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Abstract – We derive a scaling ansatz for the mean first passage time (MFPT) τ of a driven
polymer chain through a nanopore as a function of the chain length N , the external bias f , and
the effective pore-polymer friction η, and demonstrate that the pore-polymer interaction, which
we introduce as a correction term to asymptotic scaling, is responsible for the dominant finite-size
effect. This ansatz provides a simple procedure to extract the asymptotic τ in the large-N limit
from a finite chain length data (obtained either from experiment or simulation) by eliminating the
correction-to-scaling term. We validate the ansatz applying it on a large set of data for τ obtained
using Brownian dynamics (BD) and Brownian dynamics tension propagation (BDTP) simulation
results (Ikonen T. et al., Phys. Rev. E, 85 (2012) 051803; J. Chem. Phys., 137 (2013) 085101)
for a variety of combination for N , f , and η. As an important practical application we demonstrate
how the rescaling procedure can be used to quantitatively estimate the magnitude of the pore-
polymer interaction from simulations or experimental data. Finally, we extend the BDTP theory
to incorporate Zimm dynamics and find that the asymptotic results for τ (or the translocation
exponent) remains unaltered with the inclusion of the hydrodynamics interactions (HI), although
the convergence is slower than what we observe for Rouse dynamics. Using the rescaling ansatz
we find that these new findings are in good agreement with the existing experimental results as
well as with lattice Boltzmann results for driven polymer translocation (PT) for small N .

Copyright c© EPLA, 2013

Introduction. – The transport of a polymer through
a nano-sized pore occurs in many biological processes
and functions, including DNA and RNA translocation
through nuclear pores, protein transport across mem-
brane channels and virus injection [1]. The translocation
process is also envisioned to have several biotechnologi-
cal applications in gene therapy, drug delivery and rapid
DNA sequencing [2–4]. Naturally, polymer translocation
(PT) problem (for reviews, see, e.g., refs. [5,6]) has at-
tracted considerable attention among broad scientific dis-
ciplines [2–44]. Of particular interest is the case of driven
PT where the segment of the polymer inside the pore is
driven by an electric field, in which case one asks the

central question as to how the MFPT τ depends on the
chain length N , characterized by the translocation expo-
nent α (τ ∝ Nα). A large number of experimental groups
have been exploring different variations of this method for
fast, portable and inexpensive DNA sequencing device. To
date, many aspects of driven PT has remained elusive and
offers theorists a number of unresolved issues to be settled.

Unlike unbiased translocation where the threading poly-
mer through the nanopore can be considered as a one-
dimensional diffusion across an entropic barrier [9,10],
the driven PT is essentially a non-equilibrium pro-
cess [18–21] which makes this apparently innocuous
problem intrinsically harder. A true non-equilibrium
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treatment was given first by Sakaue, using a phenomeno-
logical picture of tension propagation (TP) along the chain
backbone at the cis side [34]. Using force balance, mass
conservation, and self-similarity of the polymer [34–37],
Sakaue’s theory is analytically solvable but only in the
asymptotic limit of long chains when local effects, such
as, friction inside the pore, small variations of pore width
etc., become negligible. Therefore, this theory as such
cannot be used to compare results obtained from many
simulation studies and experiments on finite chains where
non-universal effects can be large and can play a signif-
icant role. Indeed for the case of driven PT, translo-
cation exponents obtained from different simulation and
theoretical studies are scattered in a broad range and of-
ten underscore the theoretical prediction which has not
been understood [23]. Therefore, a theory which will ac-
count for these effects for finite chain lengths and yet will
smoothly interpolate to the infinite chain limit is some-
thing which is thus far missing and badly needed to un-
derstand and elucidate the role of different contributing
factors to the translocation process.

One of the main purposes of this letter is to find a reason
for the scattered values of the scaling exponents reported
in the literature. We derive a scaling ansatz for the MFPT
〈τ〉 of a driven polymer chain through a nanopore as a
function of the chain length N , the external bias f , and
the pore-polymer interaction (friction) η, and demonstrate
that the pore-polymer interaction, which we introduce as a
correction term to asymptotic scaling is responsible for the
dominant finite-size effect. This ansatz i) provides a sim-
ple procedure to extract the asymptotic 〈τ〉 in the large-N
limit from a finite chain length data (obtained either from
experiment or simulations) by eliminating the correction-
to-scaling term, and ii) allows to exploit the rescaling pro-
cedure to quantitatively estimate the magnitude of the
pore-polymer interaction from simulations or experimen-
tal data which can be of immense practical value.

