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Abstract

Let s ≥ 2 and t ≥ 2 be integers. A graph G is (s, t)-splittable if V (G) can be partitioned into
two sets S and T such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t. The famous Erdős-Lovász Tihany
Conjecture from 1968 states that every graph G with ω(G) < χ(G) = s+t−1 is (s, t)-splittable.
We provide a survey on the Erdős-Lovász Tihany Conjecture and its related problems.

1 Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph

G, we use V (G) to denote the vertex set, E(G) the edge set, |G| the number of vertices, e(G) the

number of edges, δ(G) the minimum degree, ∆(G) the maximum degree, α(G) the independence

number, ω(G) the clique number, χ(G) the chromatic number, G the complement of G. For a

vertex x ∈ V (G), we use N(x) to denote the set of vertices in G which are adjacent to x. We define

N [x] = N(x) ∪ {x} and d(x) = |N(x)|. If A,B ⊆ V (G) are disjoint, we say that A is complete to

B if each vertex in A is adjacent to all vertices in B; and A is anti-complete to B if no vertex in A

is adjacent to any vertex in B. If A = {a}, we simply say a is complete to B or a is anti-complete

to B. The subgraph of G induced by A, denoted G[A], is the graph with vertex set A and edge

set {xy ∈ E(G) : x, y ∈ A}. We denote by B \ A the set B − A, and G \ A the subgraph of G

induced on V (G) \A, respectively. If A = {a}, we simply write B \ a and G \ a, respectively. A set

K ⊆ V (G) is a clique of G if vertices in K are pairwise adjacent in G; a k-clique if, in addition,

|K| = k. A graph H is an induced subgraph of G if V (H) ⊆ V (G) and H = G[V (H)]. We say G

is claw-free if G does not contain K1,3 as an induced subgraph, and G is k-chromatic if χ(G) = k.

For any positive integer n, we write [n] for the set {1, 2, . . . , n}. We use the convention “A :=” to

mean that A is defined to be the right-hand side of the relation.

Let s ≥ 2 and t ≥ 2 be integers. A graph G is (s, t)-splittable if V (G) can be partitioned into

two sets S and T such that χ(G[S]) ≥ s and χ(G[T ]) ≥ t. At the Colloquium held at Tihany,

Hungary, September 1966, Erdős [Erd68] proposed the following.

Trivially every 3k-chromatic graph contains k odd vertex independent circuits. Perhaps

every 3k − 1 chromatic critical graph having more than n0(k) vertices contains k odd
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vertex independent circuits. In particular, is it true that every 5-chromatic critical

graph having sufficiently many vertices contains two odd vertex independent circuits?

GALLAI showed that this is false for 4-chromatic graphs.

LOVÁSZ in trying to prove this made the following conjecture: Let G be a k-chromatic

graph which does not contain a complete k-gon and let a > 1 and b > 1 be arbitrary

positive integers satisfying a + b = k + 1. Then we can split the vertices of G into

two classes so that the graph spanned by the vertices of the first class has chromatic

number > a and the graph spanned by the vertices of the second class has chromatic

number > b. By taking a = 3 we obtain from LOVÁSZ’s conjecture that every graph

of chromatic number 3k − 1 which does net contain a complete (3k − 1)-gon contains

k vertex-independent odd circuits. LOVÁSZ further remarks that even the following

special case (a = 2) does not seem to be easy to prove. Every k-chromatic graph G

which does not contain a complete k-gon contains two vertices, x1 and x2,which are

joined by an edge so that G− x1 − x2 has chromatic number ≥ k − 1.

The above conjecture of Lovász from 1966 was then published in 1968 in the proceedings of the

conference, and is now known as the Erdős-Lovász Tihany Conjecture from 1968. The name Erdős-

Lovász Tihany Conjecture was introduced by Jensen and Toft [JT95, Problem 5.12].

Conjecture 1.1 (Erdős-Lovász Tihany Conjecture [Erd68]). Let G be a graph with ω(G) < χ(G) =

s+ t− 1, where s ≥ 2 and t ≥ 2 are integers. Then G is (s, t)-splittable.

To date, Conjecture 1.1 has been shown to be true only for the pairs (s, t) ∈ {(2, 2), (2, 3), (2, 4),

(3, 3), (3, 4), (3, 5)}. The case (2, 2) is trivial. The cases (2, 3) and (3, 2) were shown by Brown and

Jung in 1969 [BJ69]. Mozhan [Moz87] and Stiebitz [Sti87] each independently showed the case

(2, 4) in 1987. The cases (3, 4) and (3, 5) was settled by Stiebitz in 1987 [Sti88]. We recall the

proofs of these known cases in Section 3. It is worth noting that the case (3, 3) of Conjecture 1.1

answers the question of Erdős in the positive. To see this, let G be a (3k−1)-chromatic graph with

ω(G) < 3k − 1 and let V1, . . . , V3k−1 be the color classes of a proper (3k − 1)-coloring of G. Then

χ(G[V1∪ · · · ∪V5]) = 5; χ(G[V3`∪V3`+1∪V3`+2]) = 3 and so G[V3`∪V3`+1∪V3`+2] has an odd cycle

for each ` ∈ {2, . . . , k − 1}. By the result of Brown and Jung for the case (3, 3) of Conjecture 1.1,

G[V1∪ · · ·∪V5] contains two vertex-disjoint odd cycles, and so G has 2 + (k−2) = k vertex-disjoint

odd cycles, as desired. It is not hard to see that the same result of Brown and Jung yields that

every 5k-chromatic graph G with ω(G) < 5k has 2k vertex-disjoint odd cycles; the same result of

Brown and Jung and the case (3, 5) by Stiebitz imply that every (3k − 2)-chromatic graph G with

ω(G) < 3k − 2 has k vertex-disjoint odd cycles for all k ≥ 3. Stiebitz pointed out in [Sti17] that

Conjecture 1.1 “seems difficult to attack and might even be false”.

Recent work on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture

for certain classes of graphs. A vertex v of a graph G is bisimplicial if N(v) is the union of

two cliques; a graph is quasi-line if every vertex is bisimplicial. Note that every line graph is

quasi-line and every quasi-line graph is claw-free [CS12]. A hole in a graph is an induced cycle
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of length at least four; a hole is even if it has an even length. Quasi-line graphs have attracted

more attention (see [CO07, CF08, CS12]). In particular, Chudnovsky and Seymour [CS12] gave

a constructive characterization of quasi-line graphs. Kostochka and Stiebitz [KS08] showed that

Conjecture 1.1 holds for line graphs. Balogh, Kostochka, Prince, and Stiebitz [BKPS09] then

showed that Conjecture 1.1 holds for quasi-line graphs, and all graphs G with α(G) = 2. The

present author [Son19] further proved that Conjecture 1.1 holds for all graphs G with α(G) ≥ 3

and no hole of length between 4 and 2α(G)− 1.

