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Abstract – We present a unified scaling theory for the dynamics of monomers for dilute solutions
of semi-flexible polymers under good solvent conditions in the free draining limit. Our theory
encompasses the well-known regimes of mean square displacements (MSDs) of stiff chains growing
like t3/4 with time due to bending motions, and the Rouse-like regime t2ν/(1+2ν) where ν is the
Flory exponent describing the radius R of a swollen flexible coil. We identify how the prefactors
of these laws scale with the persistence length ℓp, and show that a crossover from stiff to flexible
behavior occurs at a MSD of order ℓ2p (at a time proportional to ℓ3p). A second crossover (to diffusive
motion) occurs when the MSD is of order R2. Large-scale molecular-dynamics simulations of a
bead-spring model with a bond bending potential (allowing to vary ℓp from 1 to 200 Lennard-
Jones units) provide compelling evidence for the theory, in D = 2 dimensions where ν = 3/4.
Our results should be valuable for understanding the dynamics of DNA (and other semi-flexible
biopolymers) adsorbed on substrates.

Copyright c© EPLA, 2014

Introduction and motivation. – Conformations and
dynamics of semi-flexible polymers in bulk as well as under
various applied fields, e.g., confining and stretching poten-
tials are of broad general interest in different disciplines of
science. Important biopolymers, e.g., dsDNA, F-Actin,
microtubules, all have finite bending rigidity κ, often with
large persistence lengths and hence the well-established
and matured theories for fully flexible chains often are
not adequate to describe these biopolymers as flexural
rigidity plays an important role in their mechanical re-
sponses [1]. Interests in these biopolymers continue to
remain unabated for multiple reasons. i) A deeper under-
standing of biopolymers, e.g., actin, titin, fibrin which of-
fer intriguing patterns with unusual viscoelastic responses
will allow to design bio-mimetic materials with improved
characteristics, not seen in synthetic polymers; ii) there
is a genuine need to develop efficient separation meth-
ods of biomolecules, e.g., DNA sequencing and separation
of proteins for various applications pertaining to health
and diseases. Finally, due to advent of sophisticated
single-molecule probes, e.g., fluorescence correlation spec-
troscopy, atomic force microscope spectroscopy, scanning

electron spectroscopy with which one can directly observe
the dynamics of the entire chain as well as fluorescence
labeled segments of these biomolecules [2–7] which offer
new findings to be further explored. Of course, also syn-
thetic semi-flexible polymers are of interest in many cir-
cumstances; e.g., adsorbed comb polymers [8] with densely
packed side chains (so-called “bottle brush” polymers [9])
can be studied with atomic force microscopy [8,9] and are
of interest for various applications. In these systems the
persistence length can be tuned by varying the side chain
length.
Historically the worm-like chain (WLC) model has been

the paradigm for theoretical studies of semi-flexible chains.
The Hamiltonian for the WLC is given by

H =
κ

2

∫ L

0

(

∂2r

∂s2

)2

ds, (1)

where L is the contour length, κ is the bending rigidity
and the integration is carried along the contour s [10,11].
One can show that in 2D and 3D dimensions ℓp = 2κ/kBT
and κ/kBT , respectively [12]. The model has been stud-
ied quite extensively applying path integral and other
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techniques [13–20] and exact expressions of various mo-
ments of the distribution of monomer distances along the
chain have been worked out. In particular, the end-to-end
distance for the WLC model is given by [10]

〈R2
N 〉

L2
=

2

np

(

1−
1

np
[1− exp(−np)]

)

, (2)

where L = (N − 1)δ is the contour length with δ being
the distance between neighboring monomeric units, and
np = L/ℓp. Here we recall that any linear polymer is
a chain molecule of N discrete monomeric units. In the
limit np ≫ 1, i.e., ℓp ≪ L one gets 〈R2

