arP (n,Ck) for k = 5 and k = 6, respectively.

Corollary 1 Let n, k be positive integers.

(a)
[9]

arP (n,C5) 6 exP (n,C5) 6 12(n− 2)/5 for all n > 11.

(b)
[19]

arP (n,C6) 6 exP (n,C6) 6 5n/2− 7 for all n > 18.

For the remainder of this subsection, we focus on ar(Wn, Ck). Horňák, Jendrol′, Schier-

meyer and Soták[11] determined the exact values of ar(Wn, Ck) when k ∈ {4, 5}.

Theorem 17 [11] Let n be a positive integer.

(a) ar(Wn, C4) = b4n/3c for any n > 3.

(b) ar(Wn, C5) = b3n/2c for any n > 4.

Recently, Lan, Shi and Song[12] proved the exact value of ar(Wn, C6) for all n > 5, and

obtained lower and upper bounds for ar(Wn, Ck) for all k > 7 with lower bounds being also

the upper bounds for finite many integers n.

Theorem 18 [12] Let n, k be positive integers with k > 5.

(a) ar(Wn, C6) = b5n/3c for all n > 5.

(b) b 2k−7k−3 nc 6 ar(Wn, Ck) 6 b 2k−5k−2 nc for all n > k − 1.
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Very recently, Xu, Lu and Liu proved that the lower bound in Theorem 18(b) is the

desired upper bound for ar(Wn, Ck) for all k > 7.

Let C1
k denote the graph obtained from Ck by adding one pendent edge. Let C2

k (resp.

C2′

k ) be a graph on k + 2 vertices obtained from C1
k by adding one new pendent edge such

that it is incident to the vertex of degree three (resp. to a vertex of degree two). Qin, Lei

and Li[27] proved the following results.

Theorem 19 [27] Let n be a positive integer.

(a) arP (n,C1
3 ) = b(3n− 2)/2c for any n > 4.

(b) arP (n,C2
3 ) 6 b9n/4c − 2 for any n > 5.

(c) arP (n,C2′

3 ) 6 b(7n− 11)/3c for any n > 5.

Theorem 20 [27] Let n be a positive integer.

(a) ar(Wn, C
1
3 ) = n+ 1 for any n > 4.

(b) ar(Wn, C
2
3 ) = n+ 3 for any n > 5.

(c) ar(Wn, C
2′

3 ) = b4n/3c for any n > 5.

2.2 Planar anti-Ramsey number of paths

Lan, Shi and Song[12] began the study of planar anti-Ramsey number of paths, and

obtained lower bounds for arP (n, Pk) for all k > 8.

Theorem 21 [12] Let n, k be two positive integers with n > k and ε = kmod2.

(a) If k ∈ {8, 9}, then arP (n, Pk) > (3n+ 3ε− ε∗ − 3)/2, where ε∗ = (n+ 1 + ε)mod2.

(b) If k > 10, then

arP (n, Pk) >


n+ 2k − 12, if k 6 n < 3bk/2c+ ε− 5,

2n+ k − 14, if n > 5bk/2c+ ε− 15,

(3n+ 9 bk/2c+ 3ε− 43)/2, otherwise.

Theorem 21 was then improved further by Qin, Li, Lan and Yue[28].

Theorem 22 [28] Let n be a positive integer.

(a) dn/3e 6 arP (n, P4) 6 n/2 for any n > 5.

(b) arP (n, P5) = n for any n > 5.

(c) n+ 1 6 arP (n, P6) 6 2n− 4 for any n > 6.

(d) arP (n, P7) = 2n− 2 for any n > 7.

(e) arP (n, Pk) > 3n− 5− 2
⌈
n−k+2b k−7

3 c+4

b k−1
3 c

⌉
for n > k and k > 8.

The following follows immediately from Theorems 12 and 13.

Theorem 23 [28] Let n be a positive integer.

(a) arP (n, P8) 6 15n/7.

