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Abstract – Semiflexible polymers characterized by the contour length L and persistent length ℓp

confined in a spatial region D have been described as a series of “spherical blobs” and “deflecting
lines” by de Gennes and Odjik for ℓp < D and ℓp ≫ D, respectively. Recently new intermediate
regimes (extended de Gennes and Gauss-de Gennes) have been investigated by Tree et al. (Phys.
Rev. Lett., 110 (2013) 208103). In this letter we derive scaling relations to characterize these
transitions in terms of universal scaled fluctuations in d-dimension as a function of L, ℓp, and D,
and show that the Gauss-de Gennes regime is absent and the extended de Gennes regime is
vanishingly small for polymers confined in a 2D strip. We validate our claim by an extensive
Brownian dynamics (BD) simulation which also reveals that the prefactor A used to describe the
chain extension in the Odjik limit is independent of the physical dimension d and is the same as
previously found by Yang et al. (Phys. Rev. E, 76 (2007) 011804). Our studies are relevant for
optical maps of DNA stretched inside a nanostrip.
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Conformations and dynamics of DNA inside a
nanochannel have attracted considerable attention among
various disciplines of science and engineering [1].
Important biomolecules, such as, chromosomal DNAs, or
proteins whose functionalities are crucially dependent on
the exact sequence of the nucleotides or amino acids usu-
ally exist in highly compact conformations. By straight-
ening these molecules on a two-dimensional sheet [2–4] or
inside a nanochannel [5–10] it is possible to obtain the
structural details of these molecules. It is believed that a
complete characterization of the DNA sequence for each
individual and a proper understanding the role of genetic
variations will lead to personalized medicine for diseases,
such as, cancer [11]. DNA confined and stretched inside a
nanochannel offers significant promise towards this goal.
Unlike traditional sequencing using Sanger’s method [12],
which requires fragmentation and replication, the analysis
of a single DNA will be free from statistical errors and se-
quence gaps during reconstruction [11]. Naturally quests
for efficient but low-cost techniques have attracted con-
siderable attention. Along with optical maps [2,7], DNA
melting characteristics inside a nanochannel have recently
been studied showing further promises [9]. These recent
experiments have generated renewed interest in theoretical
and computational studies of confined polymers [13–24].

Confined DNAs inside nanochannels were often stud-
ied in high salt concentrations [1] where the charges of the
individual nucleotides are heavily screened [5,16]. Besides,
the resolution of optical studies set by the diffraction
limit is typically of the order of 100 base pairs. Under
these conditions a double-stranded DNA is often described
as a worm-like chain (WLC) [25] whose end-to-end dis-
tance 〈R2

bulk〉 = 2ℓpL
(

1 − ℓP

L [1 − exp (−L/ℓP )]
)

interpo-
lates from a rod (〈R2

bulk〉 ∼ L2 for L ≪ ℓp) to a Gaussian
coil (〈R2

bulk〉 ∼ 2Lℓp for L ≫ ℓp). However, for a very
long chain eventually the excluded-volume (EV) effect be-
comes important [26,27], and for L ≫ ℓp the end-to-end
distance in d dimensions should be characterized by the
bulk conformation of a swollen semiflexible chain [28,29],

√

〈R2
bulk〉 = a

(

L

a

)
3

d+2
(

ℓp

a

)
1

d+2

, (1)

where a is the effective width of the chain. It is notewor-
thy that while in 3D there is a broad Gaussian regime for
L � ℓp [26,27] before EV effects become important, in two
dimensions (2D) the intermediate Gaussian regime is ab-
sent due to the severe dominance of the EV effect [30,31].

Recently confined polymers in rectangular, cylindrical
and triangular channels have been studied by several
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groups [13–24]. One first sees the effect of the con-
finement (described by the length of the cross-section of
the channel D) for D < Rg, where Rg is the radius of
gyration of the chain. This limit has been identified as
the Flory-de Gennes regime where chain conformations
can be described as a series of spherical blobs of size
D [32,33]. A further decrease of the ratio D/Rg first
leads to an extended de Gennes regime with anisotropic
blobs followed by a Gaussian regime analogous to the
3D bulk case, which has been referred to as the Gauss-
de Gennes regime [17]; for extreme confinement when
ℓp ≫ D, the blob picture breaks down and the chain en-
ters into the Odjik regime [34,35] where the chain confor-
mations are described as a series of straight segments de-
flected from the confining wall [15]. While both de Gennes
and Odjik regimes are well established, the characteristics
of the transition regions (the extended de Gennes and the
Gaussian regimes) have been the main subject of several
recent studies [15–17,19]. However, the extension of the
confined DNA in the extended de Gennes regime has been
determined to be the same as in the de Gennes regime by
minimizing the free energy [1,16,19], so making a differ-
ence of these two regimes has been either difficult or not
evident [16,17].