Theorem 1.2 (Kostochka and Stiebitz [KS08]). If G is the line graph of some multigraph and

ω(G) < χ(G) = s + t − 1, where t ≥ s ≥ 2 are integers, then G contains an s-clique K such that

χ(G \K) ≥ t. In particular, G is (s, t)-splittable.

Theorem 1.3 (Balogh, Kostochka, Prince and Stiebitz [BKPS09]). Let G be a graph with ω(G) <

χ(G) = s+ t− 1, where t ≥ s ≥ 2 are integers. Then the following hold.

(a) If G is a quasi-line graph, then G contains an s-clique K such that χ(G\K) ≥ t. In particular,

G is (s, t)-splittable.

(b) If α(G) = 2, then G is (s, t)-splittable.

Theorem 1.4 (Song [Son19]). Let G be a graph with α(G) ≥ 3 and ω(G) < χ(G) = s + t − 1,

where s ≥ 2 and t ≥ 2 are integers. If G has no hole of length between 4 and 2α(G)− 1, then G is

(s, t)-splittable.

We want to point out that the proof of Theorem 1.3(a) does not rely on the structural result

of quasi-line graphs [CS12]; the proof of Theorem 1.4 relies on Theorem 1.3(a) and the Strong

Perfect Graph Theorem [CRST06]. Recently, Wang and Yu [WY20b, WY20a] extended the ideas

of Theorem 1.2 and Theorem 1.3(b) and proved that if the line graph L(G) of a multigraph G

satisfies ω(L(G)) < χ(L(G)) = s+ t−1 and t ≥ s ≥ 7`/2 for some integer ` ≥ 0, then G is (s, t+`)-

splittable; every graph G with α(G) = 2 and 1 + ω(G) < χ(G) = s + t − 1 is (s, t)-splittable.

It is worth noting that Conjecture 1.1 remains open for claw-free graphs. Chudnovsky, Fradkin

and Plumettaz [CFP] proved the following weakening of Conjecture 1.1 for claw-free graphs, the

proof of which is long and relies heavily on the structure theorem for claw-free graphs developed

by Chudnovsky and Seymour [CS05]. It is not hard to see that Theorem 1.5 does not completely

settle Conjecture 1.1 for all claw-free graphs.

Theorem 1.5. Let G be a claw-free graph with χ(G) > ω(G). Then there exists a clique K with

|K| ≤ 5 such that χ(G \K) > χ(G)− |K|.

The least number k such that G has a vertex enumeration in which each vertex is preceded by

fewer than k of its neighbors is called the coloring number col(G) of G. The enumeration shows

that col(G) ≤ maxH⊆G δ(H) + 1. But for H ⊆ G, we have col(G) ≥ col(H) and col(H) ≥ δ(H) + 1,

since the “back-degree” of the last vertex in any enumeration of H is just its ordinary degree in H,

which is at least δ(H). It follows that every graph G satisfies the following:

χ(G) ≤ col(G) = max{δ(H) | H ⊆ G}+ 1.
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The coloring number as an upper bound for the chromatic number was first defined and studied by

Erdős and Hajnal [EH66] in 1966. Using the chromatic number and coloring number of a graph,

Stiebitz [Sti17] proved a nice relaxation of Conjecture 1.1.

Theorem 1.6 (Stiebitz [Sti17]). Every graph G satisfying ω(G) < χ(G) = s + t − 1 has two

vertex-disjoint subgraphs G1 and G2 such that

χ(G1) ≥ s and col(G2) ≥ t or col(G1) ≥ s and χ(G2) ≥ t.

We end this section with a recent result towards Conjecture 1.1 on even-hole-free graphs, where

a graph is even-hole-free if it contains no even hole. Very recently, Chudnovsky and Seymour [CS20]

proved a structural result on even-hole-free graphs.

Theorem 1.7 (Chudnovsky and Seymour [CS20]). Let G be a non-empty even-hole-free graph.

Then G has a bisimplicial vertex and χ(G) ≤ 2ω(G)− 1.

Using Theorem 1.7 and the properties of minimal counterexamples to Conjecture 1.1 which are

recalled in Section 2, the present author recently [Son21] proved that every even-hole-free graph G

with ω(G) < χ(G) = s+ t− 1 satisfies Conjecture 1.1 provided that t ≥ s > χ(G)/3. We recall the

proof here as it is short and the method has new ingredient. We begin with a useful lemma.

Lemma 1.8 (Song [Son21]). Let G be a graph and x ∈ V (G) with p := χ(G[N(x)]) ≥ 2. Let

V1, . . . , Vp be the color classes of a proper p-coloring of G[N(x)] with |V1| ≥ · · · ≥ |Vp| ≥ 1. If

|Vr ∪ · · · ∪ Vp| ≤ χ(G) − r − 1 for some r ∈ [p] with 2 ≤ r ≤ p, then p ≤ χ(G) − 2 and G is

(r, χ(G) + 1− r)-splittable.

Proof. Let G, p, r, V1, . . . , Vp be as given in the statement. Note that p− r + 1 ≤ |Vr ∪ · · · ∪ Vp| ≤
χ(G) − r − 1 and so p ≤ χ(G) − 2 and V (G) \ N [x] 6= ∅. Let W := V1 ∪ · · · ∪ Vr−1. Then

χ(G[{x} ∪ W ]) = r and χ(G \ W ) ≥ χ(G) − (r − 1) = χ(G) + 1 − r. It suffices to show that

χ(G \ ({x} ∪W )) ≥ χ(G \W ). Let q := χ(G \ ({x} ∪W )) ≥ χ(G \W ) − 1 ≥ χ(G) − r ≥ 2 and

let U1, . . . , Uq be the color classes of a proper q-coloring of G \ ({x} ∪W ). Since x is adjacent to

|Vr∪· · ·∪Vp| ≤ χ(G)−r−1 ≤ q−1 vertices in G\W , we see that x is anti-complete to Ui for some

i ∈ [q]. We may assume that i = 1. Then U1 ∪ {x}, U2, . . . , Uq form the color classes of a proper

q-coloring of G \W . Therefore, χ(G \ ({x} ∪W )) = q ≥ χ(G \W ) ≥ χ(G)− r + 1, as desired.

Theorem 1.9 (Song [Son21]). Let G be an even-hole-free graph with ω(G) < χ(G) = s + t − 1,

where t ≥ s ≥ 2. If s > χ(G)/3, then G is (s, t)-splittable.