(b) arP (n, P9) 6 max{9n/4, 5n/2− 4}.
(c) arP (n, P10) 6 max{7n/3, (5n− 7)/2}.
(d) arP (n, P11) 6 max{12n/5, 5n/2− 3}.
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The authors in [28] further obtained the exact values of ar(Wn, Pk) for all k ∈ {4, 5, 6, 7, 8, n+

1} and lower and upper bounds for ar(Wn, Pk) for all 9 6 k 6 n.

Theorem 24 [28] Let n, k be positive integers with k > 9.

(a) ar(Wn, P4) = bn/3c+ 1 for any n > 4 and ar(W3, P4) = 3.

(b) ar(Wn, P5) = n+ 1 for any n > 4.

(c) ar(Wn, P6) = n+ 2 for any n > 5.

(d) ar(Wn, P7) = b4n/3c+ 1 for any n > 6.

(e) ar(Wn, P8) = b3n/2c+ 1 for any n > 7.

(f) 2n− 1− 2
⌈
n−d k−1

2 e
b k−1

2 c

⌉
6 ar(Wn, Pk) =

⌊
2k−13
k−6 n

⌋
for any n > k − 1.

2.3 Planar anti-Ramsey number of matchings

Jendrol′, Schiermeyer and Tu[29] first studied planar anti-Ramsey number of matchings.

They obtained the exact values of arP (n,Mk) for each k ∈ {2, 3, 4}, and lower and upper

bounds for arP (n,Mk) for all k > 5.

Theorem 25 [29] Let n, k be positive integers. Then

(a) arP (n,M2) = 2 for n > 5.

(b) arP (n,M3) = n for n > 7.

(c) arP (n,M4) = 2n− 2 for n > 8.

(d) 2n+ 2k − 10 6 arP (n,Mk) 6 2n+ 2k − 7 + 2
(
2k−2

3

)
for all n > 2k > 10.

Recently, Qin, Lan and Shi[30] considered the next step. They obtained the exact value

of arP (n,M5) for all n > 11, and improved the upper bound for arP (n,Mk) for all k > 6.

Theorem 26 [30] Let n, k be positive integers. Then

(a) arP (n,M5) = 2n for n > 11.

(b) arP (n,Mk) 6 2n+ 6k − 17 for any n > 2k and k > 5.

Chen, Lan and Song[31] continued the study of planar anti-Ramsey number for match-

ings. They determined the exact value of arP (n,M6) for all n > 30, and established better

lower and upper bounds for arP (n,Mk) for all k > 6.

Theorem 27 [31] Let n, k be positive integers. Then

(a) arP (n,M6) = 2n+ 3 for n > 30.

(b) 2n+ 3k − 15 6 arP (n,Mk) 6 2n+ 4k − 13 for any n > 3k − 6 and k > 6.

Qin, Lan, Shi and Yue[24] then proved that the lower bound in Theorem 27(b) is

the desired upper bound for arP (n,Mk) for all k > 7 and n > 9k + 3. In addition, they

significantly improved the upper bound for arP (n,Mk) for all k > 7 and n satisfying 3k−6 6
n < 9k + 3.

Theorem 28 [24] Let n, k be positive integers. Then

(a) arP (n,Mk) = 2n+ 3k − 15 for all k > 7 and n > 9k + 3.

(b) arP (n,Mk) 6 2n+ 3k − 14 for all k > 7 and 3k − 6 6 n < 9k + 3.

Finally, we refer the reader to [27] for the exact values of ar(Wn,Mk) for all k > 2.
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3 Counting subgraphs in planar graphs

Given a graph H, how many copies of H can a planar graph on n vertices have? Let

NP (n,H) denote the maximum number of copies of H in a planar graph on n vertices.

In this section, we shall collect results on NP (n,H) when H is a path or cycle. We refer

the reader to [32-40] for other cases of H or counting subgraphs when host graphs are not

planar.

3.1 Counting cycles

Hakimi and Schmeichel[36] began the study of NP (n,H) and determined the exact

values of NP (n,H) and characterized all extremal graphs when H = C3 or H = C4; they

also obtained the order of magnitude of NP (n,Ck) for all k > 5.

