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ABSTRACT
We study the escape dynamics of a double-stranded DNA (dsDNA) through an idealized double nanopore geometry subject to two equal and
opposite forces (tug-of-war) using Brownian dynamics (BD) simulation. In addition to the geometrical restrictions imposed on the cocaptured
dsDNA segment in between the pores, the presence of tug-of-war forces at each pore results in a variation of the local chain stiffness for the
segment of the chain in between the pores, which increases the overall stiffness of the chain. We use the BD simulation results to understand
how the intrinsic chain stiffness and the tug-of-war forces affect the escape dynamics by monitoring the local chain persistence length ℓp,
the residence time of the individual monomers W(m) in the nanopores, and the chain length dependence of the escape time ⟨τ⟩ and its
distribution. Finally, we generalize the scaling theory for the unbiased single nanopore translocation for a fully flexible chain for the escape
of a semi-flexible chain through a double nanopore in the presence of tug-of-war forces. We establish that the stiffness dependent part of the
escape time is approximately independent of the translocation mechanism so that ⟨τ⟩ ∼ ℓ2/D+2

p , and therefore, the generalized escape time for
a semi-flexible chain can be written as ⟨τ⟩ = ANαℓ

2/D+2
p . We use the BD simulation results to compare the predictions of the scaling theory.

Our numerical studies supplemented by scaling analysis provide fundamental insights to design new experiments where a dsDNA moves
slowly through a series of graphene nanopores.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015310., s

I. INTRODUCTION

Recently, mechanical trapping of DNA in a double nanopore
platform has been demonstrated to be a more effective alternative
for analyzing DNA sequences and offers new opportunities for DNA
manipulation.1 Compared to the original design of single nanopore
and nanochannel based techniques,2–5 in a double nanopore sys-
tem, a DNA is electrophoretically captured in two nanopores, which
are drilled in parallel through the same solid-state membrane. It
has been demonstrated that trapping increases the residence time
by an order of magnitude, providing ample time to analyze the
cocaptured segment in between the pores more accurately.1 Dif-
ferent variations of this concept, such as two pores of different
width,1 double nanopore separated by a nano-bridge,6 and double-
barrel nanopore (NP),7 have been reported. Compared to a single
nanopore device, the adjustable biases and feedback mechanism at
each pore offer overall better control of the DNA and allow us
to achieve a force balanced tug-of-war situation.8 This idea of the

mechanical arrest of a translocating DNA into a solid-state double
nanopore platform1 has been further exploited in more recent exper-
iments where an alternating net differential bias on two nanopores
allow the electrophoretically captured DNA to oscillate back and
forth from one reservoir to the other, enabling a specific DNA seg-
ment to be analyzed multiple times by keeping the DNA captured
at all-time in both the pores. These multiple scans of several hun-
dred times increase the accuracy of this method significantly so
that the method has a potential application for determining DNA
barcodes.9,10

While translocation through a single nanopore system has been
studied quite extensively theoretically, experimentally, and using a
variety of numerical and simulation strategies,11 theoretical stud-
ies and modeling translocation in double or multiple NP system
are only just the beginning.1,12 In Ref. 1, the persistence length of
the DNA and the time scale of the electrophoretic mobility were
used to obtain the parameters of the coarse-grained model used
in the molecular dynamics (MD) simulation studies to explain the
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FIG. 1. Schematics of a chain of contour length L, where σ is the diameter of the
individual monomers cocaptured by the two nanopores separated by distance dLR.
The two walls extend in yz plane, and external biases ⃗fL = −∣ fL∣x̂ and ⃗fR = ∣ fR∣x̂
along negative and positive x directions, respectively, are applied inside each pore
of equal diameters dpore = 2σ.

experimental results in terms of simulation parameters, while in Ref.
12, several aspects of an ideal two-dimensional double nanopore sys-
tem were studied in a more general framework. In this letter, we
report Brownian dynamics (BD) simulation studies of a homopoly-
mer escape through a double nanopore (DNP) system. The design
of our ideal double nanopore system in silico (Fig. 1) has been moti-
vated by recent experiments where the nanopores are drilled onto
a single wafer as reported recently,1,9,10 but our geometry resembles
a multilayered graphene nanopore, where first principles transport
calculations for DNA bases surveyed across a graphene nanopore
system have illustrated the advantages of this geometry.13 Thus, it is
conceivable that future experiments will be carried out in this geom-
etry of parallelly stacked graphene nanopores. Another purpose of
choosing this geometry is that in the limit dLR/L≪ 1, it is expected
that some characteristics of the double nanopore translocation will
show similarities with the corresponding quantities in the single
nanopore translocation and can be analyzed using the known the-
oretical and simulation studies of single nanopore translocation.11

We expect that these studies will also provide information to design
new experiments with different parameter sets as well as will provide
insights to develop a theoretical framework of double multi-pore
translocation for different geometries.