Proof. Suppose the assertion is false. Let G be a counterexample with |G| minimum. Then G is

vertex-critical; in addition, G is an (s, t)-graph. Thus δ(G) ≥ χ(G)−1 = s+t−2. By Theorem 2.2,

ω(G) ≤ t − 1. Since G is even-hole-free, by Theorem 1.7, G has a bisimplicial vertex v such that

N(v) is the union of two cliques. Thus α(G[N(v)]) ≤ 2, ω(G[N(v)]) ≤ t− 2 and

s+ t− 2 = χ(G)− 1 ≤ δ(G) ≤ d(v) ≤ 2ω(G[N(v)]) ≤ 2t− 4.
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It follows that t ≥ s+ 2 ≥ 4 and χ(G) = s+ t− 1 ≥ 2s+ 1. We next claim that ∆(G) ≤ |G| − 2.

Suppose there exists x ∈ V (G) such that d(x) = |G| − 1. Then

χ(G \ x) = χ(G)− 1 = s+ (t− 1)− 1 > ω(G)− 1 = ω(G \ x) and t− 1 > s > χ(G \ x)/3.

By the minimality of G, G \ x is (s, t− 1)-splittable and thus G is (s, t)-splittable, a contradiction.

Thus ∆(G) ≤ |G| − 2, as claimed. It follows that V (G) \N [v] 6= ∅ and so χ(G[N [v]]) ≤ χ(G)− 1.

Let p := χ(G[N(v)]). Then p = χ(G[N [v]])− 1 ≤ χ(G)− 2. Note that

p ≥ ω(G[N(v)]) ≥ d(v)/2 ≥ (χ(G)− 1)/2 ≥ ((2s+ 1)− 1)/2 = s ≥ 2.

Let V1, . . . , Vp be the color classes of a proper p-coloring of G[N(v)] with 2 ≥ |V1| ≥ · · · ≥ |Vp| ≥ 1.

Suppose p ≥ t− 1. Then |Vt−2| = 1 because d(v) ≤ 2t− 4. Therefore,

|Vt ∪ · · · ∪ Vp| = p− t+ 1 ≤ (χ(G)− 2)− t+ 1 = χ(G)− t− 1.

By Lemma 1.8 applied to G and v with r = t, we see that G is (s, t)-splittable, a contradiction.

Thus s ≤ p ≤ t− 2. Next, if |Vs ∪ · · · ∪ Vp| ≤ χ(G)− s− 1, then G is (s, t)-splittable by applying

Lemma 1.8 to G and v with r = s, a contradiction. Hence, |Vs ∪ · · · ∪ Vp| ≥ χ(G)− s = t− 1 ≥ 3.

Note that p− s+ 1 ≤ (t− 2)− 2 + 1 = t− 3, and so |Vs| = 2 and

d(v) = (|V1|+ · · ·+ |Vs−1|) + |Vs ∪ · · · ∪ Vp| ≥ 2(s− 1) + t− 1 = 2s+ t− 3.

It follows that t− 2 ≥ ω(G[N(v)]) ≥ d(v)/2 ≥ (2s+ t− 3)/2, which implies that t ≥ 2s+ 1. Thus

χ(G) = s+ t− 1 ≥ 3s, contrary to the assumption that 3s > χ(G).

The remainder of the paper is organized as follows. We recall the properties of minimal coun-

terexamples to Conjecture 1.1 in Section 2; the proofs of known cases of Conjecture 1.1 in Section 3.

We then survey the results on: the special case s = 2 of Conjecture 1.1 (see Conjecture 4.1) in

Section 4; a weakening conjecture of Conjecture 1.1 (see Conjecture 5.6) in Section 5; a weakening

conjecture of Conjecture 4.1 (see Conjecture 6.1) in Section 6.

2 Properties of (s, t)-graphs

For the sake of readers, we recall the properties of minimal counterexamples to Conjecture 1.1 due

to Stiebitz [Sti88]. An (s, t)-graph is a connected (s+t−1)-chromatic graph which does not contain

two vertex-disjoint subgraphs with chromatic number s and t, respectively.

Lemma 2.1 (Stiebitz [Sti88]). Let G be a k-chromatic graph and let V1, . . . , Vk be the color classes

of a proper k-coloring of G. Then for each i ∈ [k], there exists vi ∈ Vi such that N(vi)∩ Vj 6= ∅ for

all j ∈ [k] with j 6= i.

Proof. Suppose there exists an i ∈ [k], say i = k, such that every vertex of Vk is anti-complete

to Vj for some j ∈ [k − 1]. Let U1 := {v ∈ Vk | v is anti-complete to V1 in G}. For each j ∈
[k − 1] with j ≥ 2, let Uj := {v ∈ Vk \ (U1 ∪ · · · ∪ Uj−1) | v is anti-complete to Vj in G}. Then

U1∪V1, . . . , Uk−1∪Vk−1 form the color classes of a proper (k−1)-coloring of G, a contradiction.

5



Theorem 2.2 (Stiebitz [Sti88]). Let G be an (s, t)-graph with t ≥ s ≥ 2. Then

(i) for every s-clique K of G and every proper (t − 1)-coloring of G \ K with color classes

V1, . . . , Vt−1, there exists vi ∈ Vi for each i ∈ [t − 1] such that vi is complete to K in G. In

particular, every s-clique K of G is contained in at least t− 1 cliques each of order s+ 1.

(ii) for every t-clique K of G and every proper (s − 1)-coloring of G \ K with color classes

V1, . . . , Vs−1, there exists vi ∈ Vi for each i ∈ [s − 1] such that vi is complete to K in G. In

particular, every t-clique of G is contained in at least s− 1 cliques each of order t+ 1.

(iii) ω(G) ≥ χ(G) if Kt is a subgraph of G.

Proof. Let G be an (s, t)-graph with t ≥ s ≥ 2. Then χ(G) = s + t − 1. To prove (i), let K :=

{v1, . . . , vs} and let V1, . . . , Vt−1 be as given in the statement. Then {v1}, . . . , {vs}, V1, . . . , Vt−1
form the color classes of a proper (s+ t− 1)-coloring of G. By Lemma 2.1, there exists vi ∈ Vi for

each i ∈ [t− 1] such that vi is complete to K in G. In particular, K is contained in at least t− 1

cliques each of order s+ 1. Similarly, one can prove (ii).

To prove (iii), suppose G contains Kt as a subgraph. Let X0 := {x1, . . . , xt} be a t-clique of G.

Let y1, . . . , yr be a longest sequence of vertices in G \X0 such that for each i ∈ [r],

(a) yi is complete to Xi−1 in G, and

(b) Xi := {y1, . . . , yi, xi+1, . . . , xt} is a t-clique of G.

By Theorem 2.2(i), we have r ≥ 1. Note that Xr is a t-clique by (a). Thus G[{y1, . . . , yr}] = Kr.

