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Abstract – We study the effect of the solvent viscosity on the translocation dynamics of a
semi-flexible polymer through a nano-pore. We use Langevin dynamics (LD) simulation in two
dimensions (2D) and demonstrate that at low viscosity a stiffer chain translocates through a
nano-pore faster compared to a more flexible chain and that the order of this translocation time
is reversed in the high-viscosity regime. Our simulation data shows a non-monotonic dependence
of the mean first passage time (MFPT) on solvent viscosity resulting in a minimum in the MFPT
at a particular value of the solvent viscosity. The qualitative behavior of the MFPT of the
translocating chain above and below this minimum is different. We have found that the value of
the solvent viscosity corresponding to this minimum in MFPT depends on chain stiffness, chain
length, applied external bias, and pore radius. We provide physically motivating arguments based
on the tension propagation (TP) theory of Sakaue and draw an analogy with the Kramers turnover
effect for the non-monotonic dependence of MPFT on viscosity.

Copyright c© EPLA, 2018

Polymer translocation (PT) through a nano-pore (NP)
is an important biological transport process. The physics
of PT has been studied extensively for more than a
decade [1,2] both for the unbiased as well as for the
driven translocation. Previous studies have shown that
the case of an unbiased or weakly biased translocation
through a NP in a solvent with low viscosity can be
considered as a quasi-static system [3]. When an exter-
nal bias is present, there have been ample evidences to
demonstrate that driven translocation through a NP is
a non-equilibrium problem [4–6] which has been ade-
quately captured by the tension propagation (TP) the-
ory of Sakaue [7–9]. In most of the previous studies the
external bias and the pore-friction have been used as vari-
ables to delineate the signatures of this non-equilibrim
process [4–6,10–13].

For the quasi-static case the translocating polymer is
viewed as either in equilibrium or close to equilibrium,
monomers on each side of the pore wall can be treated as
Brownian particles [14]. In this case the relaxation time
of the monomers are decoupled from the translocation
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time. Such process can be solved analytically by mapping
the problem into a one-dimensional entropic barrier cross-
ing in terms of the translocation (“s”) coordinate [15,16].
The driven PT through a NP on the contrary is a
non-equilibrium process [4,5] characterized by the viscous
drag on the chain backbone. Such process can be ex-
plained by Sakaue’s TP theory [7–9]. Ikonen et al. [11,12]
introduced a Brownian dynamics tension propagation
(BDTP) theory by implementing the TP concept into a
Brownian dynamics scheme to study the driven transloca-
tion of a finite chain characterized by the location of the
1st and the last monomer, and the monomer inside the
pore, respectively. In one of our previous publications,
we verified this theory numerically for semi-flexible chain
by observing the last-monomer dynamics [13]. Choosing
appropriate parameters for the non-equilibrium system,
we found that the MFPT of a semi-flexible chain through
a NP is larger than a flexible chain of the same contour
length. Later, Luo’s group [17,18] also validated our result
that for certain conditions, a semi-flexible chain translo-
cates slower than flexible chain. This result is counter-
intuitive and follows from the restriction introduced by
the NP from a combination of entropy and the viscous
drag due to the solvent particles and the NP. On the
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contrary de Haan and Slater, on their work [3], showed
that a flexible segment of “rod-coil” polymer takes longer
than a stiffer segment to translocate through a nano-pore
in the quasi-static limit. We will show in this paper that
this apparent discrepancy arises due to disparate choice of
parameters where, among other parameters, solvent vis-
cosity can qualitatively change the results as shown in
our recent study that under non-equilibrium condition the
more flexible part of a heterogeneous chain translocated
faster [19]. In this study we use LD simulation results to
further demonstrate that the translocation speed of a flex-
ible and a semi-flexible chain at low and high viscosity can
be reversed by changing the solvent condition only, which
would then explain and provide a comprehensive under-
standing of the translocation of stiff and flexible segments
through the NP.

