Abstract: We consider a problem related to Hadwiger’s Conjecture. Let $D = (d_1, d_2, \ldots, d_n)$ be a graphic sequence with $0 \leq d_1 \leq d_2 \leq \cdots \leq d_n \leq n-1$. Any simple graph G with D its degree sequence is called a realization of D. Let $R[D]$ denote the set of all realizations of D. Define $h(D) = \max\{h(G) : G \in R[D]\}$ and $\chi(D) = \max\{\chi(G) : G \in R[D]\}$, where $h(G)$ and $\chi(G)$ are Hadwiger number and chromatic number of a graph G, respectively. Hadwiger’s Conjecture implies that $h(D) \geq \chi(D)$. In this paper, we establish the above inequality for near regular degree sequences. © 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

All graphs in this paper are finite and have no loops or multiple edges. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. An H minor is a minor isomorphic to H. If H is a complete graph, we also say that G contains a clique minor of size $|H|$. For a graph G, the Hadwiger number $h(G)$ of G is the maximum integer k such that G contains a clique minor of size k. As usual we denote by $\chi(G)$ the chromatic number of G and by $\chi'(G)$ the edge chromatic number of G.

Our research is motivated by Hadwiger’s Conjecture from 1943 which suggests a far-reaching generalization of the Four Color Theorem [1, 2, 7] and is considered by many as one of the deepest open problems in graph theory. Hadwiger’s Conjecture states the following.

Conjecture 1.1. For every integer $k \geq 1$, every k-chromatic graph has a K_k minor.

Conjecture 1.1 is trivially true for $k \leq 3$, and reasonably easy for $k=4$, as shown by Dirac [5] and Hadwiger himself [6]. However, for $k \geq 5$, Conjecture 1.1 implies the Four Color Theorem. In 1937, Wagner [10] proved that the case $k=5$ of Conjecture 1.1 is, in fact, equivalent to the Four Color Theorem. In 1993, Robertson, Seymour, and Thomas [8] proved that a minimal counterexample to the case $k=6$ is a graph G which has a vertex v such that $G-v$ is planar. By the Four Color Theorem, this implies Conjecture 1.1 for $k=6$. Hence the cases $k=5,6$ are each equivalent to the Four Color Theorem [1, 2, 7]. Conjecture 1.1 is open for $k \geq 7$. Note that Conjecture 1.1 also states that for every graph G, $h(G) \geq \chi(G)$.

In this paper, we consider a weaker version of Hadwiger’s Conjecture. The goal is to establish more evidence for Conjecture 1.1. Let $D=(d_1,d_2,\ldots,d_n)$ be an integer sequence with $0 \leq d_1 \leq d_2 \leq \cdots \leq d_n \leq n-1$. We say that D is graphic if there is a graph G with $V(G)={u_1,u_2,\ldots,u_n}$ such that $d_G(u_i)=d_i$. In those circumstances, we say that G is a realization of D. If a sequence D consists of the terms d_1,\ldots,d_t with multiplicities m_1,\ldots,m_t, we may write $D=(d_1^{m_1},\ldots,d_t^{m_t})$. For a graphic degree sequence D, let $R[D]$ denote the set of all realizations of D. Define $h(D)=\max\{h(G):G \in R[D]\}$ and $\chi(D)=\max\{\chi(G):G \in R[D]\}$. Hadwiger’s Conjecture implies the following conjecture.

Hadwiger’s Conjecture for Degree Sequences: For any graphic degree sequence D, $h(D) \geq \chi(D)$.

For a graphic sequence $D=(d_1,d_2,\ldots,d_n)$, we say that D is near regular if $D=((k-1)p,k^n-p)$ for some integers $k \geq 1$ and p satisfying $0 \leq p \leq n-1$. The purpose of this paper is to prove that Hadwiger’s Conjecture for Degree Sequences is true for near

Journal of Graph Theory DOI 10.1002/jgt
regular degree sequences. Our proof technique is to construct a graph \(G \) in \(R[D] \) with a clique minor of desired size.