Having established rather conclusively (from a huge set
of simulation data that we gathered from BD and BDTP
studies as explained later in the text) we naturally became
ambitious to address the role of hydrodynamic interactions
(HIs) in this context. Our third significant result in this
letter is the iii) incorporation of Zimm dynamics into the
BDTP model that we introduced earlier and iv) show-
ing that in the presence of HIs the asymptotic behavior of
MFPT of driven PT remains unaltered, although the finite
chain effect is more acute. The existing lattice Boltzmann
(LB) simulation study by Fyta et al. [33] and experimen-
tal results for driven PT by Storm et al. [8] agree well
with our theory. Thus, we believe that these novel results
apart from resolving some of the long-standing issues will
promote further work on PT. We provide some of the pos-
sible extensions of these new results in the “Conclusions”
section.

Theory. – A thorough account of the TP theory for
the driven PT is given in [34,35,41,42] in the asymptotic N

limit, here we present some central results using relatively
simple arguments. To find the mean translocation time
τ (or the mean translocation velocity 〈v〉), for a chain of
length N , one needs to consider the force balance between
the driving force f and the drag force, as suggested, e.g.,
in ref. [8]. In principle, the total drag has three contribu-
tions: the friction due to the cis side subchain and the sol-
vent, the corresponding friction for the trans side subchain
and the friction of the chain portion inside the pore. For
driving forces typically used in experiments and simula-
tions, the trans side has an almost negligible contribution
to the overall friction [42,43]. Therefore, the effective fric-
tion Γ can be approximately written as Γ(t) = ηcis(t)+ηp,
where ηcis is the friction of the cis side subchain and ηp

is the (effective) pore friction. If the length of the pore,
lp, is small compared to the contour length of the chain,
lp � aN (with a the segment length), the number of seg-
ments occupying the pore and thus the pore friction ηp can
be regarded as constant during the translocation process.

The friction due to the cis side subchain, on the
other hand, depends explicitly on the number of mobile
monomers on the cis side. Due to the non-equilibrium
nature of the problem, this number depends not only
on the chain length N but also on time t [17,18,32,
34,36,37,40–43]. Solved as a function of time, ηcis(t)
shows non-monotonic behavior that suggests the division
of the translocation process into two stages: the ten-
sion propagation stage of increasing friction, and the post
propagation stage of decreasing friction [42,43]. However,
averaged over the whole process, the time-averaged ηcis is
approximately given as 〈ηcis〉 ∼ Nν , leading to the asymp-
totic (N → ∞) scaling of the mean translocation time as
τ ∼ Nν+1 [40–43].

The full solution of ηcis(t) is rather involved (cf.
refs. [42,43]). Here we show that the result 〈ηcis〉 ∼ Nν

can be obtained with a relatively simple argument, based
in part on the work of DiMarzio et al. [45]. In equi-
librium, the polymer assumes a configuration comprising
several loops. Before the driving force can be transmit-
ted to any given chain segment, the preceding loops need
to be straightened. Only then can the tension propagate
along the chain backbone. Therefore, the effective fric-
tion 〈ηcis〉 is dominated by the motion of the unraveling
loop closest to the pore, with the chain segments further
away from the pore remaining essentially immobile. To
estimate the average length of the loop, we note that for
large N , the end-to-end distance of the polymer is given
by the usual Flory scaling form R ∼ aNν . To estimate the
number of times the chain intersects a plane of thickness
dR parallelly to the membrane (see fig. 1), we note that
the number of segments within the plane, dN , is propor-
tional to the average line density of monomers, N/R, giv-
ing dN ∼ N1−νdR. This is proportional to the number of
times the chain intersects the plane and also proportional
to the average number of loops in the chain (for large
N). The average length of one loop is thus proportional
to N/N1−ν = Nν . The number of mobile monomers at

38001-p2



Influence of pore friction on the universal aspects of driven polymer translocation

dR

N

Fig. 1: (Color online) A schematic illustration showing the
configuration of the cis side subchain of the polymer, with one
end confined inside the pore. Intersections of the polymer with
an imaginary plane of thickness dR oriented parallelly to the
wall are indicated by the red circles. The average number of
times a polymer of length N intersects the plane is proportional
to N1−ν .

any given time is therefore proportional to Nν , and the
friction due to the drag on the cis side is 〈ηcis〉 ∼ ηNν ,
where η is the solvent friction per chain segment. The
total effective, time-averaged friction is thus of the form
〈Γ〉 ≈ CηNν + ηp, with C an N -independent constant.