II. MODEL
Our BD scheme is implemented on a bead-spring model of

a polymer with the monomers interacting via an excluded volume
(EV), a Finite Extension Nonlinear Elastic (FENE) spring potential,
and a bond-bending potential enabling variation of the chain persis-
tence length ℓp (Fig. 1). The model, originally introduced for a fully
flexible chain by Grest and Kremer,14 has been studied quite exten-
sively by many groups using both Monte Carlo (MC) and various
molecular dynamics (MD) methods.15 Recently, we have generalized
the model for a semi-flexible chain and studied both equilibrium
and dynamic properties.16,17 Comparison of our BD results with
those obtained for very large self-avoiding chains on a square lattice
reveals robustness of the model for certain universal aspects, e.g.,
scaling of the end-to-end distance and transverse fluctuations.17,18

Using our BD scheme for confined stiff polymers in nanochannels,

we have demonstrated and verified the existence of Odijk deflec-
tion length λ ∼ (ℓpD2)1/3.18 Last but not the least, we have used the
same model earlier to address various problems in single nanopore
translocation with success.19,21 The successes of these prior studies
explaining a variety of phenomena assure that the BD simulation
studies will provide useful information and insights toward a fun-
damental understanding of polymer translocation through a model
double nanopore system.

The EV interaction between any two monomers is given by a
short range Lennard-Jones (LJ) potential

ULJ(r) = 4ϵ[(σ
r
)

12
− (σ

r
)

6
] + ϵ for r ≤ 21/6σ;

= 0, for r > 21/6σ. (1)

Here, σ is the effective diameter of a monomer, and ϵ is the
strength of the LJ potential. The connectivity between neighboring
monomers is modeled as a FENE spring with

UFENE(rij) = −
1
2

kFR2
0 ln(1 − r2

ij/R2
0). (2)

Here, rij = ∣⃗ri − r⃗j∣ is the distance between the consecutive monomer
beads i and j = i ± 1 at r⃗i and r⃗j, kF is the spring constant, and R0
is the maximum allowed separation between connected monomers.
The chain stiffness κ is introduced by adding an angle dependent
three-body interaction term between successive bonds as (Fig. 1)

Ubend(θi) = κ(1 − cos θi). (3)

Here, θi is the angle between the bond vectors b⃗i−1 = r⃗i − r⃗i−1 and
b⃗i = r⃗i+1−r⃗i, respectively, as shown in Fig. 1. The strength of the inter-
action is characterized by the bending rigidity κ associated with the
ith angle θi. For a homopolymer chain, the bulk persistence length
ℓp of the chain in three dimensions (3D) is given by22

ℓp/σ = κ/kBT. (4)

Each of the two purely repulsive walls consists of one mono-
layer (line) of immobile LJ particles of the same diameter σ of the
polymer beads symmetrically placed at ± 1

2 dLR. The two nanopores
are created by removing particles at the center of each wall (Fig. 1).
We use the Langevin dynamics with the following equations of
motion for the ith monomer,

m¨⃗ri = −∇(ULJ + UFENE + Ubend + Uwall) − Γv⃗i + η⃗i. (5)

Here, η⃗i(t) is a Gaussian white noise with zero mean at temper-
ature T and satisfies the fluctuation–dissipation relation in d physical
dimensions (here d = 3),

⟨η⃗i(t) ⋅ η⃗j(t′)⟩ = 2dkBTΓ δij δ(t − t′). (6)

We express length and energy in units of σ and ϵ, respectively. The
parameters for the FENE potential in Eq. (2), kF and R0, are set to
kF = 30ϵ/σ and R0 = 1.5σ, respectively. The friction coefficient
and the temperature are set to Γ = 0.7

√
mϵ/σ2 and kBT/ϵ = 1.2,

respectively. The force is measured in units of kBT/σ.
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The numerical integration of Eq. (5) is implemented using the
algorithm introduced by van Gunsteren and Berendsen.23 Our pre-
vious experiences with BD simulation suggests that for a time step
Δt = 0.01, these parameters values produce stable trajectories over
a very long period of time and do not lead to unphysical crossing
of a bond by a monomer.17,18 The average bond length stabilizes at
bl = 0.971 ± 0.001 with negligible fluctuation regardless of the chain
size and rigidity.17 We have used a Verlet neighbor list24 instead of a
link-cell list to expedite the computation.