We need to introduce more notation. Let \(G \) be a graph. The \textit{complement} of \(G \) is denoted by \(\overline{G} \). If \(X \subseteq V(G) \), we denote the subgraph of \(G \) induced on \(X \) by \(G[X] \). We use \(G \setminus X \) denote the subgraph of \(G \) induced on \(V(G) \setminus X \). If \(A, B \subseteq V(G) \) are disjoint, we say that \(A \) is \textit{complete} to \(B \) if every vertex in \(A \) is adjacent to every vertex in \(B \), and \(A \) is \textit{anticomplete} to \(B \) if no vertex in \(A \) is adjacent to a vertex in \(B \). If \(A = \{x\} \), we simply say \(x \) is complete to \(B \) or \(x \) is anticomplete to \(B \). We use \(G[A,B] \) to denote the bipartite graph obtained from \(G[A \cup B] \) by deleting all edges with both ends in \(A \) or in \(B \). If \(F \subseteq E(G) \) and \(M \subseteq E(\overline{G}) \), then \(G - F \) (resp. \(G + M \)) denotes the graph obtained from \(G \) by deleting the edges in \(F \) from \(G \) (resp. adding the edges in \(M \) to \(G \)). For two disjoint graphs \(G \) and \(H \), \(G + H \) is the join of \(G \) and \(H \) with vertex set \(V(G) \cup V(H) \) and edge set \(E(G) \cup E(H) \cup \{xy : x \in V(G), y \in V(H)\} \). As usual we denote by \(K_n \) and \(K_{n,m} \), respectively, the complete graph on \(n \) vertices and the complete bipartite graph such that one partite set has \(n \) vertices and the other partite set has \(m \) vertices.

The following well-known results [3, 9] will be used later in the proof of the main results. We list them below. A proof of Hall’s Theorem and other notation not introduced here can be found in [4].

Theorem 1.2. Let \(G \) be a connected graph with maximum degree \(\Delta \). Suppose \(G \) is neither a complete graph nor an odd cycle. Then \(\chi(G) \leq \Delta \).

Theorem 1.3. If \(G \) is a \(r \)-regular bipartite graph with \(r \geq 1 \), then \(G \) has \(r \) pairwise disjoint perfect matchings.

Theorem 1.4. If \(G \) is simple graph with maximum degree \(r \), then \(\chi'(G) = r + 1 \) or \(r \).

2. NEAR REGULAR DEGREE SEQUENCES

In this section, we prove that Hadwiger’s Conjecture for Degree Sequences is true for near regular degree sequences. We first prove some preliminary results.

Lemma 2.1. For integers \(r \geq 2 \) and \(n \geq r + 1 \), if \(nr \) is even, then there exists an \(r \)-regular graph \(G \) of order \(n \) such that \(G \) has at least two pairwise disjoint perfect matchings if \(n \) is even and one near perfect matching if \(n \) is odd.

Proof. If \(r = n - 1 \), then \(G = K_n \) has the desired property. So we may assume that \(r \leq n - 2 \). Assume that \(n \) is even. If \(r \leq \frac{n}{2} \), let \(G \) be an \(r \)-regular bipartite graph with each partite of size \(\frac{n}{2} \). If \(r \geq \frac{n}{2} + 1 \), let \(G \) be a graph with \(V(G) \) partitioned into \(A \) and \(B \) such that \(G[A] = \overline{G[B]} = K_{n/2} \) and \(G[A,B] \) is \(s \)-regular, where \(s = r - (\frac{n}{2} - 1) \geq 2 \). In either case, by Theorem 1.3, \(G \) has at least two pairwise disjoint perfect matchings. If \(n \) is odd, then \(r \) and \(n - 1 \) must be even. Let \(H \) be the \(r \)-regular graph of order \(n - 1 \), as constructed above, with two disjoint perfect matchings, say \(M_1, M_2 \). Let \(F \subseteq M_1 \) with \(|F| = \frac{n}{2} \). We may assume that \(F = \{x_1, x_2, x_3, x_4, \ldots, x_{r-1} x_r\} \). Let \(G \) be obtained from \(H - F \).
by joining a new vertex \(w \) to \(x_i, \ i = 1, 2, \ldots, r \). Clearly \(G \) is \(r \)-regular and \(M_2 \) is a near perfect matching of \(G \).

