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Abstract – We study translocation dynamics of a driven compressible semi-flexible chain con-
sisting of alternate blocks of stiff (S) and flexible (F ) segments of size m and n, respectively,
for different chain length N in two dimensions (2D). The free parameters in the model are the
bending rigidity κb which controls the three-body interaction term, the elastic constant kF in the
FENE (bond) potential between successive monomers, as well as the segmental lengths m and n
and the repeat unit p (N = mpnp) and the solvent viscosity γ. We demonstrate that due to the
change in entropic barrier and the inhomogeneous viscous drag on the chain backbone a variety
of scenarios are possible, amply manifested in the waiting time distribution of the translocating
chain. This information can be deconvoluted to extract the mechanical properties of the chain at
various length scales and thus can be used to nanopore based methods to probe bio-molecules,
such as DNA, RNA and proteins.
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Polymer translocation (PT) through a nanopore (NP)
is being explored for more than a decade as a NP-based
device has the potential to provide single-molecule detec-
tion when a DNA is driven electrophoretically through
a NP [1,2]. Unlike Sanger’s traditional method [3] this
does not require amplification; thus, one can in principle
analyze a single genome [4]. Progress towards this tar-
get offers challenges to overcome which have attracted a
lot of attention from various disciplines of sciences and
engineering [5,6]. A large fraction of theoretical and nu-
merical studies have been devoted to translocation stud-
ies of flexible homo-polymers [1,2]. However, to extract
sequence specific information for a DNA or a protein, as
they translocate and/or unfold through a nanopore, one
needs generalization of the model to account for how dif-
ferent segments of the translocating polymer interact with
the pore or the solvent. Translocation of the heteroge-
neous polymer has been studied in the past for a fully flex-
ible polymer where different segments encounter different
forces [7–10]. For periodic blocks one observes novel peri-
odic fringes from which information about the block length
can in principle be readily extracted [7,8]. Recently, de
Haan and Slater [11] have studied translocation of a rod-
coil polymer through a nanopore in the quasi-static limit

(weakly driven through a narrow pore and negligible fluid

viscosity). They have used the incremental mean first-
passage time (IMFPT) [12] approach and verified that in
the quasi-static limit the stiff and flexible segments can be
discriminated due to a local entropic mismatch between
the stiff and flexible segments reflected in the steps and
plateaus of the IMFPT of different segments.

In this letter we provide new insights for the driven het-
erogeneous PT through a NP where heterogeneity is intro-
duced by varying both the bond bending as well as the bond

stretching potentials. We study the translocation dynam-
ics in the presence of large fluid viscosity and strong driv-
ing force so that the system is not in the quasi-static limit
as in ref. [11]. Our studies are motivated by the observa-
tion that many bio-polymers, such as DNA and proteins,
exhibit helical and random coil segments whose elastic and
bending properties are very different, and so is the entropic
contribution due to the very different number and nature
of the polymeric conformations. It is also likely that a
double-stranded (ds) DNA can be in a partially melted
state whose coarse-grained (CG) description will require
non-uniform bond bending and bond-stretching potentials
for different regions. As a result, if one wants to develop
a NP-based device to detect and identify the translocat-
ing segments, a prior knowledge of their residence inside
the pore will be extremely useful. Naturally, the length
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Fig. 1: (Color online) Blob model of a polymer chain of chain
length (N = 24) and segmental length (m = 4). Each repeated
unit can be considered as a single blob of length ξ ∼ mβ . See
text.

scale of the heterogeneity ξ(n,m), where m and n are the
lengths of the stiff and flexible segments respectively in
each block, will obviously be an important parameter for
the analysis of the translocation problem. Thus, we first
show that a proper coarse graining of the model in units
of ξ will lead to the known results for the homopolymer
translocation. Then we further analyze the results at the
length scale of the blob size ξ and show how the chain
elasticity and the chain stiffness introduce fine prints in
the translocation process. We explain our findings using
Sakaue’s non-equilibrium tension propagation (TP) the-
ory [13] recently verified by us for a CG model of a semi-
flexible chain [14–16].