N 〉 = 2ℓpL and the
chain behaves like a Gaussian coil; for np ≪ 1, 〈R2

N 〉 = L2

and the chain behaves like a rod. Evidently the model
neglects the excluded-volume (EV) interaction and hence
interpolates between rod and Gaussian limit. Dynamics
of the WLC model has been explored using Langevin type
of equation [17–21]. One can expect that the dynamics
of a stiff-chain will be dominated by transverse fluctua-
tions (bending modes) [16] and that the short-time dy-
namics will be governed by the chain persistence length.
Indeed a relaxation dynamics using the WLC Hamilto-
nian (eq. (1)) approach yields an expression for fluctua-

tion 〈(∆h)2〉 ∼ ℓ−0.25
p t0.75, which crosses over to simple

diffusion at late time [17,18]. This t0.75 behavior has been
observed in many experiments using flouroscence probe
and video microscopy on F-actin network [2–4] and in
some simulations of polymer network [22,23]. Analyti-
cal studies of monomer dynamics in a WLC model, sim-
ilar to [17,18] have been carried out for a tagged particle
by Bullerjahn et al. [21] who also found that the trans-
verse MSD of a tagged particle obeys subdiffusive behavior
of t0.75.
While these predictions based on WLC model are con-

sistent with some of the experiments, the WLC model fails
to capture important aspects caused by EV effects [24,25]
invalidating eq. (2) in the limit np ≫ 1 both in 2D and
3D where the chain statistics in D spatial dimension sat-
isfies [26,27],

√

〈R2
N 〉 ∼ Nνℓ1/D+2

p δD+1/D+2. (3)

The Gaussian regime of WLC model is completely ab-
sent in 2D [24]; in 3D the Gaussian regime crosses over
at 〈R2

N 〉 ∼ ℓ3p to the 3D self-avoiding walk (SAW) of
eq. (3) [25]. Therefore, eq. (2) is not useful in 2D, al-
though it is used by many authors (e.g., [28]). Qualita-
tively, the importance of EV effects in 2D is the result
of probability theory that in 2D, every random walk on
a lattice eventually returns to the points already visited;
Hsu et al. [24] have shown that eq. (2) then is accurate in
the rod-like regime only. Furthermore, the angular corre-
lation between subsequent bonds along the chain, instead
of exponential, as predicted by the WLC model, exhibits
a power-law decay. Therefore, EV effect has a profound
effect on the statistics of stiff chains as well.

A key question is then how the EV effect affects the
monomer dynamics of a semi-flexible chain. We have
developed a scaling theory of monomer dynamics for a
compressible semi-flexible chain. We predict a novel dou-

ble crossover dynamics where the initial subdiffusive relax-

ation of the monomers characterized by a t0.75 law at an

intermediate time crosses over to the monomer dynamics

of a flexible chain t
2ν

1+2ν before reaching the purely diffusive

regime for the entire chain. This is the main theoretical
result of this letter. We support our claim by carrying
out extensive BD simulation for a large number of chain
lengths from N = 16 to N = 1024 and κ = 1.0–128, to
show that i) 〈R2

N 〉/(2Lℓp) as a function of L/ℓp for all
ratios L/ℓp collapse on the same master plot and that
the early time slope of unity (〈R2

N 〉 ∝ L2; rod limit) di-
rectly crosses over to slope of 0.5 (〈R2

N 〉 ∝ L1.5ℓ0.5p ; 2D
SAW, eq. (3)) clearly demonstrating the absence of Gaus-
sian regime in 2D. ii) Second, by monitoring the dynam-
ics of middle monomer g1(t) = 〈(rN/2(t) − rN/2(0))

2〉,
and comparing it with that of the center of mass g3(t) =
〈(rCM (t)− rCM (0))2〉, and the relative dynamics of g1(t)
with respect to rCM (t) expressed as g2(t) = 〈(rN/2(t) −
rCM (t))− (rN/2(0)− rCM (0))2〉 [29–32] we show data col-
lapse and monomer crossover dynamics. We believe these
studies of chain conformation and monomer dynamics will
be extremely valuable to interpret experimental results
and testing certain approximations in analytical theories
for semi-flexible chains [14,19,20].