This completes the proof of Lemma 2.1.

Lemma 2.2. Let \(D = ((k-1)p, k^{n-p}) \) be the degree sequence of a near \(k \)-regular graph on \(n \) vertices, where \(0 \leq p \leq n-1 \). If \(3n \geq 4k+4 \), then \(h(D) \geq k+1 \) if \(p = 0 \) and \(h(D) \geq k \) if \(p > 0 \).

Proof. The statement is trivially true if \(k \leq 2 \). So we may assume that \(k \geq 3 \). We consider the following two cases.

Case 1. \(n \) is even.

Since \(\sigma(D) = nk - p \) is even, \(p \) must be an even integer. Suppose that \(n \geq 2k+2 \). If \(n-p \geq k+1 \), by Lemma 2.1, let \(H \) be a \(k \)-regular graph of order \(n-k-1 \) and let \(F \) be a matching of size \(\frac{p}{2} \) in \(H \). Then \(K_{k+1} \cup G \in \mathcal{R}(D) \), where \(G = H - F \). Thus \(h(D) \geq h(K_{k+1} \cup G) \geq k+1 \). If \(n-p \leq k \), by Lemma 2.1, let \(H \) be a \((k-1)\)-regular graph of order \(n-k \) and let \(F \) be a matching of size \(\frac{n-p}{2} \) in \(\overline{H} \). Then \(K_k \cup G \in \mathcal{R}(D) \), where \(G = H + F \). Hence \(h(D) \geq h(K_k \cup G) \geq k \). So we may assume that \(n \leq 2k \). For integers \(r, s, t \) satisfying \(n = 2s + 2t \) and \(r = s + 2t - 1 \), define \(G(r,s,t) \) to be an \(r \)-regular graph of order \(n \) with its vertex set partitioned into \(A, B, C, D \) such that \(G(r,s,t)[A] = G(r,s,t)[B] = K_r \), \(G(r,s,t)[C] = G(r,s,t)[D] = K_t \), \(G(r,s,t)[A,B] \) is a \(t \)-regular bipartite graph. Moreover, \(C \) is complete to \(A \cup D \), \(D \) is complete to \(B \), \(A \) is anticomplete to \(D \), \(C \) is anticomplete to \(B \).

If \(p \leq 2(n-k-1) \), let \(s = n - k - 1 \) and \(t = k + 1 - \frac{n}{2} \). Then \(\frac{k}{4} \leq s \leq k - 1 \), \(1 \leq t \leq \frac{k}{4} \), and \(s - \frac{p}{2} \geq 0 \). Observe that \(2s + 2t = n \), \(s + 2t = k + 1 \) and \(t \leq s \) because \(3n \geq 4k + 4 \). Let \(G = G(k,s,t) \). Then \(G \) is a \(k \)-regular graph of order \(n \). If \(t = 1 \), then \(n = 2k \) and so \(s + t = k \). Let \(M \) be a perfect matching of \(G[A,B] \) and \(F \subseteq M \) with \(|F| = \frac{p}{2} \). Let \(H = G - F \). Then \(H \in \mathcal{R}(D) \). By contracting each of the edges of \(M - F \) into single vertices, we have \(h(D) \geq h(H) \geq |A| + |C| + |D| = s + 2t = k + 1 \) if \(p = 0 \), and \(h(D) \geq h(H) \geq |A| + |C| = s + t = k \) if \(p > 0 \). So we may assume that \(t \geq 2 \). By Theorem 1.3, \(G[A,B] \) contains two disjoint perfect matchings \(M_1 \) and \(M_2 \). Let \(F \subseteq M_1 \) with \(|F| = \frac{p}{2} \) and let \(H = G - F \). Then \(H \in \mathcal{R}(D) \). By contracting each of the edges of \(M_2 \) into single vertices, we see that \(h(D) \geq h(H) \geq s + 2t = k + 1 \).