We have used Lennard-Jones (LJ), finitely extensible
nonlinear elastic (FENE) spring potential and a three-
body bond bending potential to mimic excluded volume
(EV), bond stretching between two successive monomers,
and stiffness of the chain, respectively, and applied a con-
stant external force (Fext = 5.0) at the pore in the translo-
cation direction. We have used the Brownian dynamics
(BD) scheme to study the heterogeneous PT problem. The
details of the BD methods are the same as in our recent
publications [14,15]. Initially we keep the elastic spring
constant (kF ) to be the same throughout the chain and
choose the bending stiffness κb = 0 and 16.0 for the fully
flexible and the stiff segments, respectively. Later we show
that by making the elastic potential for the relatively more
flexible part weaker one can reverse the relative friction
on the chain segments which results in novel waiting time
distributions serving as the fingerprint of the structural
motifs translocating through the pore.

Blob size and scaling : We consider heterogeneous chains
consisting of alternate symmetric (m = n) periodic blocks
of stiff and flexible segments of m monomers so that the
block length is 2m (m = 1, 2, 3, 4) as shown in fig. 1. First
we investigate how the alternate stiff and flexible segments
of equal length affect the end-to-end distance 〈RN (m)〉
and the mean first-passage time (MFPT) as a function of
the periodic block length (fig. 1), compared to a homo-
polymer of equal contour length N . To a first approxi-
mation one can think of this chain as a flexible chain of
N/2m segments, of a certain blob size ξ. The blob size
ξ in general will be a function of the block length and

Fig. 2: (Color online) (a) Log-log plot of blob size 〈ξ〉 as a
function of m for N = 64 (black plus), N = 128 (violet cross)
and N = 256 (orange right-triangle). The solid line represents
〈ξ〉 ∼ m0.87. Insets: (i) log-log plot of 〈RN 〉 as a function of N
for different m, (ii) collapse of 〈RN 〉/m0.12 ∼ Nν on the same
master plot. (b) Log-log plot of 〈τ〉 as a function of N for
different m. Inset: scaling and collapse of 〈τ〉/m0.09 ∼ N2ν .

bending rigidity of the flexible and stiff segments. For our
particular choice of the bending rigidity for the flexible
(κb = 0) and stiff (κb = 16) segments from simulation
results for N = 64–256 we find an expected power law
scaling ξ ∼ mβ , where β = 0.87 (fig. 2). Obviously the
exponent β is non-universal as it depends on κb and kF ,
but the universal aspects of the entire chain can be re-
gained through scaling with ξ as shown in fig. 2. The
conformation statistics of this basic unit ξ controls both
the conformation and translocation properties of the en-
tire chain as follows. We can write 〈RN 〉 ≡ 〈

√

R2
N 〉 ∼

〈ξ〉(N/2m)ν ∼ mβNν/mν , where ν is the Flory exponent.
This implies 〈RN 〉/Nν ∼ mβ−ν = m0.12 (where ν = 0.75
is the Flory exponent in 2D). Simulation data in the insets
of fig. 2(a) confirms our scaling prediction. Likewise, we
show that the MFPT 〈τ〉/N2ν ∼ m0.09. For small N it
has been found earlier that 〈τ〉 ∼ 〈RN 〉/N−ν ∼ N2ν [19].
Therefore, as expected by proper coarse graining by the el-
emental block we get back the results for the fully flexible
chain. We now show how characteristics of translocation
are affected by the chain heterogeneity.