Confined chains inside 3D nanochannels exhibit anal-
ogous regimes as found in their respective bulk counter-
parts [17]. In this letter we study confined DNA in a
2D strip geometry. As mentioned before, that unlike in
3D, the bulk Gaussian regime does not exist for semi-
flexible chains in 2D [30,31]. Therefore, one wonders, if
regimes of confined DNA in 2D will follow their corre-
sponding bulk counterpart. The second motivation comes
from the observation that the Flory exponent in 2D (0.75)
is significantly larger than the corresponding exponent in
3D (0.588) which implies that a chain is more elongated
in a 2D strip rather than in a tube of the same width
D. Therefore, the elongation would be more profitable
by further reducing the physical dimension of the region.
Finally, in the Odjik limit, prior theoretical and numeri-
cal results [13] have indicated that the prefactor A in the
expression for the chain elongation (see eq. (9)) is nearly
independent of the shape of the nanochannel. By study-
ing elongation along a 2D strip, we further observe that
this constant is almost the same as the values in 3D in-
dicating that this constant is independent of the spatial
dimension. While in 3D the extended de Gennes limit is
somewhat controversial, we provide scaling arguments for
a 2D strip and validate by carrying out the BD simulation
that the extended de Gennes regime is vanishingly small.
This result along with the absence of a Gaussian regime
in a 2D strip geometry implies that a 2D strip is a cleaner
system to study a stretched chain as the conformations
interpolate between de Gennes and Odjik regimes only,
and, therefore, it is another reason to think about design-
ing DNA elongation experiments inside a 2D strip.

de Gennes regime: The starting point of our theoreti-
cal analysis is the ansatz for the normalized free energy

F/kBT of confinement along a tube axis first proposed
by Jun, Thirumalai, and Ha [36], later used for a square
channel [16] and a slit [19], and is given by

F/kBT =
X2

(L/Lblob)D2
+ D

(L/Lblob)
2

X
, (2)

and the expression for the end-to-end distance of a swollen
semiflexible chain as given by eq. (1). Here X is the ex-
tension along the tube/strip axis, and Lblob the contour
length of the chain in a blob [32,33], kB is the Boltz-
mann constant, and T is the temperature. The dimen-
sion dependence comes from the chain statistics for Lblob

(eq. (1)). In order to contrast the results for polymers
confined in a 2D strip with those for cylindrical, square,
and rectangular channels, in the following we derive ex-
pressions in terms of d spatial dimensions (d = 2 for a
strip and d = 3 for a tube). By differentiating eq. (2) with
respect to X , one can easily check i) X = Dnblob, where
nblob = L/Lblob is the number of blobs, ii) F/kBT ∼ nblob,
and iii) F/kBT ∼ L. For the de Gennes regime monomers
inside the blob are described by the conformation of a
swollen chain either in d = 2 (strip) or d = 3 (tube), so

that D = L
3/d+2

blob ℓ
1/d+2
p ad−2/d+2 (eq. (1)). It is then easy

to check that the elongation is given by

〈X〉de Gennes = Dnblob = L

(

D

a

)
1−d

3
(

ℓp

a

)
1
3

. (3)

Likewise, the second derivative of eq. (2) gives the effective
stiffness constant keff for the DNA polymer [1,6] under
confinement, so that the longitudinal fluctuation of the
extension 〈σ2〉 can be obtained as

〈σ2〉 =
kBT

keff

= La

(

ℓp

a

)
1
3

(

D

a

)

4−d

3

. (4)