So we may assume that \(p \geq 2(n-k) \). Then \(n - p \leq n - 2(n-k) = 2k - n \leq 2(n-k) \) because \(3n \geq 4k + 4 \). Note that \(n - p \) is even. Let \(s = n - k \) and \(t = k - \frac{n}{2} \). Then \(\frac{k}{3} \leq s \leq k \), \(0 \leq t \leq \frac{k}{3} \). Observe that \(2s + 2t = n \), \(s + 2t = k \) and \(t < s \) because \(3n \geq 4k + 4 \). Let \(G = G(k - 1, s, t) \). Then \(G \) is a \((k-1)\)-regular graph of order \(n \). Since \(t < s \), by Theorem 1.3, \(G[A,B] \) contains an anti-matching \(F \) of size \(\frac{n-p}{2} \). Let \(H = G + F \), then \(H \in \mathcal{R}(D) \). If \(t = 0 \), then \(n = 2k \) and so \(h(D) \geq h(H) \geq |A| = s = \frac{k}{2} \). If \(t \geq 1 \), let \(M \) be a perfect matching of \(G[A,B] \). Clearly, \(M \) is also a matching of \(H \). By contracting each of the edges of \(M \) into single vertices, we see that \(h(D) \geq h(H) \geq s + 2t = k \).

Case 2. \(n \) is odd.
In this case, since \(\sigma(D)=nk-p \) is even, we have
(a) \(p \) and \(k \) are either both even or both odd.

By (a), both \(p-k \) and \(n-p-k-1 \) are even. Suppose that \(n \geq 2k+1 \). If \(n-p \leq k \), then \(p-k \leq 2(n-k) \). By Lemma 2.1, let \(H \) be a \(k \)-regular graph of order \(n-k \) and let \(F \) be a matching of size \(\frac{n-k}{2} \) in \(H \). Then \(K_k \cup G \in \mathcal{R}[D] \), where \(G=H-F \). Hence \(h(D) \geq h(K_k \cup G) \geq k \). We may assume that \(n-p \geq k+1 \). If \(n \geq 2k+3 \), by Lemma 2.1, let \(H \) be a \((k-1)\)-regular graph of order \(n-k-1 \geq k+2 \) and let \(F \) be a matching of size \(n-p-k-1 \) of \(H \). Then \(K_{k+1} \cup G \in \mathcal{R}[D] \), where \(G=H+F \). Thus \(h(D) \geq h(K_{k+1} \cup G) \geq k+1 \). We may assume that \(n=2k+1 \). Then \(p \leq n-k-1=k \). Let \(F=\{x_1x_2,\ldots,x_{2q-1}x_{2q}\} \) be a matching of size \(q \) of \(K_{k+1} \), where \(q=\frac{n-p-k-1}{2}=\frac{k-p}{2} \). Let \(y_1,y_2,\ldots,y_{2q} \) be \(2q \) distinct vertices in \(K_k \). Let \(G \) be the graph obtained from \(K_{k+1} \cup F \) and \(K_k \) by joining \(y_i \) to \(x_i \), \(i=1,2,\ldots,2q \). Then \(G \in \mathcal{R}[D] \). By contracting \(G[\{y_{2i-1},y_{2i}\}] \) onto \(x_{2i-1}, i=1,2,\ldots,q \), we see that \(h(D) \geq h(G) \geq k+1 \).

So we may assume that \(n \leq 2k-1 \). For integers \(r,s,t \) satisfying \(n=2s+2t+1 \) and \(r=s+2t \), define \(I(r,s,t) \) to be a graph of order \(n \) with its vertex set partitioned into \(A, B, C, D \) such that \(I(r,s,t)[A]=K_k \), \(I(r,s,t)[B]=K_k-E \), \(I(r,s,t)[C]=K_t \), \(I(r,s,t)[D]=K_{k+1} \). \(I(r,s,t)[A,B] \) is a \((r+1)\)-regular bipartite graph, where \(E \) is matching of size \(\frac{n}{2} \) of \(K_k \). Moreover, \(C \) is complete to \(A \cup D \), \(D \) is complete to \(B \), \(A \) is anticomplete to \(D \), \(C \) is anticomplete to \(B \). By (a), we consider the following two subcases.