It follows that r ≤ s − 1 because G is an (s, t)-graph. Hence 1 ≤ r ≤ s − 1. By Theorem 2.2(ii),

Xr belongs to at least s − 1 cliques each of order t + 1. By the maximality of r, no vertex in

V (G) \ (X0 ∪Xr) is complete to Xr in G. It follows that {x1, . . . , xr} is complete to Xr in G and

r = s− 1. Therefore, G[X0 ∪ {y1, . . . , yr}] = Kt+r = Ks+t−1, and so ω(G) ≥ χ(G), as desired.

3 The known cases of Conjecture 1.1

In this section, we recall the proofs of Brown and Jung [BJ69] that Conjecture 1.1 is true for the

values of (s, t) ∈ {(2, 2), (2, 3), (3, 3)}, and the proofs of Stiebitz [Sti88] for the cases (2, 4), (3, 4)

and (3, 5) of Conjecture 1.1. We say that two proper vertex-colorings c1 and c2 of a graph G are

equivalent if, for all x, y ∈ V (G), c1(x) = c1(y) iff c2(x) = c2(y). A graph G with χ(G) ≤ k is

uniquely k-colorable if every two proper k-colorings of G are equivalent. It is not hard to see that

the complete graph Kn is uniquely k-colorable for all k ≥ n.

Lemma 3.1 (Brown and Jung [BJ69]). Let H be an induced subgraph of a graph G. If G \ V (H)

has at most χ(G \ V (H))− 1 vertices each adjacent to at least χ(H) vertices of H, then

χ(G \ V (H)) ≥ χ(G)− χ(H) + 1.
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Proof. Let s := χ(H) and t := χ(G\V (H)). Let V1, . . . , Vt be the color classes of a proper t-coloring

of G\V (H) and Vt+1, . . . , Vs+t be the color classes of a proper s-coloring of H. Since G\V (H) has

at most t− 1 vertices each adjacent to at least s vertices of H, we may assume that no vertex in V1

is adjacent to at least s vertices of H. Similar to the proof of Lemma 2.1, each vertex in V1 can be

placed into one of Vt+1, . . . , Vs+t and this yields a proper (s+ t− 1)-coloring of G. It follows that

χ(G) ≤ s+ t− 1 = χ(H) + χ(G \ V (H))− 1.

Therefore, χ(G \ V (H)) ≥ χ(G)− χ(H) + 1, as desired.

Corollary 3.2 (Brown and Jung [BJ69]). Let K be a clique of G. Then either

χ(G \K) ≥ χ(G)− |K|+ 1

or G \K has at least χ(G)− |K| vertices each adjacent to all vertices of K in G.

Lemma 3.3 (Brown and Jung [BJ69]). Let G be a K4-free graph and C be a shortest odd cycle in

G. Then either G = C, or no vertex in G \ V (C) is adjacent to at least three vertices on C.

Proof. Since C is a shortest odd cycle in G, we see that C is an induced cycle, say with vertices

v1, . . . , v2`+1 in order for some positive integer `. Suppose G 6= C and there exists a vertex v ∈
V (G) \ V (C) such that v is adjacent to at least three vertices on C, say vi, vj , vk with i < j < k.

Then C 6= K3 because G is K4-free. Let Qi,j be the path on C with vertices vi, . . . , vj in order;

Qj,k be the path on C with vertices vj , . . . , vk in order, and Qk,i := C \ {vi+1, . . . , vk−1}. It follows

that each of the paths Qi,j , Qj,k, Qk,i has length at least two, in particular, one of them has an

odd length, say Qi,j . But then we obtain a shorter odd cycle with vertices v, vi, . . . , vj in order,

contrary to the choice of C.

Lemma 3.4 (Stiebitz [Sti88]). Every (3, t)-graph has a K4 subgraph, where t ≥ 2.

Proof. Let G be a (3, t)-graph, where t ≥ 2. Then χ(G) = t+ 2 ≥ 4. Suppose G is K4-free. Let C

be a shortest odd cycle in G. Then C 6= G. By Lemma 3.3, no vertex in G \V (C) is adjacent to at

least three vertices on C. By Lemma 3.1, χ(G \ V (C)) ≥ χ(G)− 2 = t. Thus G is (3, t)-splittable,

a contradiction.

We are now ready to prove the known cases of Conjecture 1.1.

Proof. Let G be a graph with ω(G) < χ(G) = s+ t− 1, where s ≤ t and

(s, t) ∈ {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)}.

Suppose G is not (s, t)-splittable. We choose G with |G| minimum. Then G is connected and

so G is an (s, t)-graph. Suppose (s, t) ∈ {(2, 2), (2, 3)}. Then ω(G) ≥ χ(G) by Theorem 2.2, a

contradiction. Thus (s, t) ∈ {(2, 4), (3, 3), (3, 4), (3, 5)}. We claim that ω(G) = s + 1 and (s, t) ∈
{(2, 4), (3, 5)}. Suppose (s, t) = (2, 4). Then ω(G) = 3 by Theorem 2.2. Next, suppose s = 3. Then

χ(G) ≥ 5. By Lemma 3.4, ω(G) ≥ 4. By Theorem 2.2, (s, t) = (3, 5) and ω(G) = 4. It follows that

ω(G) = s+ 1 and (s, t) ∈ {(2, 4), (3, 5)}, as claimed. Thus s ∈ {2, 4} and t = s+ 2.

Let x1, . . . , xr be a sequence of vertices of G satisfying
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(i) for each i ∈ [r], Hi := G[{x1, . . . , xi}] is uniquely (s+ 1)-colorable,

(ii) for each i ∈ {s, s+ 1, . . . , r}, xi is contained in at least one Ks in Gi,

(iii) subject to (i, ii), r is maximum, and

(iv) subject to (i-iii), the length of a shortest odd cycle of G \ {x1, . . . , xr} is minimum.

Then r ≥ s+ 1 because ω(G) = s+ 1 and K1,K2, . . . ,Ks+1 are uniquely (s+ 1)-colorable. By (i),

Hr is uniquely (s+1)-colorable, and every proper (s+1)-coloring of Hi can be extended to a proper

(s+1)-coloring of Hr for all i ∈ [r−1]. It is easy to see that Hr 6= G because χ(G) = s+t−1 > s+1.

By (ii), xr belongs to an s-clique of Hr. Let j ∈ [r] be the largest such that xj ∈ K, where K is an

s-clique of Hr with xr ∈ K. When s = 3, let ` ∈ [j − 1] be the largest such that K = {x`, xj , xr}.
Since Hr is uniquely (s+ 1)-colorable, we see that xr is adjacent to at least s vertices in Hr−1. It

follows that j ≥ 2. Let X := {x1, . . . , xr} and

U := {v ∈ V (G) | v is complete to K in G}.

