The Smallest Degree Sum that Yields Potentially P_k-Graphical Sequences*

Li Jiong-Sheng and Song Zi-Xia
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA
HEFEI, ANHUI 230026
PEOPLE’S REPUBLIC OF CHINA

Received August 26, 1996; accepted March 30, 1998

Abstract: A simple graph G is said to have property P_k if it contains a complete subgraph of order $k + 1$, and a sequence π is potentially P_k-graphical if it has a realization having property P_k. Let $\sigma(k, n)$ denote the smallest degree sum such that every n-term graphical sequence π without zero terms and with degree sum $\sigma(\pi) \geq \sigma(k, n)$ is potentially P_k-graphical. Erdős, Jacobson, and Lehel [Graph Theory, 1991, 439–449] conjectured that $\sigma(k, n) = (k - 1)(2n - k) + 2$. In this article, we prove that the conjecture is true for $k = 4$ and $n \geq 10$.

1. INTRODUCTION

Let $\pi = (d_1, d_2, \ldots, d_n)$ be a graphical sequence. For each $m = 1, 2, \ldots, n$, denote $\sigma_m(\pi) = d_1 + d_2 + \cdots + d_m$ and $\sigma_n(\pi) = \sigma(\pi)$. $\sigma(\pi)$ is called the degree sum of π.

A simple graph G is said to have property P_k if it has a complete subgraph of order $k + 1$ and a graphical sequence $\pi = (d_1, d_2, \ldots, d_n)$ with $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$

*Supported by the National Natural Science Foundation of China and the Doctor Program Foundation of Higher Education of China.

© 1998 John Wiley & Sons, Inc. CCC 0364-9024/98/020063-10
is said to be potentially P_k-graphical if it has a realization having property P_k. In [2], Erdős, Jacobson, and Lehel raised the following problem: Determine the smallest degree sum $\sigma(k,n)$ such that every graphical sequence $\pi = (d_1, d_2, \ldots, d_n)$ with $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$ and $\sigma(\pi) \geq \sigma(k,n)$ is potentially P_k-graphical. Using an example, they pointed out that $\sigma(k,n) \geq (k-1)(2n-k) + 2$ and conjectured that $\sigma(k,n) = (k-1)(2n-k) + 2$. They also proved that the conjecture was true for $k = 2$. The following is one of their results.

Theorem 1.1. Let $n \geq 6$ and $\pi = (d_1, d_2, \ldots, d_n)$ be a graphical sequence, where $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$. If $\sigma(\pi) \geq 2n$, then π is potentially P_2-graphical. In other words, $\sigma(2,n) = 2n$ for $n \geq 6$.

Recently, J. S. Li and Z. X. Song [6] and Gould, Jacobson, and Lehel [3] proved, respectively, the following.

Theorem 1.2. If $n \geq 8$, then $\sigma(3,n) = 4n - 4$.

Moreover, [6] also determined the value of $\sigma(k,n)$ for $n = 2k + 1$.

Theorem 1.3. $\sigma(k, 2k + 1) = 2k(2k - 1)$.

In this article, we will determine the value $\sigma(4, n)$. The following theorems are repeatedly used in our proofs.

For a nonincreasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ of nonnegative integers, $d_i \leq n - 1, i = 1, 2, \ldots, n$, define an n-by-n matrix $\bar{A} = (a_{ij})$ as follows: If $d_i \geq i$, then

$$a_{ij} = \begin{cases} 1 & \text{if } 1 \leq j \leq d_i + 1 \text{ and } j \neq i \\ 0 & \text{otherwise,} \end{cases}$$

and if $d_i < i$, then

$$a_{ij} = \begin{cases} 1 & \text{if } 1 \leq j \leq d_i \\ 0 & \text{otherwise.} \end{cases}$$

The matrix \bar{A} is called the off-diagonal matrix of π. The column sum vector of \bar{A} is denoted by $\bar{\pi}$, and called the corrected conjugate vector of π. Clearly, the row sum vector of \bar{A} is π.