Effect of chain heterogeneity on translocation: In pre-
senting the results we use the notation (FmSn)p/(SmFn)p

to denote p blocks of an ordered flexible/stiff and
stiff/flexible segments of length m and n, respectively,
(N = (m + n)p) and that the flexible/stiff segment en-
ters the pore first. Figure 3 and fig. 4 reveal quite a few
novel results that we explain using the TP theory. For
small block length the order in which the chain enters the
pore (either stiff or flexible segment) makes a big differ-
ence neither in the shape of the histogram (fig. 3(a)) nor
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Fig. 3: (Color online) Histograms of first-passage time for chain
length N = 128 and segmental length (a) m = 4, (b) m = 16,
(c) m = 32, and (d) m = 64. The dotted/solid lines rep-
resent the flexible(FmSm)/stiff(SmFm) segment entering the
pore first. For larger block size the effect of the order of entry
is clearly visible.
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Fig. 4: (Color online) MFPT (scaled by the MFPT of respec-
tive flexible homo-polymer) for chains FmSm and SmFm as
a function of m/N for chains N = 64 (green diamonds) and
N = 128 (blue up-triangles). The open/closed symbols cor-
respond to flexible/stiff segment entering the pore first. The
inset shows the ratio of the MFPT for SF to FS orientation.
The nanopore is capable of differentiating if a flexible (F) block
or a stiff (S) block entered the pore first.

in the MFPT (fig. 4). For larger block lengths the dif-
ference between the histograms for SmFm and FmSm is
quite clear and the dependence of τ on m is also different,
as seen in fig. 4. For the case in which the stiff portion
enters the pore first, the MFPT monotonically increases
but in the other case it shows a maximum (fig. 4). We
now explain this in terms of our recent analysis of the
translocation of a semi-flexible chain using the TP theory
where we showed that a stiffer chain takes a longer time
to translocate [14–16]. When the block lengths are small,
TP gets intermittently hindered as the tension propagates
through alternate stiff and flexible regions. For longer
blocks, tension can propagate more effectively unhindered
for a longer time. Therefore, when a long stiff segment

Fig. 5: (Color online) Waiting time distribution for a N = 128
chain with the block length equal to (a) 16 and (b) 32. Azure
open circles and blue filled squares correspond to the flexible
and stiff segments when the flexible segment enters the pore

first (FmSm). Magenta open circles and red filled squares
correspond to the flexible and stiff segments when the stiff

segment enters the pore first (SmFm). The solid green and
orange lines correspond to the waiting time distributions for
the corresponding stiff (κb = 16.0) and fully flexible (κb = 0.0)
homo-polymers, respectively.

enters the pore first, it increases the MFPT. But, when a
long flexible segment enters the pore first, it decreases the
MFPT. This results in a maximum in the 〈τ〉/〈τ〉0-vs.-m
curve for the FS orientation. The difference of MFPT for
SmFm and FmSm becomes maximum when m = N/2. For
relatively longer block lengths it makes a big difference in
MFPT.

Waiting time distribution: The total time spent by a
monomer inside the pore is defined as its waiting time
W (s), where s is the index of the monomer inside the pore
(translocation coordinate). The sum of the waiting time

for all monomers is the MFPT, i.e.
∑N

s=1 W (s) = 〈τ〉.
The effect of TP in stiff and flexible parts becomes most
visible in the waiting time distribution of the individual
monomers of the chain, as shown in fig. 5. We notice that
the envelopes for the corresponding homo-polymers for a
fully flexible chain (κb = 0, solid orange line) and for the
stiffer chain (κb = 16, solid green line), respectively, serve
as bounds for the heterogeneous chains [20]. As explained
in our previous publication [15] the TP time corresponds
to the maximum of these curves and shifts toward a lower
s value for a stiffer chain. Bearing this in mind we can
reconcile the fringe pattern in the light of the TP theory.
The pattern has the following features: i) The number of
fringes is equal to the number of blocks. This is because,
on average, stiffer portions take a longer time to translo-
cate. ii) The fringes for SmFm and FmSm are out of phase
for the same reason. iii) The chain heterogeneity affects
the waiting distribution most at an early time; beyond the
largest TP time (i.e., the peak position of the envelope for
κb = 0) the waiting time of the individual monomers (ex-
cept for those which are at the border separating the stiff
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and flexible segments) becomes identical to that of the
corresponding homogeneous chain. This again exemplifies
to analyze the driven translocation as a pre and post TP
events. It is to be noted that the maxima of the W (s) for
the heterogeneous chain lie between the maxima for the
corresponding homogeneous cases.