Since G is an (s, t)-graph, we have χ(G \ K) = t − 1. Let c be any proper (t − 1)-coloring of

G \ K. Then all the vertices in U ∩ X are colored by at most one color under c, otherwise the

restriction c|Hj−1 cannot be extended to a proper 3-coloring of Hr when s = 2; the restriction c|H`−1

cannot be extended to a proper 4-coloring of Hr when s = 3. By Theorem 2.2(i), |U \X| ≥ t− 2.

Let u1, . . . , ut−2 ∈ U \ X. For each i ∈ [t − 2], by the maximality of r (see (iii)), it follows that

G[X ∪ {ui}] is not uniquely (s+ 1)-colorable, and so χ(G[X ∪ {ui}]) = s+ 2.

Suppose (s, t) = (2, 4). Then both V (G)\(X∪{u1}) and V (G)\(X∪{u2}) are independent set in

G because G is a (2, 4)-graph. Thus u1u2 ∈ E(G) because χ(G) = 5. But then G[{xr, xj , u1, u2}] =

K4, contrary to the fact ω(G) = s + 1 = 3. Thus (s, t) = (3, 5). Then K = {x`, xj , xr} and

χ(G) = 7. Note that χ(G \X) ≥ 3. Let C be a shortest odd cycle of G \X. For each i ∈ [3], since

χ(G[X∪{ui}]) = s+2 = 5 and G is a (3, 5)-graph, we see that χ(G\(X∪{u1})) ≤ 2; thus ui ∈ V (C).

If |C| = 3, then G[X ∪ V (C)] = K6, contrary to the fact ω(G) = s + 1 = 4. Thus |C| ≥ 5. Note

that xr is adjacent to three vertices u1, u2, u3 on C. Similar to the proof of Lemma 3.3, there exists

i ∈ [3] such that G \X∗ has an odd cycle that is shorter than C, where X∗ := {x1, . . . , xr−1, ui}.
Then χ(G\X∗) = 3 because G\X∗ has an odd cycle and χ(G\(X∪{ui})) ≤ 2. Thus χ(G[X∗]) = 4

as G is a (3, 7)-graph. This, together with the fact that Hr−1 and Hr are uniquely 4-colorable and

χ(G[X ∪ {ui}]) = 5, implies that G[X∗] is uniquely 4-colorable and ui is contained in a triangle in

G[X∗]. It follows that x1, . . . , xr−1, ui is a sequences satisfying (i-iii) such that G\{x1, . . . , xr−1, ui}
has an odd cycle that is shorter than C, contrary to the choice of x1, . . . , xr (see (iv)).

This completes the proof of Conjecture 1.1 for the values of (s, t), where s ∈ {2, 3} and t ∈
{s, s+ 1, s+ 2}.

4 Double-Critical Graph Conjecture

In this section, we introduce an attractive special case of the the Erdős-Lovász Tihany Conjecture.

If we restrict s = 2 in Conjecture 1.1, then the Erdős-Lovász Tihany Conjecture states that every
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graph G with χ(G) > ω(G) contains an edge xy ∈ E(G) such that χ(G \ {x, y}) ≥ χ(G) − 1. To

prove this special case of Conjecture 1.1, suppose for a contradiction that no such an edge exists. We

choose a counterexample G with |G| minimum. Then G is connected and χ(G \ {x, y}) = χ(G)− 2

for every edge xy ∈ E(G). This motivates the definition of double-critical graphs. A connected

graph G is double-critical if for every edge xy ∈ E(G), χ(G \ {x, y}) = χ(G) − 2. The (2, t)

case of Conjecture 1.1 is then equivalent to the following conjecture, which is referred to as the

Double-Critical Graph Conjecture of Erdős and Lovász from 1968.

Conjecture 4.1 (Double-Critical Graph Conjecture [Erd68]). Let G be a double-critical, k-chromatic

graph. Then G = Kk.

Since Conjecture 4.1 is a special case of Conjecture 1.1, it has been settled in the affirmative

for k ≤ 5 [Moz87, Sti87], for line graphs [KS08]; quasi-line graphs [BKPS09]; graphs G with

α(G) = 2 [BKPS09]; graphs G with α(G) ≥ 3 and no hole of length between 4 and 2α(G)−1 [Son19].

It is hard to prove Conjecture 4.1: by Theorem 2.2(i), every edge of a non-complete, double-critical,

k-chromatic graph belongs to at least k − 2 triangles; however, it remains unknown whether such

a graph contains K4 as a subgraph. We next list basic properties of non-complete double-critical

k-chromatic graphs established in [KPT10].

Proposition 4.2 (Kawarabayashi, Pedersen and Toft [KPT10]). If G is a non-complete double-

critical k-chromatic graph, then the following hold.

(a) G does not contain Kk−1 as a subgraph.

(b) δ(G) ≥ k + 1.

(c) For any x ∈ V (G), α(G[N(x)]) ≤ d(x)− |N(x) ∩N(y)| − 1 ≤ d(x)− k + 1, where y ∈ N(x) is

any vertex contained in an maximum independent set of G[N(x)].

(d) If H is a connected subgraph of G, then the graph G/H obtained by contracting H to a single

vertex is (k − 1)-colorable.

(e) Every edge xy ∈ E(G) belongs to at least k − 2 triangles.

(f) Every vertex x ∈ V (G) has a neighbor y such that y is not complete to N(x).

(g) There exists at least one edge xy ∈ E(G) which is not a dominating edge of G.

(h) If x ∈ V (G) has neighbors y, z say, such that yz /∈ E(G), then x has another neighbor, say w,

such that wz ∈ E(G) and wy /∈ E(G).

(i) Any vertex x with a non-neighbor in G satisfies χ(G[N(x)]) ≤ k − 3.

(j) If x ∈ V (G) is a vertex of degree k + 1, then G[N(x)] consists only of isolated vertices and

disjoint cycles of length at least five. Moreover, G[N(x)] contains at least one such cycle.

(k) If x, y ∈ V (G) are both of degree k + 1, then xy /∈ E(G).

(l) G is 6-connected and no minimal separating set of G can be partitioned into two sets A and B

such that G[A] and G[B] are edge-empty and complete, respectively.

Further properties were obtained by Rolek and the present author in [RS17, RS18]. Recall

that two proper vertex-colorings c1 and c2 of a graph G are equivalent if, for all x, y ∈ V (G),

c1(x) = c1(y) iff c2(x) = c2(y). We say that two proper vertex-colorings c1 and c2 of a graph G are
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equivalent on a set A ⊆ V (G) if the restrictions c1|A and c2|A to A are equivalent on the subgraph

G[A]. Let S be a separating set of G, and let G1, G2 be connected subgraphs of G such that

G1 ∪G2 = G and G1 ∩G2 = G[S]. If c1 is a proper k-coloring of G1 and c2 is a proper k-coloring

of G2 such that c1 and c2 are equivalent on S, then it is clear that c1 and c2 can be combined to a

proper k-coloring of G by a suitable permutation of the color classes of, say c1. The main technique

in the proof of Proposition 4.2(`) involves reassigning and permuting the colors on a separating set

S of a non-complete double-critical k-chromatic graph G so that c1 and c2 are equivalent on S to

obtain a contradiction, where c1 is a proper (k−1)-coloring of G1 and c2 is a proper (k−1)-coloring

of G2. It seems hard to use this idea to prove that every non-complete double-critical k-chromatic

graph is 7-connected, but one can use it to say a bit more about minimal separating sets of size 6

in non-complete double-critical graphs.