For a sufficiently strong driving force f , one can ex-
press the mean translocation time in terms of the average
translocation velocity 〈v〉. In a dissipative system, force
balance implies 〈v〉 = f/〈Γ〉. Since the driven transloca-
tion proceeds via gradual uncoiling of the whole chain, the
relevant length scale of the process is the chain’s contour
length, aN (note that this is in contrast with the assump-
tion of ref. [8], where the uniform contraction of the cis
side chain suggests the radius of gyration as the relevant
length scale). Thus, τ = aN/〈v〉 = aN〈Γ〉/f . With re-
spect to the chain length, the complete relation is then

τ ≈ A(f, η)N1+ν + B(f, η)η̃pN, (1)

where A and B are independent of N , and η̃p ≡ ηp/η is the
dimensionless pore friction. This expansion of τ for finite
N is one of the main results in this paper. It shows that
the influence of the pore friction appears as a correction-to-
scaling to the asymptotic value of the translocation expo-
nent α, defined via τ ∼ Nα, which approaches α∞ = 1+ν
from below as

α(N) = 1 +
ν

1 + B
A η̃pN−ν

. (2)

Here, the effective scaling exponent α(N) is defined as
α(N) = d ln τ

d ln N . In addition, eqs. (1) and (2) suggest that
if the dimensionless pore friction increases (e.g., by either
decreasing the solvent friction η or by reducing the pore
radius), the exponent α becomes smaller, especially for

relatively short chains, in agreement with the theory [43]
and MD simulations [20,22,28,31].

Our scaling analysis leaves the exact values of A and
B in eqs. (1) and (2) undefined. However, we can expect
the ratio B/A to be of the order of unity. In fact, one
may use the tension propagation formalism [34–37,42,43]
in the strong-stretching approximation to derive the value
B/A = 1+ν ≈ 1.588. While we do not expect this value to
match our simulations exactly (since, because of numerical
reasons, they will be in the stem-flower scaling regime,
instead of the strong-stretching regime), it should give us
an indication of the expected range of B/A. The tension
propagation formalism can also be used to derive a second
correction-to-scaling term, proportional to N2ν . However,
this term will be overshadowed by the other two terms, as
the pore friction term already competes with the N1+ν

term. The argument holds even for significantly larger
pore diameters, because the pore friction term has a non-
vanishing contribution from the monomers in the vicinity
of the pore [43].

Results and discussion. – To clarify the influence of
the pore friction on the translocation time, we have solved
τ time as a function of the chain length for different pore
frictions using the BDTP model [42,43]. Using τ(N) ∼
Nα, one can extract the effective scaling exponent α(N)
as α(N) = d ln τ

d ln N , cf. eq. (2). Because of the linear sub-
leading term in eq. (1), α has a weak dependence on the
chain length, and approaches 1 + ν extremely slowly with
typical values of the parameters. Naturally, for larger η̃p,
the dependence on N is more pronounced, as shown in
fig. 2. The other parameter values used in solving the
BDTP model were f = 5.0 (driving force), kBT = 1.2
(temperature), and ν = 0.588.

To quantitatively show that the deviation from the
asymptotic limit is caused by the pore friction, we sub-
tract the correction-to-scaling term and define a rescaled
translocation time τ† as τ† = τ − Bη̃pN and the cor-
responding rescaled exponent as α†(N) ≡ d ln τ†

d ln N . Ac-
cording to eq. (1), the rescaled translocation time can be
expressed as

τ† = (τ − Bη̃pN) ∼ Nα†
, (3)

with the exponent α† independent of N at α† ≈ 1 + ν.
In practice, to obtain the rescaled τ†, one has to find the
numerical prefactor B by means of finite-size scaling. In
the inset of fig. 2 this is done by plotting the transloca-
tion time data in the form τ/N1+ν = A + Bη̃pN

−ν . The
coefficients A and B can then be obtained from a simple
linear least squares fit.

The rescaled exponent α† as obtained from the BDTP
model is shown in fig. 2 as solid symbols. All the curves
corresponding to different values of η̃p collapse onto a sin-
gle master curve within the numerical accuracy around
α† = 1 + ν, also coinciding with the ideal η̃p = 0 solu-
tion. For very short chains, the collapse is not perfect
because of secondary finite chain length effects that come
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Fig. 2: (Color online) Open symbols, main plot: the effective
exponent α(N) as a function of the chain length N for the
BDTP model solved for different ratios η̃p of pore and solvent
friction. Solid symbols: the same data rescaled to exclude the
effect of pore friction, showing the collapse of the data to the
asymptotic exponent 1+ν. Inset: the data collapse for different
η̃p on a (τ/N1+ν , η̃pN−ν) plot used to extract the finite-size
effect of the pore friction (see text for details). Numerical errors
are of the order of the symbol sizes, or smaller.

into play, and also because as a continuum level descrip-
tion the BDTP model may not accurately describe very
short chains.