Extended de Gennes regime: It was argued [1,15,16] that
the scaling relation eq. (1) for each spherical blob in the
de Gennes regime only holds true when the channel size D
and chain length L both are above certain critical values
D∗∗ and L∗∗, respectively, to be determined in the follow-
ing manner. When D < D∗∗, the EV repulsion becomes
less significant resulting in a local ideal chain behavior in
each blob, while it is strong enough to sustain the global
picture of linearly ordered blobs, each turning into an el-
lipsoid characterized by its major axis H (and of volume
∼ Dd−1H) along the long axis of the nanochannel1. The
critical length L∗∗ and the critical channel width D∗∗ can
be obtained by equating the size of an ideal chain and

a Flory coil in the bulk: D∗∗ ≃ (L∗∗ℓp)
1/2

≃ ℓ
1

d+2

p L
3

d+2

∗∗ ,
from which we get

L∗∗ ≃ a

(

ℓp

a

)
d

4−d

and D∗∗ ≃ a

(

ℓp

a

)
2

4−d

. (5)

1In this case one can use the same free-energy expression of eq. (2)
replacing D → H [17].
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Notice that L∗∗ ≃ l3pa
−2, D∗∗ ≃ l2pa

−1 in 3D while L∗∗ ≃
D∗∗ ≃ lp in 2D. Both ideal and EV effects coexist in this
regime [15]. This balance of ideal and EV behavior is
obtained by setting ad−2L2

blob/HDd−1 = 1 from which
the length H can be obtained as follows:

H =
√

Lblobℓp = ad−2 L2
blob

Dd−1
. (6)

Denoting Lblob as Lellip, from eq. (6) we get

Lellip = ℓp
1
3

(

Dd−1

ad−2

)

2
3

and H = ℓ
2
3
p

(

Dd−1

ad−2

)

1
3

. (7)

Replacing D → H, Lblob → Lellip in eq. (2) and mini-
mizing with respect to X , we get X = H(L/Lellip), and
substituting Lellip and H by eq. (7) we obtain eq. (3).
This completes the proof that the de Gennes regime and
the extended de Gennes regime cannot be differentiated
from the elongation of the chain.

However, by repeating the same procedure we note that,
unlike eq. (4), in the extended de Gennes regime the fluc-
tuation is different and is given by 〈σ2〉 = Lℓp. Therefore,
the de Gennes regime and the extended de Gennes regime
can be differentiated by measuring the characteristic fluc-
tuations in their respective chain extensions [16]. The
lower bound D∗ of the extended de Gennes regime where
it merges with the Gauss-de Gennes regime, following
Odijk’s scaling analysis [15] (which is also valid in 2D)
is given by D∗ ≃ cℓp, where the prefactor c � 1 (in [16]
it was found to be ≈ 2). Using eq. (5) we note that
while the range for the extended de Gennes regime be-
ing [D∗, D∗∗] = [cℓp, ℓ

2
p] is broad in 3D, it would be ei-

ther very narrow or vanishingly small to be observed in
[cℓp, D∗∗ ≃ ℓp] in 2D.

Gauss-de Gennes regime: Upon further decrease of the
confining region, for D < D∗ the EV effect plays no role,
and the DNA behaves as a Gaussian chain [15,17], so that

D = (Lblobℓp)
1/2

[17]. Then according to eq. (2), we have
the extension

〈X〉Gauss-de Gennes = L
ℓp

D
, (8)

which holds both in 2D and 3D. It is easy to check that
in this regime the fluctuation 〈σ2〉 = Lℓp, the same as in
the extended de Gennes regime.

While eq. (8) has been recently tested to be true for
3D [17] channels, similar studies have not been carried
out for confined polymers in 2D strips. Considering
the absence of Gaussian regime for a bulk 2D swollen
chain [30,31] one wonders if this new Gauss-de Gennes
phase will be observed in a 2D strip. The universal fluctu-
ations from our BD simulation studies (fig. 4) will provide
conclusive evidence for the absence of a Gaussian regime
inside a 2D strip.