III. RESULTS
The starting conformation of our BD simulation is a DNA poly-

mer already captured and threaded through both the pores as in
Fig. 1. We symmetrically place the polymer in a double nanopore
device and equilibrate the polymer chain keeping two polymer beads
inside each pore clamped. We equilibrate the polymer over 10 times
the Rouse relaxation time τRouse ∼ N1+2ν, where ν = 0.588 is the
Flory exponent in 3D (for N = 128, this corresponds to 108 time
steps);25 the polymer chain is allowed to translocate under the influ-
ence of two external forces f⃗L and f⃗R. In this paper, we only consider
the tug-of-war situation f⃗L + f⃗R = 0 so that the polymer chain dif-
fuses across the entropic barrier imposed by the pores. To calculate
relevant physical quantities, we take average over 2000 successful
translocation events for several chain lengths L = 128σ–256σ and for
several values of stiffness parameter κ = 0–128.

The order of the following subsections (Secs. III A–III C) are as
follows: Since a major difference of the double nanopore translo-
cation in a tug-of-war situation, when compared to an unbiased
translocation through a single nanopore, that is, the chain segment
in between the two pores is under tension, we first provide a detail
picture of the evolving chain persistence length during translocation
(Sec. III A). This helps to understand the shape of the dwell time
distribution presented next (Sec. III B). It is worth mentioning that
the dwell time (or often it is called the residence time) is directly
correlated with the current blockade time in an experiment. One
of the goals of these double nanopore experiments is to maintain
the segment in between the pores in a straight conformation. We
have monitored the transverse fluctuation of the chain in between
the pores to check the chain conformation in between the pores
(Sec. III B). Finally, we present the results for the escape of chain
making a comparison with those for the unbiased single nanopore
translocation (Sec. III C).

A. Chain persistence length during translocation
The instantaneous chain stiffness ℓp(m) as a function of the

monomer index m calculated from

ℓp(m) = −
1

ln[cos(θm)]
, (7)

where θm is the angle subtended by the adjacent bond vectors con-
necting the monomer m,25 is shown Fig. 2(a) at different times,
which shows that the chain segment acquires an increased stiffness
while crossing the region in between the two pores. As time pro-
gresses, the position of the maxima does not necessarily occur at
the increasing value of the reduced monomer index m/N due to the

FIG. 2. (a) The instantaneous local chain persistence length ℓp(m) at five different
instances: t = 0.05τ (black circles), t = 0.25τ (red squares), t = 0.50τ (green dia-
monds), t = 0.75τ (blue triangles), and t = 0.95τ (brown down triangles) showing
that different parts of the chain become stiffer at different times of the translocation
process. (b) Normalized time averaged persistence length lp/⟨ℓp⟩ as a function of
reduced monomer index m/N for κ = 0 (magenta circles), κ = 16 (teal squares),
and κ = 32 (orange triangles), respectively. The relative increase in ℓp is most
prominent for κ = 0.

back and forth motion of the chain. The corresponding time aver-
aged stiffness is shown in Fig. 2(b), which shows that the relative
increase in the persistence length ℓp/⟨ℓp⟩ is most significant for κ = 0.
The chain segment in between the pores experiences equal and
opposite forces, which further increases the stiffness by restricting
the entropic penalty. This reduction is entropy is less significant for
a stiffer chain, which explains the effect. This effect will be impor-
tant if the experiments were done with the single stranded DNA.
Figure 2 has implication in the corresponding dwell time distribu-
tion, as discussed next.

B. The dwell time distribution
Extracting dwell time distribution from the simulation data as

a function of the monomer index is a key quantity as it mimics the
current blockade data in a nanopore experiment. The normalized
W̃(m) is defined as

⟨W̃(m)⟩ = 1
∑N

m=1 W(m)
⟨W(m)⟩. (8)
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By definition, ∑N
m=1 W(m) = τ, where τ is the escape time; hence,

∑N
m=1 W̃(m) = 1. Thus, W̃(m) provides the relative time spent by

the individual monomer during the translocation process, as shown
in Fig. 3. The quantity has been calculated for the unbiased single
nanopore translocation and shares qualitatively similar features36

excepting minor modification in its shape near N/2 − 1
2 dLR/σ < m

< N/2 + 1
2 dLR/σ due to the presence of two pores. For the unbiased

translocation in a single nanopore, W(m) is symmetric and peaks
at m = N/2, simply due to the fact the entropic force is balanced
at either side of the pore, as has been observed previously.36 For
the escape problem in a double nanopore in a tug-of-war situation,
W(m) is still symmetric around m = N/2, but now the two peak posi-
tions shift to m ≃ N/2± 1