Theorem 1.4 (Berge [1]). Let $\pi = (d_1, d_2, \ldots, d_n)$ be a nonincreasing sequence of nonnegative integers, where $d_i \leq n - 1, i = 1, 2, \ldots, n$ and $\sigma(\pi)$ is even. Then π is graphical if and only if $\sigma_i(\pi) \leq \sigma_i(\bar{\pi})$ for $i = 1, 2, \ldots, n - 1$, and $\sigma(\pi) = \sigma(\bar{\pi})$.

For a nonincreasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ of nonnegative integers, let

$$\pi' = \begin{cases} (d_1 - 1, \ldots, d_{k-1} - 1, d_{k+1} - 1 \cdots, d_{d_k+1} - 1, d_{d_k+2}, \ldots, d_n) & \text{if } d_k \geq k \\ (d_1 - 1, \ldots, d_{d_k} - 1, d_{d_k+1}, \ldots, d_{d_k-1}, d_{k+1}, \ldots, d_n) & \text{if } d_k < k. \end{cases}$$

Then π' is called the residual sequence after laying off d_k from π.

Theorem 1.5 (Kleitman and D. L. Wang [5]). A nonincreasing sequence π of nonnegative integers is graphical if and only if π' is graphical.
In [7], A. R. Rao introduced the following concept: Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and let $\pi = (d_1, d_2, \ldots, d_n)$ be the degree sequence of G, where d_i is the degree of v_i. Then G is said to have property A_k if the subgraph induced by $V = \{v_1, v_2, \ldots, v_{k+1}\}$ is complete. A graphical sequence π is said to be potentially A_k-graphical if it has a realization having property A_k. A. R. Rao proved the following.

Theorem 1.6. A graphical sequence π is potentially P_k-graphical if and only if π is potentially A_k-graphical.

A. R. Rao [8] also gave a criterion for a sequence π being potentially A_k-graphical.

Theorem 1.7. Let $\pi = (d_1, d_2, \ldots, d_n)$ be a sequence of nonnegative integers in which $d_1 \geq d_2 \geq \cdots \geq d_{k+1}$ and $d_{k+2} \geq d_{k+3} \geq \cdots \geq d_n$. Then π is potentially A_k-graphical if and only if the following conditions hold:

1. $d_{k+1} \geq k$,
2. $\sigma(\pi)$ is even,
3. For any s and t, $0 \leq s \leq k+1$ and $0 \leq t \leq n-k-1$,

\[
\sum_{i=1}^{s} d_i + \sum_{j=1}^{t} d_{k+1+j} \leq (s+t)(s+t-1) + \sum_{i=s+1}^{k+1} \min\{s+t, d_i-k+s\} + \sum_{j=k+2+t}^{n} \min\{s+t, d_j\}.
\]

Although the proof of Theorem 1.7 is unpublished until now, Kézdy and Lehel [4] gave a proof of Theorem 1.7.

2. MAIN RESULTS

Let $\pi = (d_1, d_2, \ldots, d_n)$ be a graphical sequence, where $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$ and $n \geq 2k+2$. For given s and t, $0 \leq s \leq k+1$ and $0 \leq t \leq n-k-1$, let

\[
L(s, t) = \sum_{i=1}^{s} d_i + \sum_{j=1}^{t} d_{k+1+j}
\]

and

\[
R(s, t) = (s+t)(s+t-1) + \sum_{i=s+1}^{k+1} \min\{s+t, d_i-k+s\} + \sum_{j=k+2+t}^{n} \min\{s+t, d_j\}.
\]

We first prove the following.
Theorem 2.1. Let \(n \geq 2k + 2 \) and let \(\pi = (d_1, d_2, \ldots, d_n) \) be a graphical sequence. If
\[
n - 2 \geq d_1 \geq \cdots \geq d_k = d_{k+1} = \cdots = d_{d_1+2} \geq d_{d_1+3} \geq \cdots \geq d_n \geq k,\]
then \(\pi \) is potentially \(P_k \) graphical.

Proof. By Theorem 1.7, we need to verify only that
\[
R(s, t) \geq L(s, t) \tag{1}
\]
for any \(s \) and \(t \), \(0 \leq s < k + 1 \) and \(0 \leq t \leq n - k - 1 \). We consider the following cases.