Scaling theory. – We start with the eq. (4) below de-
rived by Granek and Maggs [17,18] using a Langevin dy-
namics framework for the WLC Hamiltonian of eq. (1)

g1(t) = δ2 (δ/ℓp)
1/4

(Wt)
3/4

. (4)

Here we have chosen the inverse of a monomer reorien-
tation rate W−1 as the unit of time. For early time the
monomer dynamics will be independent of the chain length
N until the fluctuations become of the order of ℓp. There-
fore, denoting the first crossover occurs at time τ1 and
substituting g1 = ℓ2p and t = τ1 in eq. (4) we immediately
get

Wτ1 = (ℓp/δ)
3
. (5)

For 0 < t ≤ W−1(ℓp/δ)
3 the monomer dynamics is

described by g1(t) ∼ t0.75 until g1(t) = ℓ2p at time
W−1(ℓp/δ)

3. The width of this region is independent of
N and solely a function of ℓp.
For τ1 < t < τ2 the dynamics is governed by the Rouse

relaxation of monomers of a fully flexible EV chain in 2D
characterized by g1(t) = t2ν/(1+2ν) = t0.6. τ2 characterizes
the onset of the purely diffusive regime when g1(τ2) =
〈R2

N 〉 [29]. We then obtain τ2 as follows:

g1(t) = ℓ2p (t/τ1)
3/5

, for t > τ1. (6)

Substituting τ1 from eq. (5) in the above

g1(t) = δ2 (ℓp/δ)
1/5

(Wt)
3/5

, for τ1 < t < τ2. (7)

18002-p2



Universal monomer dynamics

Fig. 1: (Colour on-line) Theoretical scaling plots for (N,κ) ≡
(256, 32) and (N,κ) ≡ (512, 8). Green and orange lines corre-
spond to g1(t) ∼ t0.75, blue and magenta lines correspond to
g1 ∼ t0.60, and the dashed and solid black lines correspond to
g3(t) ∼ t for N = 256 and 512, respectively. The width of each
region shows how these regimes depend on ℓp and N . Note
that in reality we expect a very gradual change of slope on the
log-log plot at both crossover times, rather than sharp kinks.

At t = τ2

g1(t = τ2) = 〈R2
N 〉 = ℓ1/2p δ3/2N3/2. (8)

Substituting eq. (7) for t = τ2 we get

Wτ2 = (ℓp/δ)
1
2 N5/2. (9)

We also note that the dynamics of the center of mass is
given by (omitting prefactors of order unity throughout)

g3(t) = δ2W
t

N
. (10)

The “phase diagram” for the crossover dynamics in terms
of N , and ℓp is shown in fig. 1. Notice that for a stiffer
chain the region for τ1 < t < τ2, for which we predict
g1(t) ∼ t0.6, becomes progressively small and therefore, is
hard to see in simulation for a stiffer chain.

Model and simulation results. – For polymers con-
fined on a 2D surface the hydrodynamic interactions are
essentially screened [33]. Hence we have used an ordinary
BD scheme to advance the position of the i-th monomer
�ri with the following equation of motion:

m�̈ri = −∇(ULJ + UFENE + Ubend)− Γ�vi + �ηi. (11)

Here ULJ(r) = 4ǫ[(σr )
12

− (σr )
6
] + ǫ for r ≤ 21/6σ, and

zero otherwise, σ is the effective diameter of a monomer,
and ǫ is the strength of the potential; the chain connec-
tivity is described by UFENE(r) = − 1

2kR
2
0 ln(1 − r2ij/R

2
0),

where �rij = �ri − �rj , k is the spring constant and R0

is the maximum allowed separation between connected
monomers [29], and Ubend(θi) = κ(1 − cos θi) represent
the three-body bond bending potential, where θi is the
angle between the bond vectors �bi−1 = �ri − �ri−1 and
�bi = �ri+1 − �ri, respectively, and κ is the measure of the

Fig. 2: (Colour on-line) (a) Comparison of ℓp = −1/ ln(〈cos θ〉)
and ℓp = 2κ/kBT . (b) Plot of

√

〈R2
N 〉/ℓ0.25p vs. N0.75 for var-

ious values of the chain stiffness parameter. All the data for
different stiffness parameters collapse on the same master plot.
The solid line is a fit to a straight line.

strength of the interaction. Γ is the monomer friction
coefficient and �ηi(t) is a Gaussian white noise with zero
mean at a temperature T , and satisfies the fluctuation-
dissipation relation: 〈�ηi(t) · �ηj(t

′)〉 = 4kBTΓ δij δ(t− t′) in
2D. The reduced units of length, time, and temperature
are chosen to be σ, σ