Although the solvent viscosity plays an important role
in controlling the translocation dynamics, only a few ex-
perimental [20,21] and theoretical studies [22–24] have
been reported. Previous studies on the effect of solvent vis-
cosity on translocation dynamics showed that the MFPT
of a homogeneous flexible chain varies linearly with sol-
vent viscosity in the high-viscosity regime. de Haan and
Slater [24] showed that for unbiased translocation, the
MFPT is independent of solvent viscosity at low viscos-
ity below a threshold. Luo et al. [25] used high and
low values of the solvent viscosity to explain slow and
fast driven translocation. Some other works [23,24] also
present a brief discussion on the influence of solvent vis-
cosity on PT. However, these studies are either for the
quasi-static regime or for the non-equilibrium regime of
driven translocation.

The purpose of this paper is to show that just by vary-
ing the solvent viscosity one can interpolate between the
quasi-static and the driven translocation limit and can
make qualitative change in the translocation dynamics
of stiff and fully flexible chain. i) We show that unlike
unbiased translocation, the MFPT for a driven translo-
cation at very low solvent viscosity shows non-monotonic
dependence on viscosity exhibiting a minimum at a certain
value. ii) We will use this result to explain how a flex-
ible/stiff chain translocates faster at high-/low-viscosity
regime. iii) We will further show that at high viscosity
the translocation thorough a NP is mainly controlled by a
viscous drag on the chain backbone, PT at the low viscos-
ity is determined by the combined effect of conformational
entropy, pore friction, osmotic pressure from the trans-side
and an applied external bias.

The non-monotonic dependence of the MFPT on the
viscosity motivated us to look at our simulation results in
the light of Kramers escape process and turnover effect.
As a matter fact the BD formalism that we have used
here has been used by others to study the escape rate
as a function of the solvent viscosity [26] Admittedly, the
original problem has only the solvent friction, while in our
case the escape of polymer from the cis- to the trans-side
encounters pore friction and other dynamically changing

environment arising out of the conformations of long chain
molecule and crowding effect.

The expression for the Kramers escape rate κ is given
by [27]

κ = Γe−Δh/kBT , (1)

where Γ is a prefactor which strongly depends on the fric-
tion coefficient γ of the system, Δh is the height of the free
energy barrier, kB is Boltzmann constant and T is the ab-
solute temperature. Of particular interest to our study are
the results for the escape rates κ1 and κ2 in the two ex-
treme limits of very small and large friction, respectively,
given by [27–30]:

κ1 =
Δhe−Δh/kBT

2πkBT
γ, (2a)

and

κ2 =
ω0

2π
e−Δh/kBT

[√
1 +

γ2

4ω2
b

− γ

2ωb

]
. (2b)

Here, ω0 and ωb are the oscillation frequencies near the
bottom of the metastable minimum and near the top
of the barrier, respectively. According to these equa-
tions, the escape rate increases as friction increases at
the low damping limit (eq. (2a)), whereas the rate de-
creases on increasing the friction at the high damping
limit (eq. (2b)). Equations (2a) and (2b) describe the well
known “Kramers turnover effect”. Evidently, it has been
quite tempting to find the rate constant for the whole
regime and a large number of authors have addressed
this problem and have provided approximate interpola-
tion formulas [30]. One simple method of interpolation
between the Kramers two damping limits of the above
two equations (eq. (2a) and eq. (2b)) [30] is a linear
combination:

κ−1 = a1κ
−1
1 + a2κ

−1
2 , (3a)

or

〈τ〉 =
a′
1

γ
+

1
ω0

· a′
2(√

1 + γ2

4ω2
b
− γ

2ωb

) . (3b)

Here, a1 and a2 are two arbitrary dimensionless constants,
and the dimensionless quantities a′

1 and a′
2 are expressed

in terms of a1 and a2 as follows:

a′
1 = 2πa1 ·

(
kBT

Δh

)
eΔh/kBT , (4a)

a′
2 = 2πa2 · eΔh/kBT . (4b)

Despite the complications involved due to contribution of
various factors, such as, polymer stiffness, pore friction,
crowding on the trans-side, etc., surprisingly, we find that
this ad hoc interpolation scheme captures the “turnover
effect” very well (see fig. 1) for the dependence of MFPT
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on friction, where we assume that the MFPT is inversely
proportional to the escape rate, i.e., 〈τ〉 = κ−1.