Lemma 4.3 (Rolek and Song [RS18]). Suppose G is a non-complete double-critical k-chromatic

graph. If S is a minimal separating set of G with |S| = 6, then either G[S] ⊆ K3, 3 or G[S] ⊆ K2, 2, 2.

Lemma 4.4 (Rolek and Song [RS17]). If G is a non-complete, double-critical, k-chromatic graph,

then for any x ∈ V (G) with at least one non-neighbor in G, χ(G\N [x]) ≥ 3. In particular, G\N [x]

must contain an odd cycle, and so d(x) ≤ |V (G)| − 4.

Lemma 4.5 (Rolek and Song [RS17]). Let G be a double-critical, k-chromatic graph. For any edge

xy ∈ E(G), let c be any (k − 2)-coloring of G \ {x, y} with color classes V1, V2, . . . , Vk−2. Then the

following two statements are true.

(a) For any i, j ∈ {1, 2, . . . , k − 2} with i 6= j, if N(x) ∩N(y) ∩ Vi is anti-complete to N(x) ∩ Vj,
then there exists at least one edge between (N(y)\N(x))∩Vi and N(x)∩Vj in G. In particular,

(N(y) \N(x)) ∩ Vi 6= ∅.

(b) Assume that d(x) = k + 1 and y belongs to a cycle of length ` ≥ 5 in G[N(x)].

(b1) If ` ≥ 7, then d(y) ≥ k + e(G[N(x)])− 4;

(b2) If ` = 6, then d(y) ≥ max{k + 2, k + e(G[N(x)])− 5}; and

(b3) If ` = 5, then d(y) ≥ max{k + 2, k + e(G[N(x)])− 6}.

Theorem 4.6 (Rolek and Song [RS17]). If G is a non-complete, double-critical, k-chromatic graph

with k ≥ 6, then for any vertex x ∈ V (G) with d(x) = k + 1, the following hold:

(a) e(G[N(x)]) ≥ 8; and

(b) for any vertex y ∈ N(x), d(y) ≥ k+4. Furthermore, if d(y) = k+4, then |N(x)∩N(y)| = k−2

and G[N(x)] contains either only one cycle, which is isomorphic to C8, or exactly two cycles,

each of which is isomorphic to C5.

Corollary 4.7 below follows immediately from Theorem 4.6.
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Corollary 4.7 (Rolek and Song [RS17]). If G is a non-complete, double-critical, k-chromatic graph

with k ≥ 6, then no vertex of degree k+ 1 is adjacent to a vertex of degree k+ 1, k+ 2, or k+ 3 in

G.

We end this section with the progress towards Conjecture 4.1 on claw-free graphs. Huang

and Yu [HY16] proved that the only double-critical, 6-chromatic, claw-free graph is K6. Apply-

ing properties of non-complete double-critical graphs stated in Proposition 4.2, Theorem 4.6 and

Corollary 4.7, Rolek and the present author [RS17] then proved the next two cases.

Theorem 4.8 (Rolek and Song [RS17]). Let G be a double-critical, k-chromatic graph with k ∈
{6, 7, 8}. If G is claw-free, then G = Kk.

It would be interesting to know if Conjecture 4.1 holds for all claw-free graphs. Rolek and

Yu [RY] announced a solution to Conjecture 4.1 for all claw-free graphs G with α(G) ≥ 4 at the

31st Cumberland Conference on Combinatorics, Graph Theory and Computing, May 18-19, 2019.

It would also be interesting to know if Conjecture 4.1 holds for all even-hole-free graphs.

5 Minor version of the Erdős-Lovász Tihany Conjecture

Before we state a weakening conjecture of Conjecture 1.1, we begin this section with a brief intro-

duction on the celebrated Hadwiger’s Conjecture [Had43].

5.1 Hadwiger’s Conjecture

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting

edges. We write G < H if H is a minor of G. In those circumstances we also say that G has an H

minor. The celebrated result of Wagner [Wag37] states that if G is an edge-maximal graph without

a K5 minor and |G| ≥ 4, then G can be constructed recursively, by pasting along triangles and

K2’s from plane triangulations and copies of the graph W , where W is the Wagner graph depicted

below. Motivated by what was then the Four Color Conjecture and inspired by Wagner’s reuslt,

Swiss mathematician Hugo Hadwiger posed his famous conjecture at a colloquium at Eidgenössiche

Technische Hochschule on December 15, 1942 [Tof96].

Figure 1: The Wagner graph W .

Conjecture 5.1 (Hadwiger’s conjecture [Had43]). For every integer k ≥ 1, every graph with no

Kk minor is (k − 1)-colorable.
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Hadwiger’s original presentation [Had43] of Conjecture 5.1 contains proofs for the cases k ≤ 4.

Dirac [Dir52] also independently supplied a proof for these cases in 1952. However, for k ≥ 5,

Hadwiger’s conjecture implies the Four Color Theorem [AH77, AHK77]. (To see that, let H be

a planar graph, and let G be obtained from H by adding k − 4 vertices, each joined to every

other vertex of the graph. Then G has no Kk+1 minor, and hence is k-colorable by Hadwiger’s

conjecture, and hence H is 4-colorable.) The aforementioned celebrated result of Wagner [Wag37]

shows that the case k = 5 of Hadwiger’s conjecture is, in fact, equivalent to the Four Color

Theorem, and the same was shown for k = 6 by Robertson, Seymour and Thomas [RST93].

Further historical explanation of the development of Conjecture 5.1 can be found in [Tof96]. Despite

receiving considerable attention over the years, Hadwiger’s conjecture remains wide open for all k ≥
7 and is widely considered among the most important problems in graph theory and has motivated

numerous developments in graph coloring and graph minor theory. The best known upper bound

on the chromatic number of graphs with no Kk minor is O(k(log log k)6) due to Postle [Pos20],

improving a recent breakthrough of Norin, Postle, and the present author [NPS20] who improved a

long-standing bound obtained independently by Kostochka [Kos82, Kos84] and Thomason [Tho84].

We refer the reader to a recent survey by Seymour [Sey16] for further background on Conjecture 5.1.

5.2 The extremal function for Kp minors

The extremal function for Kp minors when p is small is instrumental in proving Hadwiger’s Con-

jecture for graphs G with χ(G) ≤ 6, and also settling the weakening conjectures of Conjecture 1.1.