We have confirmed that the rescaling scheme works for
raw data obtained from MD simulations, too, by per-
forming Langevin thermostatted MD simulations using
the Kremer-Grest bead-spring model [46] with typical pa-
rameters found in the literature (for a more detailed de-
scription, see, e.g., refs. [42,43]). We used the parameters
f = 5.0, kBT = 1.2, η = 0.7, and pore diameters dp of
2.0, 1.6, and 1.4, and pore length lp = 1.0 (both in units
of the segment length a), which correspond to the dimen-
sionless pore friction of about η̃p ≈ 5.6, 7.3 and 10.5, re-
spectively [43]. The chain lengths in the simulations were
10 ≤ N ≤ 300, with τ averaged over 5000–10000 successful
events for each N .

Plotting the effective exponent α(N) reveals the same
dependence on N as predicted by the theory. As shown
in fig. 3, the measured values show excellent agreement
with the theoretical values calculated from eq. (2) with
B/A = 1.38. As expected, this value is fairly close to
the predicted 1 + ν. Furthermore, by performing finite-
size scaling similar to the BDTP case, we see that the
rescaled exponent α† reaches the asymptotic value almost
immediately; within the statistical error, the value is α† =
1 + ν already for N = 20. This shows that eq. (1) is
valid for remarkably short chains and that the dominant
finite-size effect in the driven translocation process is the
frictional interaction between the pore and the polymer.

Finally, we would like to point out another important
feature of the scaling solution. Used in reverse, the finite-
size scaling procedure can be used to estimate the term
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Fig. 3: (Color online) Open symbols, main plot: the effective
exponent α(N) as a function of the chain length N from MD
simulations with three different pore diameters (black squares:
dp = 2.0; red circles: dp = 1.6; blue triangles: dp = 1.4). The
solid lines correspond to the theoretical value calculated from
eq. (2), with the fitting parameter B/A = 1.38. Solid symbols:
the same data rescaled as in fig. 2, showing the collapse to the
value α† = 1 + ν (dashed line). Inset: finite-size scaling plot
used to extract the contribution of the pore friction.

B
A η̃p by varying η̃p so that the rescaled exponent becomes
independent of N at α† ≈ 1+ ν. This can be done for any
geometry that satisfies lp � aN . For instance, one could
perform the measurement for pores of different diameters
and use a relation between the diameter and pore friction
(see, e.g., refs. [8,43]) to determine both the ratio B/A
and the pore friction η̃p separately from the data. This
should be quite feasible, since the ratio B/A is expected
to have only a weak dependence on the pore geometry,
and thus slight changes in pore geometry will be reflected
mostly in η̃p. While measuring the pore friction directly
from the monomer waiting time distribution as outlined in
refs. [42,43] is more accurate, the reverse scaling procedure
may be used even if the waiting time distribution is not
available, as is typically the case in experiments.

Because the driven polymer translocation problem is in-
herently a dynamical, non-equilibrium process, it is ex-
pected that hydrodynamic interactions (HIs) from solvent
should play a role. In the simplest approximation, the
HIs can be included by considering the Zimm type of fric-
tion instead of the Rouse friction as in Langevin dynamics
simulations. This means writing down the force balance
condition such that the drag force (and the friction ηcis) is
proportional to the linear length of the mobile subchain on
the cis side, instead of being proportional to the number
of mobile monomers. The rationale is that for interme-
diate forces, when the cis side subchain adopts a shape
reminiscent of a trumpet (or a stem-flower), the solvent
inside the trumpet is also set in motion and therefore the
monomers inside the trumpet do not fully contribute to
the drag force. Therefore, the overall drag force from the
cis side subchain should be slightly smaller for the Zimm
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Fig. 4: (Color online) Main plot: the effective exponent α(N)
as a function of the chain length N for the BDTP model with
Rouse friction (black squares) and Zimm friction (blue circles)
for η̃p ≈ 7.14, and for Zimm friction and η̃p = 0 (light blue
solid line). Inset: the mean translocation time τ as a function
of the chain length N for the Rouse (solid black line) and Zimm
friction (blue dashed line) for η̃p ≈ 7.14. Numerical errors are
of the order of the symbol sizes, or smaller.

case. However, since the maximum linear length of the
mobile part of the cis side subchain is still given by the
end-to-end distance R ∼ aNν , we expect eq. (1) to hold
even in this case, although with a smaller prefactor A in
the leading term.