We have used a bead spring model [31] of a polymer
chain with excluded volume (EV) and performed Langevin
dynamics (LD) in 2D using an algorithm proposed by
Berendsen and Gunsteren [32] to integrate the Langevin
equation. The details of the simulation methods are the
same as in our previous publication [13].

Although LD simulation does not include the explicit
hydrodynamics, the viscosity of the solvent fluid can be
controlled implicitly by the friction coefficient γ. In terms
of reduced unit, the viscosity η is equivalent to the friction
coefficient (η ∼ γ). Using Stoke’s relation for solvent at
low Reynolds number (in 3 dimensions), one can derive the
unit for the viscosity of the implicit solvent to be equiva-
lent to γ̃/6πσ or

√
mε/6πσ2, where γ̃ is the Lennard-Jones

(LJ) unit of the monomer friction. Therefore, we observe
the effect of solvent viscosity on translocation dynamics
via the friction coefficient γ introduced in the Langevin
equation.

Similarly in our previous publication [13], the simu-
lation has been carried out in a constant temperature
(T = 1.2ε/kB) heat-bath. We used the cut-off for LJ-
interaction rc = 2

1
6 σ and finite extension non-linear elastic

(FENE) interaction R0 = 1.5σ. The strengths of LJ- and
FENE-interactions are fixed at ε and k = 30ε/σ2, respec-
tively. We vary the chain persistence length 
p by changing
the strength of the bending potential κb (κb = 1

2kBT
p/σ)
from 0ε to 100ε. The simulation results are averaged over
at least 2000 independent runs. We present the results of
simulation in terms of reduced units.

Viscosity dependence of MFPT: The effect of sol-
vent viscosity on a flexible chain translocating through
a nano-pore depends on the bias condition. For the un-
biased case, the translocation time remains independent
of solvent viscosity up to a “threshold viscosity” but in-
creases linearly [24] beyond the threshold. Under the ap-
plied external bias, there follows the same trend at high
viscosity [22,23]. But at low viscosity, we find that the
MFPT changes non-monotonically exhibiting a minimum
between two viscosity regimes (high and low). We ob-
serve this effect for a flexible chain under various exter-
nal bias at the pore within the intermediate force regime,
i.e. for kBT/σ ≤ F � (kBT/σ)Nν , where ν is the Flory
exponent. Figure 1(a) shows the effect of external bias
on the translocation dynamics of a flexible chain over a
range (from low to high) of the solvent friction γ. At high
solvent viscosity, consistent with previously reported re-
sults [10,33], MFPT varies according to 〈τ〉 ∼ γ/F δ, where
δ is an exponent of the order of unity. But, at low-viscosity
regime, the applied bias does not follow the same scaling
criterion, rather shows a non-monotonic dependence. Our
simulation data shows that the MFPT increases as γ de-
creases in the low-viscosity regime exhibiting a minimum
at γ = γm. The value of γm weakly depends on the ap-
plied bias. This weak variation of MFPT with γ in this
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Fig. 1: (Colour online) (a) The log-log plot of MFPT scaled
by F δ (δ = 0.9) as a function of solvent viscosity for various
applied external bias (F ranges from 2 to 6) for a fully flexible
chain (κb = 0) of length N = 64. (b) MFPT scaled by Nα,
where α = 1.5 is the effective translocation exponent, as a
function of solvent viscosity for three different flexible (κb = 0)
chains of lengths (N = 32, 64, and 128) driven by external bias
F = 5. The inset shows the effect of γ on scaling 〈τ〉 ∼ Nα for
the wide range of values for γ (0.005 to 3). The solid lines are
the simple fit of our simulation data to eq. (3b).

regime is reflected as a peak (which is larger for stronger
bias) in the waiting time distribution near the rear end of
the chain. The solid lines in fig. 1(a) and (b) are qualita-
tive fit to eq. (3b) with coefficients a′

1 and a′
2 which show

that our simulation results follow the “Kramers turnover
effect”. The coefficients carry the combined information of
Δh, ω0 and ωb. Therefore, the values of these coefficients
are different for each of the fitted lines in fig. 1.