Case 1. \(d_k \leq s + t - 1 \). If \(s \geq k \), then \(d_i - k + s \geq (d_k - k) + s \geq s \geq k \) for \(1 \leq i \leq k + 1 \). Hence, \(\min\{s + t, d_i - k + s\} \geq s \geq k \) for \(s + 1 \leq i \leq k + 1 \). Observe that \(s + t > d_k \geq \cdots \geq d_n \geq k \). So we have
\[
R(s, t) \geq (s + t)(s + t - 1) + (k + 1 - s)k + (n - k - 1 - t)k
= (k - 1)(n - 2) + (s - k + 1 + t)(s + t - 1) + (n + k - 1 - s - t)
\geq (k - 1)(n - 2) + (s - k + 1)(s + t - 1) + (s + t - 1)
\geq (k - 1)d + (s - k + 1)d_k + td_k \geq L(s, t).
\]
If \(s \leq k - 1 \), then \(d_i - k + s \geq (d_k - k) + s \geq s \) for \(1 \leq i \leq k + 1 \). Moreover, \(s + t > d_k \geq \cdots \geq k > s \). Hence,
\[
R(s, t) \geq (s + t)(s + t - 1) + (k + 1 - s)s + (n - k - 1 - t)s
= s(n - 1) + t(s + t - 1) > sd_1 + td_k \geq L(s, t).
\]
Thus, (1) holds for \(d_k \leq s + t - 1 \).

Case 2. \(d_k \geq s + t \). Clearly,
\[
d_k = d_{k+1} = \cdots = d_{t+k+2} = \cdots = d_{d_1+2} \geq s + t.
\]
If \(d_k \geq t + k \), then \(d_i - k + s \geq d_k - k + s \geq s + t \) for \(s + 1 \leq i \leq k + 1 \). Hence,
\[
R(s, t) \geq (s + t)(s + t - 1) + \sum_{i=s+1}^{k+1} \min\{s + t, d_i - k + s\}
+ \sum_{j=k+2+t}^{d_1+2} \min\{s + t, d_j\}
= (s + t)(s + t - 1) + (k + 1 - s)(s + t) + (d_1 + 1 - k - t)(s + t)
= (s + t)(d_1 + 1) \geq (s + t)d_1 \geq L(s, t).
\]
Now assume that \(s + t \leq d_k \leq t + k - 1 \). Then \(s \leq k - 1 \) and \(d_k - k + s \leq (t + k - 1) - k + s \leq s + t - 1 \). Moreover \(d_k - k + s \leq d_i - k + s \) for \(1 \leq i \leq k + 1 \). Hence, \(\min\{s + t, d_i - k + s\} \geq d_k - k + s \) for \(1 \leq i \leq k + 1 \). Denote
\[d_k = t + m, \text{ where } 0 \leq s \leq m \leq k - 1. \text{ Then } s + t = d_k - (m - s) \geq k - (m - s). \]

In addition, \(d_n \geq k \geq k - (m - s). \) Therefore,

\[
R(s, t) \geq (s + t)(s + t - 1) + (k + 1 - s)(d_k - k + s)
+ (k - m + s)(n - t - k - 1)
= s(n - 2) + td_k + (k - m)(n - 2k - 2) + s(k + 1 - m)
\geq s(n - 2) + td_k \geq sd_1 + td_k = L(s, t).
\]

This shows that (1) holds for \(d_k \geq s + t \).}

We now will determine the values of \(\sigma(4, n) \) for \(n \geq 10 \). The main tools are induction, the laying off technique due to Kleitman and D. L. Wang, and A. R. Rao’s

Theorem 1.6 concerning equivalence on potentially \(P_k \)-graphical sequences and potentially \(A_k \)-graphical sequences. It is easy to see that, if the residual sequence

\[\pi' = (d_1', d_2', \ldots, d_{n-1}') \]

obtained laying off \(d_1 \) from a graphical sequence \(\pi = (d_1, d_2, \ldots, d_n) \) is potentially \(A_{k-1} \)-graphical and \(d_2 - 1, \ldots, d_{k+1} - 1 \) are the \(k \)

largest numbers in \(\pi' \), then \(\pi \) is potentially \(P_k \)-graphical. We begin with the value

\[\sigma(4, 10) = 50. \]