Odjik regime: For ℓp ≫ D Odijk [34,35] argued that the
chain deflects back and forth off the wall with a deflection

i−1

i

i+1

i+2

i+3

θi

Fig. 1: (Colour on-line) Bead-spring model of a 2D polymer
confined in a 2D channel.

length of λ ≃ (ℓpD
2)1/3, and the extension of the confined

polymer can be written as2

〈X〉Odijk = L

[

1 − A

(

ℓp

D

)

−
2
3

]

, (9)

where A is a “universal”3 prefactor [13,14]. In this limit it
is easy to check that the the free energy and fluctuations
in chain length both in 2D and 3D are given by

F/kBT = B
L

(ℓpD2)1/3
and 〈σ2〉 =

LD2

ℓp
. (10)

Brownian dynamics (BD) simulation results: To provide
further support to our scaling analyses we have performed
Brownian dynamics (BD) simulation with a bead-
spring model for a swollen chain having pairwise re-
pulsive Lennard-Jones (LJ) interaction between any two
monomers (excluded volume), a finitely extensible non-
linear elastic (FENE) potential between the successive
beads (elastic-bond energy), and a three-body potential
Ubend = κ(1−cos θi), where θi (fig. 1) is the angle between
two consecutive bonds, and the parameter κ = 1

2
kBTℓp is

a measure of the chain stiffness proportional to the chain
persistence length ℓp. The DNA-wall interaction is also
modeled as LJ. We observed that during simulation the
average bond length stays at 0.97 with a fluctuation less
than 0.2%, and the bending potential hardly affects the
bond length. By monitoring 〈cos θ〉 we also find that
ℓp = −1/ ln (〈cos θ〉) ≡ 2κ/kBT to be the same as in a
WLC [31]. Numerical integration of the equation of mo-
tion with respect to time in the canonical ensemble was
done according to the algorithm developed by van Gun-
steren and Berendsen [39]. In our simulation we have
used reduced units of length, time, and temperature as
a, a

√

m
ǫ , ǫ/kB, respectively. We have chosen a large

number of combinations of 256 ≤ N ≤ 1024, the chain
persistence length 2 ≤ ℓp ≤ 270 (by varying κ from 1

2This result is valid both in two and three dimensions, as can be
seen fron the expansion of various averages for worm-like chains near
the rod limit [37,38].

3Analytic calculations [13] for a cylindrical/square channel sup-
ported by numerical calculations indicate that this prefactor A is
universal, although there is no general proof. Our results in this
letter also support this claim.
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Fig. 2: (Colour on-line) Dimensionless chain extension 〈X〉/L
as a function of (ℓp/D)1/3 for various combinations of chain
length N , persistence length ℓp, and width D of the confining
strip. The inset is the log-log plot 〈X〉/L as a function of ℓp/D
showing excellent data collapse with initial slope of 1/3 for
ℓp ≤ D verifying eq. (3).

to 160), and the strip width D = 18, 36, and 80 such
that the ratio lp/D is in the window 0.025 ≤ lp/D ≤ 15
and 1 ≤ L/ℓp ≤ 400. With these choices we cover experi-
mental study scales (the commonly used λ DNA in experi-
ments has a contour length L = 16.5 μm with a persistence
length ℓp ≃ 50 nm, and the channel diameter ranges be-
tween 10 nm and 200 nm [1]) and fully interpolate from the
de Gennes limit to the Odijk limit. The confined chains
were equilibrated for several Rouse relaxation times before
data were collected over a span of 10–25 Rouse relaxation
times to ensure convergence.

Figure 2 shows the normalized chain extension. All the
data for many combinations of L, ℓp, and D collapse onto
one master curve and show a smooth transition from the
de Gennes regime to the Odijk regime, which also indicates
the absence of the Gauss-de Gennes regime predicted by
eq. (8). For ℓp ≤ D an excellent linear fit of 〈X〉/L ∼
(ℓp/D)1/3 validates the theoretical prediction of de Gennes
regime (eq. (3)). For ℓp > D we used eq. (9) to fit the data
and the prefactor is determined to be Astrip = 0.171. With
prior reported values for this prefactor Asquare = 0.183
and Acylin = 0.170 [13,14], it indicates that the constant
A has little dependence on the physical spatial dimension
and nearly universal, being consistent with the fact that
one can show the validity of eq. (9) in both 3D and 2D.
In the log-log plot shown in the inset of fig. 2, the 1/3
power law dependence in the de Gennes regime expands
to lp/D ≃ 1 and the scaling relation, eq. (8), in the Gauss-
de Gennes regime is not seen at all. Furthermore, around
ℓp/D ≃ 1 we find that both eq. (3) as well as eq. (9) give
almost the same value for the extension, which shows that
a description by eq. (8) is not necessary indicating that
there is no Gauss-de Gennes regime between them.