Figure 1(b) shows the variation of MFPT for flexible
chains of various lengths as a function of solvent friction.
Previous studies have established [11,34] that the translo-
cation exponent α (〈τ〉 ∼ Nα) exhibits a serious finite-size
scaling effect. For the range of chain length that we have
used for this study (32 ≤ N ≤ 128) the translocation
exponent α ≈ 1.5. We have used this value of α to show
scaled plots of MFPT. The inset of fig. 1(b) shows that the
effective value of α depends on γ (for the chain lengths con-
sidered here, α < 1.5 at low viscosity and α > 1.5 at high
viscosity). In the very narrow range of γ, we find a clear
overlap of 〈τ〉/Nα (with α ∼ 1.5) for three different chain
lengths. At high viscosity, we find the variation of 〈τ〉/Nα

is completely linear with the slightly different (chain
length dependent) slopes as described in previous study
for an unbiased translocation [24]. We find the γm shifted
towards its smaller value for longer chain. This is similar
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Fig. 2: (Colour online) The effect of viscosity on MFPT of ho-
mogeneous chains of different lengths (a) N = 32, (b) N = 64,
and (c) N = 128 with different stiffness (κb = 0, 16 and 100).
The scaling of 〈τ〉 by N1.5 helps to compare the strength of
influence of viscosity on different chain lengths. The solid lines
represent the qualitative fit of our simulation data to eq. (3b).

to what reported in ref. [24] where the position of this min-
imum in the solvent viscosity shifts towards a lower value
for a longer chain for the unbiased translocation of a fully
flexible chain. This effect, for a longer chain, can be ex-
plained as the solvent friction from the bulk in the cis-side
dominates over the pore friction earlier when the solvent
viscosity increases from its smallest value. As mentioned
above, at high viscosity, the dynamics of a translocating
chain can be described by Sakaue’s [7–9] tension propa-
gation (TP) theory. But, at low viscosity, the dynamics
is dominated by the pore friction and can be described
by “entropic barrier crossing”. For unbiased transloca-
tion, the system attains its equilibrium state at γm (an
approximate threshold) below which the MFPT remains
almost independent of γ. In this case the chain entropy,
the frictional force due to the pore friction and the crowd-
ing effect of translocated chain-segments in the trans-side
control the translocation dynamics [35–39].

The dependence of the solvent viscosity also varies ac-
cording to the chain stiffness as shown in fig. 2. At high
viscosity, we find a stronger dependence of MFPT on γ
(larger slope) for a stiffer chain. At low viscosity, we find
the non-monotonic variation of MFPT against γ which ex-
hibits the minimum at lower value of γ (i.e. γflexible

m >
γstiff

m ). Since the slopes of the τ -γ curve for a flexible
chain and a semi-flexible one are different, they cross each
other at a certain point which implies that at viscosities
lower than the cross-point [3], the stiffer chain translo-
cates faster while above the cross-point the flexible chain
translocates faster [19]. In weakly biased condition, the
smaller the value of the solvent friction, the closer is the
system towards its equilibrium state. The translocation
dynamics of a polymer in the equilibrium state can be
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Fig. 3: (Colour online) Histograms of the first passage time for
different chain rigidity at (a) γ = 0.01 and (b) γ = 0.1 when
driven by a small force F = 2.

described as an entropic barrier crossing problem. This
regime is narrower for a stiffer chain because of the smaller
entropic barrier height. The entropic barrier for a rod-like
polymer is negligible, therefore we do not expect the non-
monotonic dependence of MFPT on γ. From the simula-
tion data (fig. 2(a) and (b)), we find that there exists, a
regime, albeit narrow, where a stiffer chain translocates
faster than the corresponding flexible chain of the same
length1.

This non-monotonic dependence is naturally reflected
in the histograms of the MFPT which clearly show a
crossover when the solvent friction increases from a very
low value. In fig. 3, we have plotted the histogram of the
first passage time as a function of γ for a driving force
F = 2 keeping the pore diameter Pd = 2.0. It is note-
worthy that the order of the peak values for the flexible
and stiff chains becomes reversed when γ increases from
0.01 to 0.1. Figure 3 provides conclusive evidence of re-
versal of MFPT as a function of the solvent viscosity and
chain stiffness. As in fig. 1, we have fitted our simulation
data in fig. 2 to eq. (3b) with the appropriate fitting co-
efficients. Although we do not have a deeper understand-
ing of how the polymer translocation through a nano-pore
problem can be mapped onto the Kramers barrier cross-
ing problem, the excellent fit for a large number of data
sets demonstrates that a simple interpolation scheme of
eq. (3b) works well for polymers of different stiffness.