\textbf{Theorem 2.2.} \(\sigma(4, 10) = 50. \)

\textbf{Proof.} It is enough to prove that, if \(\pi = (d_1, d_2, \ldots, d_{10}) \) is a graphical sequence without zero terms and the degree sum \(\sigma(\pi) \) is at least 50, then \(\pi \) is potentially \(P_4 \)-graphical.

First, \(d_1 \geq 5 \), since \(50 \leq \sigma(\pi) \leq 10d_1 \). Next, \(d_5 \geq 4 \), otherwise by the off-
diagonal matrix \(A \) of \(\pi \), we have \(\overline{d_i} \leq 9 \) for \(1 \leq i \leq 3 \) and \(\overline{d_i} \leq 3 \). Hence, \(\sigma_4(\pi) \leq 30 \). On the other hand, we have \(50 \leq \sigma(\pi) \leq \sigma_4(\pi) + 6d_5 \leq \sigma_4(\pi) + 18 \). Hence, \(\sigma_4(\pi) \geq 32 > 30 \geq \sigma_4(\pi) \). By Theorem 1.4, \(\pi \) is not graphical, contradiction.

\(d_8 \geq 2 \), otherwise by the off-diagonal matrix \(A \) of \(\pi \), we have \(\overline{d_i} = 9 \) and \(\overline{d_i} \leq 6 \) for \(2 \leq i \leq 7 \). Hence, \(\sigma_7(\pi) \leq 9 + 6 \times 6 = 45 \). On the other hand, we have \(50 \leq \sigma(\pi) \leq \sigma_7(\pi) + 3 \). Hence, \(\sigma_7(\pi) \geq 47 > 45 \geq \sigma_7(\pi) \). By Theorem 1.4, \(\pi \) is not graphical, contradiction. In other words, \(\pi \) contains at most

two 1’s.

The residual sequence obtained by laying off \(d_1 \) from \(\pi \) is denoted by \(\pi' = (d_2 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_{10}) \). In realizing \(\pi' \), we delete the zero terms; this leaves 9, 8, or 7 vertices. By Theorems 1.2 and 1.3, we have \(\sigma(3, 9) = 32, \sigma(3, 8) = 28, \text{ and } \sigma(3, 7) = 30 \). Since \(\sigma(\pi') = \sigma(\pi) - 2d_1 \geq 50 - 18 \geq 32 \), \(\sigma(\pi') = 32 > 30 \geq \sigma_4(\pi) \) is potentially \(P_3 \)-graphical. By Theorem 1.6, \(\pi' \) is potentially \(A_3 \)-graphical. If \(\pi' \) has zero terms, then \(d_8 \geq 2 \) implies that \(d_1 \geq 8 \) and \(d_{d_1+2} \leq 1 \). Since \(d_5 \geq 4 \), \(d_2 - 1, \ldots, d_5 - 1 \) are the four largest numbers in \(\pi' \).

Thus, \(\pi \) is potentially \(A_4 \)-graphical.

Now suppose that \(\pi' \) has no zero terms. If there exists an integer \(t, 5 \leq t \leq d_1 + 1 \) such that \(d_1 > d_{t+1} \), then \(d_2 - 1, \ldots, d_5 - 1 \) are the four largest numbers in \(\pi' \). Since \(\pi' \) is potentially \(A_3 \)-graphical, \(\pi \) is potentially \(A_4 \)-graphical. So we may assume that