Case 2.1. \(p \) and \(k \) are even.

If \(p \leq 2(n-k-1) \), let \(s=n-k-1 \) and \(t=k+1-\frac{n+1}{2} \). Then \(\frac{k}{2} \leq t \leq k+1-\frac{n+1}{2} \). Observe that \(s \) is even, \(s+2t=k \) and \(t \leq s \). Let \(G=I(k,s,t) \). Then \(G \) is a \(k \)-regular graph of order \(n \). Since \(t \geq 1 \), by Theorem 1.3, let \(M_1 \) and \(M_2 \) be two perfect matchings of \(G[A,B] \). Let \(F \subseteq M_1 \) with \(|F|=\frac{t}{2} \). Let \(H=G-F \). Then \(H \in \mathcal{R}[D] \). By contracting each of the edges of \(M_2 \) into single vertices, we see that \(h(H) \geq s+2t+1=k+1 \). Hence \(h(D) \geq k+1 \).

So we may assume that \(p \geq 2(n-k) \). Then \(n-p \leq n-2(n-k)=2k-n<2(n-k) \) and \(n-p \) is odd. Let \(s=n-k \) and \(t=k-\frac{n+1}{2} \). Then \(\frac{k}{2} \leq t \leq k-1 \). Observe that \(s \) is odd, \(s+2t=k-1 \) and \(t < s \) because \(3n \geq 4k+4 \). Let \(G=I(k-1,s,t) \). Then \(DS(G)=(k^1,(k-1)^{n-1}) \). Let \(w \) be the vertex of degree \(s-1 \) in \(G[B] \). Since \(n-p \leq 2s \), by Theorem 1.3, \(G[A,B \backslash w] \) contains an anti-matching, say \(F \), of size \(\frac{n-p-1}{2} \). Let \(H=G+F \). Then \(H \in \mathcal{R}[D] \). Let \(M \) be a perfect matching of \(G[A,B] \). By contracting each of the edges of \(M \) into single vertices, we see that \(h(D) \geq h(H) \geq s+2t+1=k \).

Case 2.2. \(p \) and \(k \) are odd.

In this case, \(n-p \) is even. If \(n-p \leq 2(n-k) \), let \(s=n-k \) and \(t=k-\frac{n+1}{2} \). Then \(\frac{k}{2} \leq s \leq k-1 \). Observe that \(s \) is even, \(s+2t+1=k \) and \(t \leq s \). Let \(G=I(k-1,s,t) \). Then \(G \) is a \((k-1)\)-regular graph of order \(n \). By Theorem 1.3, let \(M \) be a perfect matching and \(F \) be an anti-matching of size \(\frac{n-p}{2} \) of \(G[A,B] \), respectively. Let \(H=G+F \). Then \(H \in \mathcal{R}[D] \). By contracting each of the edges of \(M \) into single vertices, we see that \(h(H) \geq s+2t+1=k \). Hence \(h(D) \geq k \).
So we may assume that \(n - p \geq 2(n - k) + 2 \). Then \(p \leq n - 2(n - k) - 2 = 2k - n - 2 < 2(n - k) \). Let \(s = n - k - 1 \) and \(t = k + 1 - \frac{n + 1}{2} \). Then \(\frac{k}{2} \leq s \leq k - 2, \ 1 \leq t < \frac{k}{2} \). Observe that \(s \) is odd, \(s + 2t + 1 = k + 1 \) and \(t < s \) because \(3n \geq 4k + 4 \). Let \(J \) be an Hamiltonian cycle of \(K_s \) and let \(E \) be a matching of size \(\frac{s - 1}{2} \) in \(J \). Now let \(G \) be a graph of order \(n \) with \(V(G) \) partitioned into \(A, B, C, D \) such that \(G[A] = K_s, \ G[B] = K_s - E(J) + E, \ G[C] = K_t, \ G[D] = K_{t+1}, \ G[A, B] \) is a \((t+1)\)-regular bipartite graph. Moreover, \(C \) is complete to \(A \cup D \), \(D \) is complete to \(B \), \(A \) is anticomplete to \(D \), \(C \) is anticomplete to \(B \). Let \(w \) be the vertex of degree \(s - 3 \) in \(G[B] \). Since \(t \geq 1 \), by Theorem 1.3, \(G[A, B] \) contains two perfect matchings \(M_1 \) and \(M_2 \). Since \(p < 2s \), there exists \(F \subseteq M_1 \) with \(|F| = \frac{p - 1}{2} \) and \(w \notin V(F) \). Let \(H = G - F \). Then \(H \in R[D] \). By contracting each of the edges of \(M_2 \) into single vertices, we see that \(h(D) \geq h(H) \geq s + 2t + 1 = k + 1 \).