We also observe another interesting feature by plotting
chain extensions 〈X〉 normalized by the corresponding

Fig. 3: (Colour on-line) Plot of the normalized extension by
the end-to-end distance Rbulk in the bulk. The inset shows the
plot of eq. (11a).

bulk end-to-end distance Rbulk as a function of ℓp/D which
exhibits a peak for each curve as shown in fig. 3. This peak
can be reconciled by noting that the normalized extensions
in the de Gennes and Odijk limits can be expressed as

〈X〉de Gennes

Rbulk

=

(

L

ℓp

)1/4 (

ℓp

D

)1/3

= L̃ℓ̃p
1/12

, (11a)

〈X〉Odijk

Rbulk

=
(

1 − Aℓ̃p
−2/3

)

L̃1/4 l̃p
−1/4

, (11b)

where we have used D as the unit of length (data points
in each curve in fig. 3 have the same D) so that L̃ = L/D
and ℓ̃p = ℓp/D, respectively, eqs. (11a) and (11b) readily
follow from eqs. (1), (3), and (9), respectively. One notices
that ℓp/D increases, i.e. ℓ̃p increases, and the extreme left
and right side of the peak correspond to de Gennes and
Odijk limits, respectively. But from eq. (11a) and (11b)
we note that for small values of ℓ̃p the normalized exten-

sion increases as ∼ l̃p
1/12

(de Gennes limit), whereas, for

large values of ℓ̃p, the normalized extension decreases as

∼ l̃p
−1/4

(Odijk limit), which implies that for a finite ex-
tension of a chain, the normalized extension will exhibit
a maximum as a function of ℓp/D. It is also noteworthy
that this maximum occurs for ℓp/D ∼ 1 at the confluence
of the de Gennes and Odijk limit. This description is also
consistent with the critical channel width D∗ ≃ 2ℓp which
marks the onset of the Odijk regime. We also plotted
eq. (11a) which is only valid in de Gennes regime (i.e., for
ℓp < D) at the inset of fig. 3 showing a data collapse
similar to that in fig. 2.

We now show simulation results for the fluctuation in
the chain extensions and compare these results with the
theoretical predictions. According to eq. (4) and eq. (10)
the normalized fluctuation 〈σ2〉/LD scales as (ℓp/D)1/3

and (ℓp/D)−1 in the de Gennes and Odjik limits, respec-
tively. Indeed we find in fig. 4 that the fluctuation grows as

(ℓp/D)
1/3

in the de Gennes regime until ℓp ≃ 0.5D, when

it enters the Odijk limit and decays as (ℓp/D)
−1

(inset).
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Fig. 4: (Colour on-line) Normalized fluctuation 〈σ2〉/LD as a
function of (ℓp/D)1/3 for the same combinations of N , ℓp, and
D as in fig. (2). The inset shows the (ℓp/D)−1 dependence in
the Odijk limit.

It is reassuring to note that since both the extended de
Gennes and the Gauss-de Gennes regimes do not occur
inside a 2D strip, in fig. 4 we do not see any intermediate
regime where 〈σ2〉/LD ∼ ℓp/D, the characteristic fluc-
tuations of both the extended de Gennes as well as the
Gauss-de Gennes regimes. The excellent data collapse for
the same combinations of N , ℓp, and D as in fig. 2 and
the sharp peak signifies the onset of a transition from the
de Gennes regime to the Odijk regime.

To summarize, in this letter we have provided a gen-
eralized scaling theory of confined DNA in d dimensions
and compared/contrasted the behavior in 2D with those
in 3D, recently reported in the literature. We validate the
scaling analyses by the BD simulation where we identify
each regime from excellent data collapse for the character-
istic universal dimensionless extensions and fluctuations
in terms of the dimensionless parameter ℓp/D. From the
scaling analysis and results from the BD simulation re-
ported in this letter, and prior work for 3D cylindrical
and square channels, we concur that the different regimes
of confined polymers follow their corresponding regimes in
the bulk. We find that for a 2D strip, the Gaussian regime
is absent and the extended de Gennes regime is vanishingly
small, so that the chain conformations inside the channel
are described either by the de Gennes or by the Odjik
regime. Thus, the chain conformations for a straightened
DNA inside a 2D strip are cleaner than for those of the
3D cylindrical and square geometries. Therefore, we be-
lieve that this work will motivate further experimental and
theoretical work to study confined DNA inside nanostrips.
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