To test this simple argument, we have implemented the
Zimm friction of the cis side subchain into the BDTP
model. To this end, one merely modifies the force balance
equation (e.g., eq. (A1) in ref. [42]) so that the drag force
is given by the size of the tension blob (ξ) instead of the
number of monomers within the blob (ξ1/ν). This amounts
to replacing the force balance equation of Rouse type as
fRouse
drag (x) = 1

a

∫ x

−X
ηv(x′)[ξ(x′)/a]1/νdx′ → fZimm

drag (x) =
1
a

∫ x

−X ηv(x′)dx′, where v(x) is the instantaneous velocity
of the monomers at position x, and x = −X is the location
of the last mobile monomer. One then carries out the same
numerical implementation as described in refs. [42,43] us-
ing the modified force balance equation. The difference
between the Zimm and Rouse frictions in the context of
the tension propagation formalism is also further discussed
in refs. [34,36,37,40,41].

The comparison between the Rouse and Zimm dynam-
ics is shown in fig. 4. In both cases the BDTP model was
solved with f = 5.0, kBT = 1.2, η = 0.7, and η̃p ≈ 7.14
for up to N = 5 · 109. For the Rouse friction, the effective
exponent α(N) is consistently larger than for the Zimm
friction, and eventually approaches 1 + ν for large N . For
the Zimm friction, the approach to the symptomatic limit
is considerably slower. In fact, even for N ≈ 109, the
numerical value (α ≈ 1.57) still increases with N . To
illustrate the importance of the pore friction term to the
slow convergence, we have solved the model with zero pore
friction (η̃p = 0), showing considerably faster convergence.

Altogether, the numerical results in the large-N limit seem
to be in agreement with 1 + ν, which has also been pre-
dicted to be the asymptotic value using analytical approx-
imations to the tension propagation theory [40,41].

In the short-chain regime, we obtain α(N = 100) ≈
1.37 ± 0.01 and α(N = 100) ≈ 1.31 ± 0.01 for the Rouse
and Zimm cases, respectively. Although a detailed com-
parison with experiments or hydrodynamical simulations
is difficult due to the lack of knowledge on the pore fric-
tion (η̃p), the numerical value of 1.31 seems to be in good
agreement with the experimental (α ≈ 1.27±0.03, ref. [8])
and lattice Boltzmann simulation results (α ≈ 1.28±0.01,
ref. [33]). In particular, the difference in the exponents
measured with and without HIs (0.06± 0.02) matches the
difference reported in ref. [33] (0.08±0.04). In addition, in
agreement with computer simulations [18,33], the overall
translocation time is reduced by the addition of the HIs,
as shown in the inset of fig. 4.

Conclusions. – In this work, we have proposed, using
theoretical scaling arguments, that the mean translocation
time 〈τ〉 of a polymer chain of length N driven through a
nanopore by an external bias f can be written as a sum
of two terms in the form τ ≈ A(f, η)N1+ν + B(f, η)η̃pN ,
where the solvent friction is characterized by η. The first
term is derived from the out-of-equilibrium dynamics of
the cis side subchain and dominates for large N , while
the second term stems from the interactions between the
polymer and the pore and remains significant for the
typical chain lengths in both experiments and computer
simulations. This unified scaling form is an important
physical result and powerful tool for the analysis of
driven translocation. By eliminating the correction-to-
scaling term one can isolate and quantify the effect of
pore friction by means of finite-size scaling. We have
demonstrated by using both a theoretical model of
translocation dynamics and molecular-dynamics simula-
tions that the rescaled exponent reaches the asymptotic
limit already for extremely short chains (N < 100),
whereas the conventionally defined exponent does not. In
addition, we argue that in the presence of hydrodynamic
interactions, the translocation time becomes shorter but
can still be expressed as a sum of the two terms. We
present results from the theoretical model proposed in
refs. [42,43] with hydrodynamic interactions, obtaining
quantitative agreement in the scaling exponent α with
both theoretical and experimental results reported in
the literature. The correction to the scaling ansatz can
in principle be generalized to incorporate other effects,
e.g., chain stiffness, cis-trans solvent asymmetry etc. to
study translocation dynamics of stiff biopolymers [44],
a problem which has attracted considerable attention to
understand translocation of protein and nucleic acids.
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