We list the known results here.

Theorem 5.2 (Mader [Mad68]). For every integer p ≤ 7, every graph on n ≥ p vertices and at

least (p− 2)n−
(
p−1
2

)
+ 1 edges has a Kp minor.

Jørgensen [Jør94] and later the present author and Thomas [ST06] generalized Theorem 5.2 to

p = 8 and p = 9, respectively, as follows.

Theorem 5.3 (Jørgensen [Jør94]). Every graph on n ≥ 8 vertices with at least 6n−20 edges either

contains a K8-minor or is isomorphic to a (K2,2,2,2,2, 5)-cockade.

Theorem 5.4 (Song and Thomas [ST06]). Every graph on n ≥ 9 vertices with at least 7n − 27

edges either contains a K9-minor, or is isomorphic to K2,2,2,3,3, or is isomorphic to a (K1,2,2,2,2,2, 6)-

cockade.

Theorem 5.2 is such a nice result that it raises the question of whether it can be generalized to

all values of p. Seymour and Thomas [ST06] conjecture the following which is open for all p ≥ 10.

Conjecture 5.5 (Seymour and Thomas [ST06]). For every p ≥ 1 there exists a constant N = N(p)

such that every (p− 2)-connected graph on n ≥ N vertices and at least (p− 2)n−
(
p−1
2

)
+ 1 edges

has a Kp minor.
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5.3 Minor version of the Erdős-Lovász Tihany Conjecture

Kawarabayashi, Pedersen and Toft [KPT11] observed that if Hadwiger’s Conjecture holds, then

the following conjecture might be easier to settle than the Erdős-Lovász Tihany conjecture.

Conjecture 5.6 (Kawarabayashi, Pedersen, Toft [KPT11]). Every graph G satisfying ω(G) <

χ(G) = s + t − 1 has two vertex-disjoint subgraphs G1 and G2 such that G1 < Ks and G2 < Kt,

where t ≥ s ≥ 2 are integers.

Since Hadwiger’s Conjecture holds for graphs G with χ(G) ≤ 6, we see that Conjecture 5.6 holds

for all the values of (s, t) ∈ {(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5)}. In the same paper [KPT11],

Kawarabayashi, Pedersen and Toft settled Conjecture 5.6 for a few additional values of (s, t) ∈
{(2, 6), (3, 6), (4, 4), (4, 5)}. Let Km ∪Kn denotes the disjoint union of Km and Kn.

Theorem 5.7 (Kawarabayashi, Pedersen and Toft [KPT11]). Every 7-chromatic graph G with

ω(G) ≤ 6 has a K2 ∪K6 minor and a K4 ∪K4 minor.

Theorem 5.8 (Kawarabayashi, Pedersen and Toft [KPT11]). Every 8-chromatic graph G with

ω(G) ≤ 7 has a K3 ∪K6 minor and a K4 ∪K5 minor.

Very recently, the present author [Son21] settled the (4, 6) case for Conjecture 5.6, that is, we

prove that every graph G with χ(G) = 9 > ω(G) has a K4 ∪K6 minor. We recall the proof here

which utilizes the celebrated result of Stiebitz [Sti96].

Theorem 5.9 (Stiebitz [Sti96]). Every graph G satisfying δ(G) ≥ s+ t+ 1 has two vertex-disjoint

subgraphs G1 and G2 such that δ(G1) ≥ s and δ(G2) ≥ t.

Theorem 5.10 (Song [Son21]). Every 9-chromatic graph G with ω(G) ≤ 8 has a K4 ∪K6 minor.

Proof. Suppose for a contradiction that G is a counterexample to the statement with minimum

number of vertices. Then G is vertex-critical, and so δ(G) ≥ 8 and G is connected. Suppose

G contains two vertex-disjoint subgraphs G1 and G2 such that χ(G1) ≥ 4 and χ(G2) ≥ 6. Since

Hadwiger’s conjecture holds for k-chromatic graphs with k ≤ 6, we see that G1 < K4 and G2 < K6,

a contradiction. Thus G is a (4, 6)-graph, and so ω(G) ≤ 5 by Theorem 2.2. Note that G is not

necessarily contraction-critical, as a proper minor of G may have clique number 9. We claim that

Claim 1. 2 ≤ α(G[N(x)]) ≤ d(x)− 7 for each x ∈ V (G).

Proof. Let x ∈ V (G). Since ω(G) ≤ 5 and δ(G) ≥ 8, we see that α(G[N(x)]) ≥ 2. Suppose

α(G[N(x)]) ≥ d(x) − 6. Let A be a maximum independent set of G[N(x)]. Let G∗ be obtained

from G by contracting G[A ∪ {x}] into a single vertex, say w. Note that ω(G∗) < 8 and G∗ has no

K4 ∪K6 minor. By the minimality of G, χ(G∗) ≤ 8. Let c : V (G∗)→ [8] be a proper 8-coloring of

G∗. Since |N(x) \ A| = d(x)− |A| ≤ 6, we may assume that c(N(x) \ A) ⊆ [6] and c(w) = 7. But

then we obtain a proper 8-coloring of G from c by coloring all the vertices in A with color 7 and

the vertex x with color 8, a contradiction. Thus 2 ≤ α(G[N(x)]) ≤ d(x)− 7, as claimed.
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By Claim 1, δ(G) ≥ 9. Suppose δ(G) ≥ 13. By Theorem 5.9, G contains two vertex-disjoint

subgraphs G1 and G2 such that δ(G1) ≥ 4 and δ(G2) ≥ 8. By Theorem 5.2, we see that G1 < K4

and G2 < K6, a contradiction. Thus 9 ≤ δ(G) ≤ 12. We next claim that

Claim 2. G[N(x)] is even-hole-free and χ(G[N(x)]) ≤ 2ω(G[N(x)])− 1 for each x ∈ V (G).

Proof. Let x ∈ V (G). Suppose G[N(x)] contains an even hole C. Then χ(G[V (C) ∪ {x}]) = 3

and so χ(G \ (V (C) ∪ {x})) ≥ χ(G) − 3 = 6. It is easy to see that G[V (C) ∪ {x}] < K4. Since

Hadwiger’s conjecture holds for 6-chromatic graphs, we see that G \ (V (C)∪ {x}) has a K6 minor,

and so G has a K4 ∪K6 minor, a contradiction. Thus G[N(x)] is even-hole-free. By Theorem 1.7,

χ(G[N(x)]) ≤ 2ω(G[N(x)])− 1.