\[d_1 \geq \cdots \geq d_4 \geq d_5 = \cdots = d_{d_1+2} \geq d_{d_1+3} \geq \cdots \geq d_{10}. \]
If \(d_1 > d_5 \), then by laying off \(d_{d_1+1} = l \) from \(\pi \), we obtain a sequence \(\pi'' = (d_1 - 1, \ldots, d_l - 1, d_{l+1}, \ldots, d_{d_1}, d_{d_1+2}, \ldots, d_{10}) \) without zero terms. Clearly,
\[
\sigma(\pi'') = 50 - 2d_{d_1+1} \geq 32 = \sigma(3,9) \text{. Hence } \pi'' \text{ is potentially } A_3\text{-graphical.}
\]
Since \(d_1 - 1, d_2 - 1, d_3 - 1 \) and \(d_4 - 1 \) are the four largest numbers in \(\pi'' \), \(\pi \) is potentially \(A_4\)-graphical. So we may further assume that
\[
d_1 \geq \cdots \geq d_4 = d_5 = \cdots = d_{d_1+2} \geq d_{d_1+3} \geq \cdots \geq d_{10}.
\]
If \(d_1 = 9 \), then
\[
d_1 \geq \cdots \geq d_4 = d_5 = \cdots = d_{10} \geq 4.
\]
Since \(\pi' = (d_2 - 1, d_3 - 1, \ldots, d_{10} - 1) \) is potentially \(A_3\)-graphical, \(\pi \) is potentially \(P_4\)-graphical. So we assume that \(d_1 \leq 8 \). If \(d_{10} \geq 4 \), then by Theorem 2.1, \(\pi \) is potentially \(P_4\)-graphical. Now assume \(d_{10} \leq 3 \). Since \(d_{1+2} = d_5 \geq 4 \), we have \(d_1 + 2 < 9 \), i.e., \(d_1 \leq 7 \). Observe that \(50 \leq \sigma(\pi) \leq 3d_1 + 6d_4 + d_{10} \). Hence, \(6 \leq d_1 \leq 7 \) and \(5 \leq d_4 \leq 7 \). We distinguish three cases according to the number of zeros in \(\pi' \) to prove that \(\pi \) is one of the following sequences:

\[
\begin{align*}
\pi_1 &= (7^9, 3^1), & \pi_2 &= (7^3, 6^6, 3^1), & \pi_3 &= (7^1, 6^8, 3^1), \\
\pi_4 &= (7^3, 5^6, 3^1), & \pi_5 &= (7^2, 5^7, 3^1), & \pi_6 &= (7^1, 6^2, 5^6, 3^1), \\
\pi_7 &= (7^1, 5^6, 3^1), & \pi_8 &= (6^8, 5^1, 3^1), & \pi_9 &= (6^8, 3^2), \\
\pi_{10} &= (6^3, 5^5, 4^1, 3^1), & \pi_{11} &= (6^2, 5^7, 3^1), & \pi_{12} &= (7^2, 6^7, 2^1), \\
\pi_{13} &= (7^2, 6^1, 5^6, 2^1), & \pi_{14} &= (7^1, 6^1, 5^7, 2^1), & \pi_{15} &= (6^9, 2^1), \\
\pi_{16} &= (6^8, 4^1, 2^1), & \pi_{17} &= (6^8, 2^2), & \pi_{18} &= (6^3, 5^6, 2^1), \\
\pi_{19} &= (7^9, 1^1), & \pi_{20} &= (7^3, 6^6, 1^1), & \pi_{21} &= (7^1, 6^8, 1^1), \\
\pi_{22} &= (7^1, 6^2, 5^6, 1^1), & \pi_{23} &= (7^3, 5^6, 1^1), & \pi_{24} &= (6^8, 1^2), \\
\pi_{25} &= (6^8, 3^1, 1^1), & \pi_{26} &= (6^8, 5^1, 1^1),
\end{align*}
\]