This completes the proof of Lemma 2.2.

Theorem 2.3. Let \(D = ((k-1)^p, k^{n-p}) \) be the degree sequence of a near \(k \)-regular graph on \(n \) vertices, where \(0 \leq p \leq n - 1 \). Then

\[
h(D) \begin{cases}
 k + 1 & \text{if } p = 0 \text{ and } n = k + 1 \\
 k + 1 & \text{if } p = 0 \text{ and } n \geq \frac{4k + 4}{3} \\
 k & \text{if } p > 0 \text{ and } n \geq \frac{4k + 4}{3} \\
 k + 1 - \left\lceil \frac{p}{4} \right\rceil & \text{if } p > 0 \text{ and } n = k + 1 \\
 \left\lceil \frac{3n}{4} \right\rceil & \text{if } k + 2 \leq n < \frac{4k + 4}{3}
\end{cases}
\]

Proof. If \(n = k + 1 \) and \(p = 0 \), then \(R[D] = \{K_{k+1}\} \) and \(h(D) = k + 1 \). If \(n = k + 1 \) and \(p > 0 \), then \(p \) must be even and \(D \) has a unique realization \(K_{k+1} - M \), where \(M \) is a matching of size \(\frac{k}{2} \) of \(K_{k+1} \). Clearly, \(h(D) \geq (n - p) + \frac{k}{2} + \left\lceil \frac{p}{4} \right\rceil \geq k + 1 - \left\lceil \frac{p}{4} \right\rceil \). So we may assume that \(n \geq k + 2 \). If \(n = k + 2 \) and \(p = 0 \), then \(k \) must be even and \(D \) has a unique realization \(K_n - M \), where \(M \) is a perfect matching of \(K_n \). It can be easily checked that \(h(D) = \left\lceil \frac{3n}{4} \right\rceil \). Suppose \(n = k + 2 \) and \(p > 0 \). If \(k \) is odd, then \(n \) and \(p \) must be odd. Let \(J \) be a Hamilton cycle of \(K_n \) and let \(F \) be a matching of size \(\frac{n - p}{2} \) of \(J \). Let \(G = K_n - E(J) + F \). Then \(G \in R[D] \). Let \(\{x_1, x_2, \ldots, x_n\} \) be the vertices of \(J \) in order. Let \(M = \{x_3x_{n+1}, x_5x_{n+2}, \ldots, x_{3i+1}x_{n+1+2i}\} \) if \(\frac{n - p}{2} \) is even; and \(M = \{x_1x_{n+1+2i}, x_3x_{n+2}, x_5x_{n+2}, \ldots, x_{3i+1}x_{n+1+2i}\} \) if \(\frac{n - 1}{2} \) is odd. By contracting each of the edges of \(M \) into single vertices, we see that \(h(D) \geq h(G) \geq \left\lceil \frac{3n}{4} \right\rceil \). If \(k \) is even, then \(n \) and \(p \) must be even. Let \(x_1, x_2, \ldots, x_{\frac{n}{2}}, y_1, y_2, \ldots, y_{\frac{n}{2}} \) be the \(n \) vertices of \(K_n \). Let \(G = K_n - E \), where \(E = \{x_1y_1, x_2y_2, \ldots, x_{\frac{n}{2}}y_{\frac{n}{2}}, y_1x_2, y_2x_3, \ldots, y_{\frac{n}{2}}x_{\frac{n}{2}+1}\} \). By contracting each