Theorem 29 [36] Let n be a positive integer.

(a) NP (n,C3) = 3n− 8 for all n > 6,

(b) NP (n,C4) = 1
2 (n2 + 3n− 22) for all n > 4,

(c) NP (n,Ck) = Θ(nbk/2c) for all k > 5.

Hakimi and Schmeichel[36] further proposed a conjecture for NP (n,C5), which was

answered in the positive recently by Győri, Paulos, Salia, Tompkins and Zamora[41].

Theorem 30 [41] Let n be a positive integer. Then

NP (n,C5) =


6, if n = 5

2n2 − 10n+ 12, if n = 6 or n > 8

41, if n = 7.

Very recently, Cox and Martin[34] focused on studying NP (n,H) when H is an even

cycle.

Theorem 31 [34] Let n be a positive integer.

(a) NP (n,C6) = (n3 )3 +O(n3−1/5),

(b) NP (n,C8) = (n4 )4 +O(n4−1/5),

(c) NP (n,C2`) 6 n`

`! +O(n`−1/5) for any ` > 5.

With the support of Theorem 31(a, b), Cox and Martin[34] proposed the following

conjecture for even cycles in general.

Conjecture 5 [34] For all ` > 3,

NP (n,C2`) =
(n
`

)`
+O(n`−1/5).

It is worth noting that maximizing the number of induced subgraphs in a graph on n ver-

tices has been one of the most intriguing problems in extremal graph theory. Let N ind
P

(n,H)

denote the maximum number of copies of induced H in a planar graph on n vertices. Recent-

ly, Ghosh, Győri, Janzer, Paulos, Salia and Zamora[42] determined the asymptotic values of

N ind
P

(n,C4), and obtained asymptotic tight upper bound for N ind
P

(n,C5).
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Theorem 32 [42] Let n be a positive integer. Then

(a) N ind
P

(n,C4) = 1
2n

2 +O(n), and

(b) N ind
P

(n,C5) 6 1
3n

2 +O(n).

3.2 Counting paths

It is easy to see that NP (n, P2) = 3n− 6. Alon and Caro[33] proved that NP (n, P3) =

n2 + 3n − 16 for all n > 4. Recently, Győri, Paulos, Salia, Tompkins and Zamora[43]

determined the exact values of NP (n, P4).

Theorem 33 [43] Let n be a positive integer. Then

NP (n, P4) =


12, if n = 4,

7n2 − 32n+ 27, if n = 5, 6 or n > 9,

147, if n = 7,

222, if n = 8.

Ghosh, Győri, Martin, Paulos, Salia, Xiao and Zamora[44] then determined the asymp-

totic value of NP (n, P5), and posed a conjecture for NP (n, Pk) for all k > 6.

Theorem 34 [44] NP (n, P5) = n3 +O(n2).

Conjecture 6 [44] For all ` > 3, we have

(a) NP (n, P2`+1) = 4`(n` )`+1 +O(n`), and

(b) NP (n, P2`) = 8`(`− 1)( n
`−1 )` +O(n`−1).

Very recently, Conjecture 6 was resolved by Cox and Martin[34] when k = 7.

Theorem 35 [34] NP (n, P7) = 4
27n

4 +O(n4−1/5).
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[7] Füredi Z. Turán type problems, “Surveys in Combinatorics” [J]. London Mathematical Society,

1991, 166: 253-300.

[8] Keevash P. Hypergraph Turán problems, “Surveys in Combinatorics 2011” [J]. London Math-

ematical Society, 2011, 392: 83-139.



No.3 Planar Turán number and planar anti-Ramsey number of graphs 215

[9] Dowden C. Extremal C4-free/C5-free planar graphs [J]. Journal of Graph Theory, 2016, 83:

213-230.
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[41] Győri E, Paulos A, Salia N, et al. The maximum number of pentagons in a planar graph [J].

arXiv: 1909.13532v1.
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