Waiting time distribution: The waiting time distribu-
tion shows a clear picture of a translocation process. The
time spent by the s-th monomer at the pore is defined as
its waiting time W (s), s = 1, 2, 3, · · ·N , so that the total

1A movie demonstrating this counterintuitive situation can be
found online in the supplementary material suppl1.mpg, suppl2.mpg,
suppl3.mpg and suppl4.mpg.
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Fig. 4: (Colour online) The waiting time distribution for three
different chain rigidity κb and for various values (high to low)
of solvent viscosities (a) γ = 0.2, (b) γ = 0.1 and (c) γ = 0.01
for chain of length N = 64 driven by an weak force F = 2.

translocation time of the entire chain is

〈τ〉 =
s=N∑
s=1

W (s). (5)

We have shown the data for the waiting time distribution
obtained from the simulation of a chain of length N = 64
as a function of stiffness at three different values of γ to
gain a better understanding of the crossover and reversal
of the MFPT (fig. 4(a), (b) and (c)).

At the high-viscosity regime (fig. 4(a)), the non-
monotonic curve of the waiting time distribution has two
stages representing the pre- and post- TP processes sep-
arated by a peak (see blue curve with symbol “right
triangle” in fig. 5(b)) which corresponds to the tension
propagation time [11,12]. For a stiffer chain, we observe
a flat structure on the waiting time distribution near the
position of tension propagation. At low viscosity, we can-
not see the peak as in the high-viscosity regime. However,
we see a different peak in the waiting time distribution
(fig. 4(c)) right before finishing the translocation process
for the monomers at the chain end. This peak is due to
the combined effect of two resisting forces: pore friction
and osmotic pressure from the trans-side [35–39], both of
which are effective at the low-viscosity regime. The pore
friction is determined by its geometry and the velocity of
monomers residing inside the pore. The end-monomers of
the chain have significantly larger velocity at the pore and
hence experience larger pore friction. On increasing the
applied bias, the monomer velocity at the pore increases
which enhances the resisting force due to pore friction.
The frictional force due to the pore friction is [35]

fp ∼ γpf(t)
γR(t)

, (6)

where f(t) is the total effective force at the pore, R(t) is
the length of tensed segment of the chain in the cis-side
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Fig. 5: (Colour online) The waiting time distribution for a
flexible chain κb = 0 of length N = 64 (a) at low solvent
friction γ = 0.01 for various external biases in the intermediate
force range, (b) for various solvent frictions γ when the chain
is driven by a constant force F = 5.

at time t and γp is the effective pore friction. The pore
friction can be expressed as γp = Apore

Pd−1 + pγ, which has
been discussed in ref. [11]. Where, Apore is a constant that
depends on the pore geometry and p is the effective num-
ber of monomers inside the pore. From the above eq. (6),
we know fp ∝ f(t) which is mainly proportional to the ex-
ternal bias F . This implies that the peak on the waiting
time distribution, that appeared at the final stage of the
translocation process, becomes larger when applied bias
is stronger as shown in fig. 5(a). For a stiffer chain the
value of R(t) remains larger and since fp ∝ 1

R(t) , the re-
sisting force at the pore decreases which causes the peak
to decrease as the stiffness of the chain increases. The
osmotic pressure also resists the translocation process as
the number of monomers in the trans-side forms crowd in
the vicinity of the pore. The force due to this crowding
depends on the concentration of monomers in the trans-
side. For a stiffer chain the concentration of monomers
in the trans-side becomes smaller. Therefore, the peak in
the waiting time distribution becomes smaller and com-
pletely disappears for a rod-like chain (lp ≥ L). For the
unbiased translocation, we do not expect such a peak in
the waiting time distribution because the effects of both
of the factors are minimized. The height of this peak also
decreases (fig. 5(b)) when the solvent viscosity increases.
From eq. (6), fp is significant for very short R(t) (i.e. at
the end of the chain), for larger f(t) (i.e strong applied
bias) and at low γ. Since fp ∝ γp