Case 1. \(d_{10} = 3 \). If \(d_1 = 7 \), then \(d_4 = \cdots = d_9 \). If \(d_4 = 7 \), then \(\pi = \pi_1 \). If \(d_4 = 6 \), then \(\pi = (7^1, d_2, d_3, 6^6, 3^1) \), where \(12 \leq d_2 + d_3 \leq 14 \). Note that \(\sigma(\pi) \) is even. So \(\pi = \pi_2 \) or \(\pi_3 \). If \(d_4 = 5 \), then \(\pi = (7^1, d_2, d_3, 5^6, 3^1) \), where \(10 \leq d_2 + d_3 \leq 14 \). Hence, \(\pi \) is one of \(\pi_4, \pi_5, \pi_6, \) and \(\pi_7 \). Therefore, we assume \(d_4 = 6 \). If \(d_4 = 6 \), then \(\pi = (6^8, d_9, 3^1) \). Hence, \(\pi = \pi_8 \) or \(\pi_9 \), because \(\sigma(\pi) \) is even. If \(d_4 = 5 \), then \(\pi = (6^1, d_2, d_3, 5^5, d_9, 3^1) \). Since \(50 \leq \sigma(\pi) \leq 18 + 25 + d_9 + 3 \), we have \(4 \leq d_9 \leq 5 \). Thus, \(\pi = \pi_{10} \) or \(\pi_{11} \).

Case 2. \(d_{10} = 2 \). If \(d_1 = 7 \), then \(d_4 = \cdots = d_9 \). If \(d_4 = 7 \), then \(\pi = (7^1, 2^1) \) is not graphical. If \(d_4 = 6 \), then \(12 \leq d_2 + d_3 \leq 14 \). Since \(\sigma(\pi) \) is even, we have \(\pi = \pi_{12} \). If \(d_4 = 5 \), then \(\pi = \pi_{13} \) or \(\pi_{14} \). If \(d_4 = 6 \), then \(d_4 = \cdots = d_8 \). If \(d_4 = 6 \), then \(\pi = (6^8, d_9, 2^1) \) and \(\pi \) is one of \(\pi_{15}, \pi_{16}, \) and \(\pi_{17} \), since \(\sigma(\pi) \) is even. If \(d_4 = 5 \), then \(50 \leq \sigma(\pi) \leq 18 + 25 + d_9 + 2 \). Hence, \(d_9 = 5 \) and \(\pi = \pi_{18} \).

Case 3. \(d_{10} = 1 \). If \(d_1 = 7 \), then \(d_4 = \cdots = d_9 \). If \(d_4 = 7 \), then \(\pi = \pi_{19} \). If \(d_4 = 6 \), then \(\pi = (7^1, d_2, d_3, 6^6, 1^1) \), where \(12 \leq d_2 + d_3 \leq 14 \). Since \(\sigma(\pi) \) is even, \(\pi = \pi_{20} \) or \(\pi_{21} \). If \(d_4 = 5 \), then \(\pi = (7^1, d_2, d_3, 5^6, 1^1) \), where \(12 \leq d_2 + d_3 \leq 14 \) and \(d_9 + d_9 \) is even. Hence, \(\pi = \pi_{22} \) or \(\pi_{23} \). If \(d_1 = 6 \), then \(d_4 = \cdots = d_8 \). Note that \(50 \leq \sigma(\pi) \leq 18 + 6d_4 + 1 \). Hence, \(d_4 = 6 \), and \(\pi(6^8, d_9, 1^1) \), where \(d_9 \) is odd. Thus, \(\pi = \pi_{24}, \pi_{25}, \) or \(\pi_{26} \).
We now will check that all sequences \(\pi_1, \pi_2, \ldots, \pi_{26} \) are potentially \(A_k \)-graphical. First \(\sigma(4, 9) = 56 \) by Theorem 1.3. Hence, \(\pi_1, \pi_{19}, \) and \(\pi_{20} \) are potentially \(A_4 \)-graphical. Next for every remained sequence \(\pi = (d_1, d_2, \ldots, d_{10}) \), we may construct its realization \(G \) having property \(A_4 \) in the following way: Place a clique on the set \(S \) consisted of the 5 vertices of largest degree. The number \(r = \sum_{i=1}^{5} (d_i - 4) \) is the number of edges that must go from \(\mathcal{S} \) to \(V(G) \) as a bipartite subgraph. Hence, \(V(G) - \mathcal{S} \) induces a subgraph with \(((\sum_{i=0}^{10} d_i - r)/2 \) edges. After forming such a subgraph, it is generally easy to insert the \(r \) edges between the sets \(\mathcal{S} \) and \(V(G) - \mathcal{S} \) to obtain the realization \(G \).