Effect of friction and driving force: In fig. 5 we chose a
value of the solvent friction associated to each monomer
γ = 0.7 for which we find that a stiffer segment translo-
cates slower through the pore. We now discuss how a
variation of the solvent friction will affect this conclusion.
We first show that the MFPT of a homopolymer of cer-
tain length exhibits a crossover as one varies the solvent
viscosity (fig. 6(a)). It is only for extremely small γ (quasi-

static limit) that the stiffer segment translocates faster as
studied in [11]. We also have reproduced the result for a
particular set of parameters (black line in fig. 6(b)). We
have shown 3D (instead of 2D) data in fig. 6(b) and (c)
only for better resolution. This crossover effect can be
explained using Sakaue’s tension propagation (TP) the-
ory [13]. When we use a larger value of γ (implying that
the stiffer segment translocates more slowly) and/or a bias
F , the IMFPT changes qualitatively (fig. 6(b)), which is
more prominently seen in the waiting time distribution of
the individual monomers (fig. 6(c)).

Using formulae for solvent friction from the bulk Γsolv =
γNν and pore friction Γpore ∼

Apore

d−1
+pγ which have been

discussed in refs. [17,21] we have checked that γ = 0.7 and
γ = 0.1 (for the chain lengths used in our simulation) cor-
respond to solvent dominated and pore-friction dominated
regimes, respectively. At high Γsolv, de-Haan and Slater
showed that the MFPT increases linearly with γ [22] for
a fully flexible chain. We see the same trend to be valid
also for semi-flexible chains, albeit beyond a critical value
(fig. 6(a)). But at low Γsolv, the dependence of MFPT
on γ becomes non-monotonic and it exhibits a minimum
for γ = γm [23]. This γm marks the onset of change in
the qualitative behavior of IMFPT or the waiting time
distribution of the individual monomers.

In the quasi-static limit, the significantly larger local
entropic barrier of a “coil” segment causes longer resi-
dence time. This effect is reflected as steps in the IMFPT
(fig. 6(b)) and peaks in the waiting time distribution
(fig. 6(c)). But for the non-equilibrium situation, when the
stiffer segment enters the pore, tension propagates faster
along the chain backbone [13,15] and more monomers in
the cis-side set in motion. For large solvent friction this
may produce larger viscous drag dominating over the local
entropic barrier resulting in the stiffer segments translo-
cating more slowly than the flexible segment. In this
case the peaks in the waiting time distribution disappear
(red color in fig. 6(c)). Accordingly, one sees qualita-
tive changes in the corresponding IMFPT (red color in
fig. 6(b)). Therefore, the relative fast/slow translocation
of rod/coil segments through the nanopore depends on
the relative values of pore friction, solvent friction, and
applied bias.

Fig. 6: (Color online) (a) The MFPT for flexible and semi-
flexible homopolymers of length N = 64 as a function of
solvent-monomer friction γ. (b) The IMFPT and (c) the wait-
ing time distribution as a function of the s-coordinate for a
chain (N = 70) in 3D with four stiff segments (κb = 100) each
of length (m = 10) and five flexible segments (κb = 0) each of
length (n = 6) provided that (for (b) and (c)) the first flexible
segment is already in the trans-side at t = 0.