√

m
ǫ , and ǫ/kB, respectively. For the

spring potential we have chosen k = 30 and R0 = 1.5σ,
the friction coefficient Γ = 0.7, the temperature is kept at
1.2/kB.
We first calculated the chain persistence length ℓp as

a function of the bending rigidity κ. It is worth noting
that the persistence length must not be extracted from
the decay of bond orientational correlations at large dis-
tances along the chain, but even in the presence of the
EV interaction it still can be estimated from the average
〈cos θ〉 between subsequent bonds by the standard formula
ℓp = −1/ ln〈cos θ〉. We find that this estimate also coin-
cides with the continuum theory result ℓp = 2κ/kBT [10]
as shown in fig. 2(a) where we have used 〈cos θ〉 obtained
from the simulation to calculate ℓp for different combina-
tion of κ and N . Since the persistence length is an intrin-
sic local property of the chain, EV has very little effect on
it. This, although not the main focus of this letter, is a
new result1. Using ℓp obtained from simulation we then

1It is worth mentioning that a very common used definition of
persistence length in the literature is 〈�b1 · �RN 〉 [13,34] and has been
used in simulations [35]. An end-to-end vector cannot be a good
candidate to explore the local property of a chain, especially for long
chains [36]. We have checked that this definition does not simply
work and is somewhat misleading.
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Fig. 3: (Colour on-line) 〈〈R2
N〉/(2Lℓp) as a function of L/ℓp

obtained from different combinations of the chain length N and
the stiffness parameter κ (log-log scale). The solid (maroon)
line is a fit to the formula 〈R2

N 〉/2Lℓp ∼ (L/ℓp)
0.5 for 4 <

L/ℓp < 160. The inset shows the same for small values of
0 < L/ℓp < 1 which clearly indicates that limiting slope of
unity (〈R2

N〉 = L2) for L/ℓp → 0.

Fig. 4: (Colour on-line) Top: plot for g1(t) (black), g2(t) (red)
and g3(t) (green) as a function of time on a log-log scale for
chain length N = 512 and κ = 2.0. The blue and magenta
dashed lines correspond to straight lines g1(t) = At0.75, and
g1(t) = Bt0.60, respectively, where A and B are constants. Bot-
tom: same but for N = 1024 and κ = 4.0. Note that for a fully
flexible chain the slope of the curve log(gi) vs. log(t) would
monotonously increase with time, unlike in the present case.

verified that in 2D the end-to-end distance satisfies the re-
lation

√

〈R2
N 〉 ∼ Nνℓ0.25p [26,27] for various combinations

of ℓp and chain length N [37] as shown in fig. 2(b).

Figure 3 shows a plot of 〈R2
N 〉/2ℓpL as a function of

L/ℓp for a huge number of values of L/ℓp (∼ 100).

For L/ℓp ≪ 1 we observe that
〈R2

N 〉
2ℓpL

∼ (L/ℓp)
1.0, while

for L/ℓp ≫ 1 the data very nicely fit with
〈R2

N 〉
2ℓpL

∼

(L/ℓp)
0.50. This plot for chains with varying degree of

stiffness and chain length conclusively shows the absence

Fig. 5: (Colour on-line) Plot for g1(t)/ℓ
2
p (black and red) and

g2(t)/ℓ
2
p (blue and green) as a function of t/ℓ3p on a log-log scale

for chain lengths N = 512, κ = 2.0 and for N = 1024, κ = 4.0
respectively. The dot-dashed lines correspond to slopes 0.75
(magenta) and 0.6 (brown) respectively.

of Gaussian regime in a 2D EV chain earlier observed by
Hsu et al. from a lattice model [24] and observed in ex-
periments with single-stranded DNA on modified graphite
substrate [7].
We now present BD simulation results to confirm our

scaling theory. Results for g1(t), g2(t), and g3(t) shown
in fig. 4 unambiguously confirm our predictions. These
plots quite clearly show three distinct scaling regimes of
g1(t) ∼ t0.75 crossing over to g1(t) ∼ t0.6 and then merg-
ing with g3(t) ∼ t at late times. The double crossover re-
quired simulation of reasonably large chain lengths (N =
512− 1024) below which it is hard to see these crossovers
conclusively2. Figure 5 shows plot of g1(t)/ℓ

2
p as a func-

tion of rescaled time t/ℓ3p which shows data collapse for
various chain lengths N and κ again confirming the time
scales for these crossovers. As expected, the crossovers are
rather gradual, spread out over a decade in time t each,
and hence for chains that are not long enough the exis-
tence of these regimes is missed in less careful work.