Journal of Graph Theory DOI 10.1002/jgt
of the edges \(y_i v_{i+j}, \) where \(i=1,2,\ldots,\lfloor \frac{n}{4} \rfloor, \) into single vertices, we see that \(h(D) \geq h(G) \geq \lceil \frac{3n}{4} \rceil. \) Thus we may assume that \(n \geq k+3. \)

By Lemma 2.2, we may assume that \(k+3 \leq n < 4k+4. \) We next show that \(h(D) \geq \lceil \frac{3n}{4} \rceil. \)

Note that \(\overline{D} \) is the degree sequence of a near \(r \)-regular graph on \(n \) vertices, where \(2 \leq r = n−1−k < \frac{k+1}{3}. \) Since \(3n < 4k + 4, \) we have \(4r = 4(n−k−1) < n. \) Let \(m, s \) be nonnegative integers so that \(n = 4m + s, \) where \(0 \leq s \leq 3. \) Clearly, \(m \geq r \) because \(n > 4r. \) Assume that \(p = 0. \) For an integer \(t > 0, \) we denote by \(B_{t,t}^r \) an \(r \)-regular bipartite graph with each partite of size \(t, \) and let \(M \) be a matching of \(B_{t,t}^r \) of size \(\lfloor \frac{n}{2} \rfloor. \) Let \(B^* \) be obtained from \(B_{m,m}^r − M \) by adding a new vertex \(v \) joining to each vertex of \(V(M) \). Note that if \(n \) is odd, then \(r \) is even. Let

\[
\overline{G} = \begin{cases}
K_{m,m}^r \cup K_{m,m}^r & \text{if } s = 0 \\
K_{m,m}^r \cup B^* & \text{if } s = 1 \\
K_{m,m}^r \cup K_{m+1,m+1}^r & \text{if } s = 2 \\
K_{m+1,m+1}^r \cup B^* & \text{if } s = 3
\end{cases}
\]

It can be easily checked that \(G \in \mathcal{R}[D] \) and \(G \) contains a clique minor of size at least \(\lfloor \frac{3n}{4} \rfloor. \) Thus \(h(D) \geq \lceil \frac{3n}{4} \rceil, \) as desired. So we may assume that \(p > 0. \) We consider the following two cases.

Case 1. \(n \) is even.

Then \(n = 4m \) or \(4m + 2, \) and \(p \) must be even. Since \(p \leq n−1, \) we have \(p \leq n−2. \) Let \(H \) be a \(k \)-regular graph of order \(n \) with \(V(H) \) partitioned into \(A, B, C, D \) such that \(H[A] = K_m, \) \(H[B] = K_{n−2m}, \) \(H[C] = K_{n−2m}, \) \(H[D] = K_m, \) \(A \cup D \) is complete to \(B \cup C, \) \(H[A,D] \) and \(H[B,C] \) are \((m−r) \)-regular and \((m+1−r) \)-regular bipartite graphs, respectively. If \(r < m, \) let \(M \) and \(M' \) be perfect matchings of \(H[A,D] \) and \(H[B,C], \) respectively. Let \(F \subseteq M \cup M' \) with \(|F| = \frac{p}{2}. \) If \(r = m \) and \(p \leq 2m + 2, \) then \(n = 4m + 2. \) Thus \(|B| = |C| = m + 1. \) Let \(M \) be a perfect matching of \(G[B,C]. \) Let \(F \subseteq M \) with \(|F| = \frac{p}{2}. \) In both cases, let \(H^* = H − F. \) Then \(H^* \in \mathcal{R}[D]. \) By contracting each of the edges of a matching of size \(m \) in \(H[A,B] \) into single vertices, we see that \(h(D) \geq h(H^*) \geq \lfloor \frac{3n}{4} \rfloor. \) So we may assume that \(r = m \) and \(p \geq 2m + 4. \) Since \(r = m, \) we have \(n = 4m + 2 \) and so \(k = 3m + 1. \) Note that \(n−p \leq (4m + 2)−(2m + 4) = 2m − 2. \) Let \(H = G(3m, m + 1, m), \) as defined in the proof of Lemma 2.2 (see Case 1). Let \(A \) and \(B \) be as given in the definition of \(G(3m, m + 1, m). \) Now let \(M \) and \(M' \) be a perfect matching and an anti-matching of size \(\frac{n−p}{2} \) of \(G(3m, m + 1, m)[A,B], \) respectively. Let \(H^* = H + M'. \) Then \(H^* \in \mathcal{R}[D]. \) By contracting each of the edges of \(M \) into single vertices, we have \(h(D) \geq h(H^*) \geq \lfloor \frac{3n}{4} \rfloor. \)