Heterogeneous chain with a variable spring constant :
Finally we have extended these studies to see the
consequences of allowing the elastic potential between the
successive beads to be different in each block. This situ-
ation may occur when individual building blocks are con-
nected by linkers of different elasticity. Figure 7 shows
the various combination of the spring constants kF for the
heterogeneous chain. The first four graphs figs. 7(a)–(d)
correspond to the waiting time distribution for the chain
with equal number of monomers in each of the flexible
and stiff segments. Figure 7(a) is the graph where all the
F and S segments have the same kF = 100 qualitatively
similar to fig. 5. In figs. 7(a)–(d) one can see the effect of
the reduced value of kF for the flexible portion only.

Figures 7(e), (f) represent the waiting time distribu-
tions for the unequal length of the flexible and stiff seg-
ments. The flexible segment, being shorter, loses the
conformational entropic height but the contribution of
the FENE force in the direction of translocation is en-
hanced. We can see the effect of this enhancement in the
increased back and forth motion (low-frequency phonons
of larger amplitude to softer bonds) of the chain towards
the translocation direction. The smaller is the value of kF ,
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Fig. 7: (Color online) The waiting time distribution as a func-
tion of the s-coordinate for a chain (N = 128) with variable kF

and stiff-flexible segmental length ratio (m/n). The bending
stiffness κb for flexible (red circles) and stiff (blue squares) seg-
ments is 0 and 16, respectively. The elastic stiffness (kF ) is 100
for stiff segments ((a)–(f)). For flexible segments (a) kF = 100,
(b) kF = 40, (c) kF = 10, (d) kF = 5, (e) kF = 5 and (f)
kF = 5. The stiff and flexible segments are of equal length
except in (e) m : n = 5 : 3 and (f) m : n = 3 : 1.

the larger is the amplitude of the phonon modes, which
will result in a longer translocation time. Therefore, when
we reduce the strength of the FENE interaction for the
coil, the coil translocates slower and we got the waiting
time distribution picture inverted for the stiff and flexi-
ble segments as seen from a comparison of fig. 7(a) with
fig. 7(d). This will be most prominent if the stiff segments
were chosen as rigid rods.

Figures 7(c)–(f) show that the end monomer of each
semi-flexible segment has a larger waiting time. This in-
dicates a larger barrier height for the flexible segments.
Once the barrier is overcome by the first monomer of the
flexible segment, all the following monomers of the flexible
segments pass through the pore faster. The end monomer
of the flexible segment and the first monomer of the stiff
segment have the lowest waiting time, which means that
they have a negligible barrier to overcome. Furthermore a
visual comparison of fig. 5 and fig. 7 shows that the origin
of the details of the waiting time distributions possibly
can be differentiated by a spectral decomposition analysis
of the waiting time distribution.

To summarize, we have demonstrated how a nanopore
can sense structural heterogeneity of a bio-polymer driven
through a nanopore. Not only do monomers belonging to
the flexible and stiff part exhibit different waiting time dis-
tributions, but we have also demonstrated how a nanopore
can sense which end of the polymer enters the pore first.
Translating this information for a dsDNA will imply that

the nanopore can differentiate the 3-5 or 5-3 ends of a
translocating DNA. We have explained these results using
the concepts of the TP theory. We have clearly demon-
strated how the fluid viscosity and an external bias can
affect the relative speed of the stiff and flexible segments.
Furthermore, unlike previously reported studies [11] we,
for the first time, analyzed the interplay of the effects of
polymer heterogeneity caused by the variation of elastic
and bending stiffness. We have demonstrated that softer
elastic bonds raise the MFPT [24]. Therefore, an increase
in waiting time for a stiff segment can be compensated by
the waiting time for a flexible segment but having softer
elastic bonds. This observation can be exploited to tune
to control the passage of polymers through NP. It is in-
teresting to note from fig. 7 that the variation in wait-
ing time distribution arising out of the bending stiffness
variation and bond length variation can be differentiated.
Therefore, these patterns can serve as references to char-
acterize structural heterogeneity of an unknown polymer
translocating through a nanopore. We hope the results
reported in this letter will be helpful in deciphering the
translocating characteristic of bio-polymers observed ex-
perimentally.
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