Discussion and conclusions. – To summarize, we
have provided a new scaling theory of monomer dynam-
ics for semi-flexible polymers in 2D. Our theory predicts
novel crossover dynamics at an intermediate time when
the fluctuations of the monomers become greater than
ℓp. Around this time the monomer dynamics becomes
the same as that of a fully flexible chain characterized by
g1(t) ∼ t2ν/(1+2ν) = t0.6 in 2D. The theory expands the
existing scaling theory for monomer dynamics for a WLC
and that of a fully flexible chain to include the effect of
the chain persistence length. Fully flexible chains are self-
similar objects, while a polymer segment up to its own
persistence length is not. Therefore, it is expected that
for a length scale up to ℓp the dynamics will have different
characteristics due to bending modes arising out of the
chain stiffness. The EV effect is almost negligible for the

2The internal dynamics is strictly visible in the quantity g2(t),
which unlike g1(t), does not show a t0.6 behavior over a similar time
scale. This we believe is due to finite-size effects. We thank one of
the referees for pointing it out.

18002-p4



Universal monomer dynamics

t0.75 regime and therefore, our result is the same as that of
previous studies using the WLC Hamiltonian [17,18]. For
the t0.6 regime originating from the EV effect, where the
monomer dynamics is governed by the Rouse relaxation of
a fully flexible chain, our theory elucidates the exact role
of chain persistence length neither contained in the WLC
model nor seen before. We also validate our new scaling
theory by extensive BD simulation results.
We now comment on the generalization of our results in

3D and/or in the presence of hydrodynamic (HD) interac-
tions. In the free draining limit the t0.75 regime will remain
the same in 3D [17,18], but the intermediate Rouse relax-
ation regime will be characterized by t2ν/(1+2ν) = t0.54

(ν = 0.59 in 3D). Replacing Rouse relaxation by Zimm
relaxation one immediately sees that in the presence of
HD interaction the intermediate regime is characterized
by ∼ t2ν/3ν = t2/3 [38–40]. Notice that in this case ν can-
cels out and this relaxation should be the same in 2D and
3D. The exponent 2/3 has been seen experimentally in seg-
mental dynamics of fluorescent labeled λ-phage DNA by
Petrov et al. [6] and analyzed theoretically by Hinczewski
and Netz [39,40].
Finally, we provide a plausible explanation why this

double crossover is hard to see in single-molecule experi-
ments with biopolymers [2–6]. First of all, lacking any the-
oretical predictions for this phenomenon, researchers did
not specifically investigate the precise behavior of MSD
before the onset of overall chain diffusion very carefully.
A direct analysis of the MSD of an end labeled polymer
requires extreme caution for a time much shorter than the
longest relaxation time [6]. Much care indeed is needed,
as the following argument shows: a simple calculation for
fig. 1 shows that in order for the width of the t0.75 and
t0.60 to be equal (in logarithmic scale) one needs N = l2.2p

in 2D. In other words for a stiffer chain one needs a very
long chain to see the t0.60 regime. Indeed in our simulation
we found (not shown here) that for κ = 16, 32, and 64,
the results with a chain length up to N = 512 are largely
dominated by the t0.75 regime and we did not clearly see
the t0.60 regime. It is only after we lowered the value of
κ and used a longer chain (N = 1024), we identified these
two regimes quite conclusively (fig. 4). We suspect that
the same might happen in experiments [2]. For extreme
stiff chains the t0.6 (or t0.54 in 3D) region can be extremely
narrow and could either be missed or the rather smooth
double crossover might be mistakenly interpreted as a sin-
gle crossover (with t2/3 in 2D). Therefore, we believe that
these results will not only promote new experiments but
will be extremely valuable in identifying and interpret-
ing different scaling regimes for the monomer dynamics of
semi-flexible polymers.
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