Case 2. \(n \) is odd.

In this case, \(n = 4m + 1 \) or \(4m + 3. \) Since \(\sigma(D) = nk−p \) is even, we have \((b) \) \(p \) and \(k \) are either both even or both odd.

Let \(s = k \) if \(k \) is even and \(s = k − 1 \) if \(k \) is odd. Then \(n−1−s \) is even and let \(r' = (n−1)−1−s. \) Then \(r' = r−1 \) if \(s = k \) and \(r' = r \) if \(s = k − 1. \) Define \(H(s) \) to be an \((s−1) \)-regular graph of order \(n−1 \) with \(V(H) \) partitioned into \(A, B, C, D \) such that \(H(s)[A] = K_m, \)
Theorem 2.4. Let $D=((k-1)^p, kn^{p})$ be the degree sequence of a near k-regular graph on n vertices, where $0 \leq p \leq n-1$. Then $h(D) \geq \chi(D)$.

Proof. By Theorem 1.2 and Theorem 2.3, we may assume that $n=k+1$ and $h(D) \geq k+1-\lceil \frac{n}{4} \rceil$ or $k+2 \leq n < \frac{4k+4}{5}$ and $h(D) \geq \lceil \frac{3n}{4} \rceil$. In the first case, p is even and D has a unique realization $K_{k+1}-M$, where M is a matching of size $\frac{n}{4}$. Clearly, $\chi(D)=k+1-\frac{n}{2} \leq h(D)$. It remains to show that $\chi(D) \leq \lfloor \frac{3n}{4} \rfloor$ when $k+2 \leq n < \frac{4k+4}{5}$. Let $G \in R[D]$ and let M be a maximum anti-matching of G. Then $G[V(M)]$ is a complete subgraph. Thus $\chi(G) \leq |G[V(M)]|+|M|=(n-2|M|)+|M|=n-|M|$. It suffices to show that $|M| \geq \frac{n}{4}$. If $p=0$, then G is k-regular and \overline{G} is r-regular, where $r=n-1-k \geq 1$. By Theorem 1.4, $\chi'(<G>) \leq r+1$, we have $\frac{rn}{2}=|E(<G>)| \leq (r+1)|M|$, which yields $|M| \geq \frac{n}{4}$. Assume that $p>0$. Then \overline{G} contains $n-p$ vertices of degree $r=n-1-(k-1)=n-k$ and p vertices of degree $n-1-k$. Let $r=n-k$. Then $r \geq 2$. If $r \geq 3$, by Theorem 1.4 again, $\chi'(<G>) \leq r+1$, we have $(r-1)n \frac{2}{2} < |E(<G>)| \leq (r+1)|M|$. It follows that $|M| \geq \frac{n}{4}$. So we may assume that $r=2$. Then \overline{G} consists of disjoint unions of cycles and paths. One can easily check that \overline{G} contains a matching of size at least $\frac{n}{2}$. Thus $|M| \geq \frac{n}{4}$ and so $\chi(G) \leq n-|M| \leq \frac{3n}{4}$, as desired. Consequently, $\chi(D) \leq \lfloor \frac{3n}{4} \rfloor$ by the arbitrary choice of $G \in R[D]$.

This completes the proof of Theorem 2.4.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their helpful comments.

Journal of Graph Theory DOI 10.1002/jgt
REFERENCES