Let v ∈ V (G) with d(v) = δ(G), and let p := χ(G[N(v)]). Since 9 ≤ d(v) ≤ 12, we see that

p ≥ 3 by Claim 1. Suppose G[N(v)] is K3-free. By Claim 2, p ≤ 2ω(G[N(v)]) − 1 = 3. Thus

χ(G[N [v]]) = 4 and χ(G \ N [v]) = χ(G \ N(v)) ≥ 9 − 3 = 6, contrary to the fact that G is

a (4, 6)-graph. Thus ω(G[N(v)]) ≥ 3. Let v1, v2, v3 ∈ N(v) be pairwise adjacent in G and let

H := G \ {v, v1, v2, v3}. Then G[{v, v1, v2, v3}] = K4 and

2e(H) ≥ (d(v)− 3)(|G \N [v]|) + (d(v)− 4) · |N(v) \ {v1, v2, v3}|

= (d(v)− 3)(|G| − d(v)− 1) + (d(v)− 4)(d(v)− 3)

= (d(v)− 3)(|H| − 1).

Suppose d(v) ∈ {11, 12}. Then 2e(H) ≥ 8(|H| − 1). By Theorem 5.2, H < K6, and so G has a

K4 ∪K6 minor, a contradiction. This proves that 9 ≤ d(v) ≤ 10. Then p ≥ 4 by Claim 1. Since

ω(G[N(v)]) ≤ 4, we see that G[N(v)] has an anti-matching of size at least three. It follows that

4 ≤ p ≤ d(v)− 3. Let V1, . . . , Vp be the color classes of a proper p-coloring of G[N(v)] with |V1| ≥
· · · ≥ |Vp| ≥ 1. If p ∈ {4, 5}, then |V4| ≤ 2 because d(v) ≤ 10. Thus |V4∪· · ·∪Vp| ≤ 4 = χ(G)−4−1.

By Lemma 1.8 applied to G and v with r = 4, we see that G is (4, 6)-splittable, contrary to the

fact that G is a (4, 6)-graph. It remains to consider the case 6 ≤ p ≤ d(v)− 3. Since d(v) ≤ 10, we

see that |V5| = 1. Thus |V6 ∪ · · · ∪ Vp| = p− 5 ≤ (d(v)− 3)− 5 ≤ 2 = χ(G)− 6− 1. By Lemma 1.8

applied to G and v with r = 6, we see that G is (4, 6)-splittable, a contradiction.

This completes the proof of Theorem 5.10.

6 Minor version of the Double-Critical Graph Conjecture

Given the difficulty in settling the Double-Critical Graph Conjecture and motivated by Hadwiger’s

Conjecture, Kawarabayashi, Pedersen and Toft [KPT10] proposed the following weaker conjecture.

Conjecture 6.1 (Kawarabayashi, Pedersen and Toft [KPT10]). For every integer k ≥ 1, every

double-critical k-chromatic graph contains a Kk minor.

Conjecture 6.1 is true for k ≤ 6 because Conjecture 4.1 holds for graphs G with χ(G) ≤ 6. In

the same paper [KPT10], Kawarabayashi, Pedersen and Toft verified Conjecture 6.1 for k ∈ {6, 7}.
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Theorem 6.2 (Kawarabayashi, Pedersen and Toft [KPT10]). For every integer k ≤ 7, every

double-critical k-chromatic graph contains a Kk minor.

Pedersen [Ped11] proved a weakening of Conjecture 6.1 for the case k = 8 that every double-

critical 8-chromatic graph has a K−8 minor, where K−8 is obtained from K8 by deleting an edge.

Albar and Gonçalves [AG18] later settled Conjecture 6.1 for the case k = 8.

Theorem 6.3 (Albar and Gonçalves [AG18]). Every double-critical 8-chromatic graph has a K8

minor.

The proof of Theorem 6.3 is computer-assisted. Rolek and the present author [RS18] gave a

computer-free proof of the same result and further showed that any double-critical, k-chromatic

graph contains a K9 minor for all k ≥ 9.

Theorem 6.4 (Rolek and Song [RS18]). For integers k, t with 1 ≤ k ≤ 9 and t ≥ k, every

double-critical t-chromatic graph contains a Kk minor.

Rolek and the present author [RS18] actually proved a much stronger result, the following.

Theorem 6.5 (Rolek and Song [RS18]). For k ∈ {6, 7, 8, 9}, let G be a (k − 3)-connected graph

with k + 1 ≤ δ(G) ≤ 2k − 5. If every edge of G is contained in at least k − 2 triangles and for any

minimal separating set S of G and any x ∈ S, G[S \ {x}] is not a clique, then G ≥ Kk.

The proofs of Theorem 6.2, Theorem 6.4 and Theorem 6.4 rely closely on the properties of

non-complete double-critical graphs stated in Section 4. In particular, Theorem 6.4 follows directly

from Proposition 4.2(e,`) and Theorem 6.5. The proof of Theorem 6.5 closely follows the proof

of the extremal function for K9 minors by the present author and Thomas [ST06]. Note that the

proof of Theorem 6.2 for k = 7 is about ten pages long and the proof of Theorem 6.3 is computer-

assisted. The proof of Theorem 6.4 is much shorter and computer-free for k ≤ 8. For k = 9, the

proof is computer-assisted as it applies a computer-assisted lemma from [ST06, Lemma 3.7]. Note

that a computer-assisted proof of Theorem 6.5 for all k ≤ 8 (and hence computer-assisted proofs

of Theorem 6.2 and Theorem 6.3) follows directly from Theorem 6.5 for k = 9. (To see that, let G

and k ≤ 8 be as in Theorem 6.2 or Theorem 6.3, and let H be obtained from G by adding 9 − k
vertices, each adjacent to every other vertex of the graph. Then H is 6-connected and satisfies all

the other conditions as stated in Theorem 6.5. Thus H < K9 and so G < Kk.) Conjecture 6.1

remains open for all k ≥ 10. It seems hard to generalize Theorem 6.4. It is worth noting that

Conjecture 6.1 remains open for claw-free graphs and even-hole-free graphs.
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Tihany Conjecture for claw-free graphs. arXiv:1309.1020.

[CO07] Maria Chudnovsky and Alexandra Ovetsky. Coloring quasi-line graphs. Journal of

Graph Theory, 54:41–50, 2007.

[CRST06] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong

perfect graph theorem. Ann. of Math. (2), 164(1):51–229, 2006.

[CS05] Maria Chudnovsky and Paul Seymour. The structure of claw-free graphs. In Surveys in

Combinatorics, volume 327 of London Mathematical Society Lecture Note Series, pages

153–171. Cambridge University Press, 2005.

[CS12] Maria Chudnovsky and Paul Seymour. Claw-free graphs. VII. Quasi-line graphs. J.

Combin. Theory Ser. B, 102(6):1267–1294, 2012.

[CS20] Maria Chudnovsky and Paul Seymour. Even-hole-free graphs still have bisimplicial

vertices. arXiv:1909.10967v2.

[Dir52] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J.

London Math. Soc., 27:85–92, 1952.
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