γ , we find the peak
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Fig. 6: (Colour online) The MFPT 〈τ〉 vs. solvent friction
as function of chain rigidity κb = 0, 16 and 100 of chain of
length N = 64 translocating through a nano-pore of diameter
(a) Pd = 2.0 and (b) Pd = 1.6. (c) and (d): the MFPT vs.
solvent friction for a flexible (κb = 0) and a semi-flexible chain
(κb = 16), respectively, when translocating through a nano-
pore of different pore-diameters (Pd = 2.0, 1.6 and 1.4).

decreases on increasing the value of γ and becomes inde-
pendent of γ when γ ∼ γp. For larger value of γ the vis-
cous drag on the chain backbone in the cis compartment
increases significantly which dominates over the combined
effect of pore friction and crowding [36,37].

Effect of pore size: We have studied the effect of sol-
vent friction on PT through NP of different diameters.
The minimum of the MFPT curve as a function of solvent
viscosity shifts towards a larger value of γ when the pore
diameter (Pd) decreases as shown in fig. 6(a) and (b). It
is evident that the crossover effect of MFPT for flexible
and semi-flexible chain is distinct for narrower pores in
the pore-friction–dominated regime. The effect of pore-
diameter on translocation decreases gradually when the
chain stiffness increases (fig. 6(c), (d)). This is mainly
due to the reduced barrier height for a stiffer chain.

In conclusion we have explored the viscosity dependence
of MFPT for the driven translocation of a polymer chain
using LD simulation in 2D. We compare the translocation
speed for a flexible and semi-flexible chain of the same
contour lengths from the extreme low- to high-solvent-
viscosity regimes. In the high-viscosity regime, the MFPT
varies linearly with solvent viscosity for all chains of dif-
ferent flexibility, but the slope of the linearity depends
on κb ∼ 
p. We find a stiffer chain translocates faster in
the low-viscosity regime while the order of speed of the
translocation is inverted in the high-viscosity regime. In
particular, we demonstrate how the probing of chain stiff-
ness using nano-pore sensing depends on solvent viscos-
ity. Furthermore, we find that at very low viscosity, the
MFPT varies non-monotonically exhibiting a minimum at
a particular value of solvent viscosity γm which delineates
the qualitatively different behavior of the MFPT below
and above this value. We find that γm depends on dif-
ferent factors such as: chain length, chain stiffness, pore

diameter and applied bias. In the regime of low viscosity,
the driven translocation of a more flexible chain is found
to be affected more by the frictional force at the pore and
osmotic pressure caused by translocated monomers.

Motivated by a large body of investigation to find in-
terpolation schemes from low- to high-viscosity regime, we
tried a simple two-parameter scheme. We find that despite
additional complexities arising from the chain conforma-
tions and pore-polymer interactions, and from the chain
stiffness, which in turn controls the crowding, all of our
simulation data for different chain length and chain stiff-
ness fit extremely well with the interpolation scheme, sug-
gesting that the Kramers barrier crossing problem has a
more universal appeal. A calculation of the barrier height
of the translocation problem can in principle provide ad-
ditional information which lies outside the scope of this
paper.

It is also worth mentioning that the lowest value of the
parameter γ in this work corresponds to a very small value
of viscosity of the real solvent (the viscosity of water at
room temperature is 0.001 kg · m−1s−1 which is roughly
equivalent to γ = 200LJ units). However, the real merit
of this exercise lies in how solvent viscosity can make
the system interpolate from quasi-static to a driven non-
equilibrium state. We have also verified that, for the
quasi-static system with the choice of a narrower pore
and/or shorter chain, the characteristic value of γ (i.e.,
γm) can be shifted towards a higher value comparable to
the value of γ used in the several previous LD simula-
tion of PT. Therefore, our findings are relevant and useful
for designing NP-based sensors where the translocating
chain conformation can be varied from a quasi-static to a
non-equilibrium state.
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