Figure 1 in the Appendix shows that all these remained sequences are potentially \(A_4 \)-graphical.

Theorem 2.3. If \(n \geq 10 \), then \(\sigma(4, n) = 6n - 10 \).

Proof. We only need to prove that if \(\pi = (d_1, d_2, \ldots, d_n) \) is a graphical sequence without zero terms and the degree sum \(\sigma(\pi) \) is at least \(6n - 10 \), then \(\pi \) is potentially \(P_4 \)-graphical. We use induction on \(n \). By Theorem 2.2, the theorem holds for \(n = 10 \). Now suppose that \(n > 10 \). If \(d_n \leq 3 \), then \(\pi'' = (d_1 - 1, \ldots, d_{n-1}, d_{n+1}, \ldots, d_{n-1}) \) is graphical and has no zero terms. Clearly \(\sigma(\pi'') = \sigma(\pi) - 2d_n \geq 6(n - 1) - 10 \). By induction hypothesis, \(\pi'' \) is potentially \(P_3 \)-graphical, and, therefore, \(\pi \) is potentially \(P_4 \)-graphical. Hence, we may assume that \(d_n \geq 4 \). If \(d_1 = n - 1 \), then \(\pi' = (d_1 - 1, d_2 - 1, \ldots, d_n - 1) \) is graphical and has no zero terms. Clearly, \(\sigma(\pi') = \sigma(\pi) - 2(n - 1) \geq 4(n - 1) - 4 = \sigma(3, n - 1) \), where \(n - 1 \geq 9 \). By Theorem 1.2, \(\pi' \) is potentially \(P_3 \)-graphical, so \(\pi \) is potentially \(P_4 \)-graphical. Hence, we may further assume that \(d_1 \leq n - 2 \). If there exists an integer \(t, 5 \leq t \leq d_1 + 1 \) such that \(d_t > d_{t+1} \), then \(d_2 - 1, \ldots, d_5 - 1 \) are the four largest numbers in \(\pi' \). Since \(\pi' \) is potentially \(A_3 \)-graphical, \(\pi \) is potentially \(A_4 \)-graphical. Consequently, we may assume that

\[
n - 2 \geq d_1 \geq \cdots \geq d_4 \geq d_5 = \cdots = d_{d_1 + 2} \geq d_{d_1 + 3} \geq \cdots \geq d_n \geq 4.
\]

If \(d_4 > d_5 \), then by laying off \(d_{d_1 + 2} = l \) from \(\pi' \), the sequence \(\pi''' = (d_1 - 1, \ldots, d_l - 1, d_{l+1}, \ldots, d_{d_1 + 1}, d_{d_1 + 3}, \ldots, d_n) \) has no zero terms and \(\sigma(\pi''') = \sigma(\pi) - 2l \geq 4(n - 1) - 4 \). By Theorem 1.2, \(\pi''' \) is potentially \(A_3 \)-graphical. Since \(d_1 - 1, d_2 - 1, d_3 - 1, \) and \(d_4 - 1 \) are the four largest numbers in \(\pi''' \), \(\pi \) is potentially \(A_4 \)-graphical. Hence, we may assume that

\[
n - 2 \geq d_1 \geq \cdots \geq d_4 = d_5 = \cdots = d_{d_1 + 2} \geq d_{d_1 + 3} \geq \cdots \geq d_n \geq 4.
\]

By Theorem 2.1, \(\pi \) is potentially \(P_4 \)-graphical.

ACKNOWLEDGMENTS

The authors thank Prof. A. R. Rao for sending us the references [7] and [8], and the referees for helpful comments.
Appendix

\[\pi_2: \quad \pi_3: \quad \pi_4: \]

\[\pi_5: \quad \pi_6: \quad \pi_7: \]

\[\pi_8: \quad \pi_9: \quad \pi_{10}: \]

\[\pi_{11}: \quad \pi_{12}: \quad \pi_{13}: \]

FIGURE 1. Potentially λ_4-graphical sequences.
FIGURE 1. (continued)
References