2 dLR/σ for the same reason as for this shape,
the entropic forces are balanced at the left side of the left pore and
at the right side of the right pore. Similar to what is observed for the
single nanopore, W̃(m) rises roughly linearly for m < N/2− 1

2 dLR/σ,
until peaks at m ≃ N/2 − 1

2 dLR/σ. It then decreases to a minimum
at m = N/2, rises, and peaks again at m = N/2 + 1

2 dLR, /σ and then
goes down almost linearly, as shown in Fig. 3(a). The two notice-
able kinks at 0.5 ± 0.3, where a change of slope occurs, are when
the monomers have exited either of the pores and subject to a net
bias force. It is also worth noticing that W(m) has a local minimum

FIG. 3. (a) Normalized dwell time distribution W̃(m) as a function of reduced
monomer index m/N for N = 128 for κ = 0 (magenta circles), 16 (teal squares), and
32 (orange diamonds) respectively. (b) W̃(m) shows the chain length depen-
dence (N = 128, 192, and 256 of W (m) for κ = 16.0. The inset confirms that
qualitative behavior remains uniform for NW̃(m) with the reduced monomer
index for different chain lengths.

FIG. 4. Transverse fluctuation shows a steady decrease with increasing chain
stiffness k.

at the midpoint of the chain m = N/2. The monomer with index
m = N/2 lowers the free energy by staying equidistant from the two
pores, which decreases its residence time at each pore. This explains
the shape of Fig. 3(a). We further observe that W̃(m) is almost
insensitive to the chain stiffness. An increase in the chain stiffness
causes the translocation time ⟨τ⟩ to increase16 (shown at the inset),
and the collapse of ⟨W̃(m)⟩ for different stiffness onto the same
master curve implies that ⟨W̃(m)⟩ for each m increases proportion-
ally with the translocation time. In addition, Fig. 3(b) confirms that
⟨W̃(m)⟩ scales uniformly with chain lengths, and the inset shows an
excellent data collapse for N⟨W̃(m)⟩ against the reduced monomer
index.

Interestingly, we observe that W̃(m) is also insensitive to the
rms transverse fluctuation

√
⟨l2
⊥⟩ of the segment in between the

pores that decreases monotonically with increasing chain stiffness
(Fig. 4). In the simulation, we measure the rms transverse fluctuation
as follows:

√
⟨l2
⊥⟩ =

¿
ÁÁÁÀ 1

mpore

mpore

∑
ipore=1
(y2

i + z2
i ), (9)

where yi and zi are the vertical distances of the i-th monomer with
respect to the direction x̂ from the left pore and the right pore and
mpore are the number of monomers in between the two pores. This
decrease in

√
⟨l2
⊥⟩ is a generic feature for the chain segment under

tension. We have explained it elsewhere by mapping the transloca-
tion problem to that of a flexible-stiff-flexible triblock copolymer.12

Combining the results from Figs. 2–4, we conclude that despite vari-
ations in chain stiffness and transverse fluctuations for the segment
in between the pores, the normalized dwell time distributions W̃(m)
collapse onto the same master curve. This is an important result that
can be used to extrapolate the experimental data obtained for one
contour length and stiffness to different contour lengths and chain
stiffness without running a separate experiment.

C. The tug-of-war and the escape
A central question in polymer translocation is how long does it

take for the chain to escape from one side to the other. This has been
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described in terms of a translocation exponent α, which determines
the power law dependence of the mean translocation time ⟨τ⟩ on the
chain length N,

⟨τ⟩ = ANα. (10)

We already saw that the dwell time is very similar to that of a sin-
gle nanopore, and we expect that for dLR ≪ L, the escape problem
in a double nanopore will also be described by a similar power law
dependence of ⟨τ⟩ on N. In this limit, the contribution of the seg-
ment in between the two nanopores becomes insignificant; thus,
one expects that the exponent α will be the same as that of a sin-
gle nanopore. We have obtained the escape time ⟨τ⟩ from the BD
simulation for the symmetrically placed and cocaptured polymer in
between two nanopores for f⃗L+f⃗R = 0. Due to the symmetric arrange-
ment, the case escape occurs equally through the left pore and the
right pore. By monitoring 2000 independent runs, we checked that
translocation occurs with equal probability in either direction.

1. Decoupling the chain stiffness
First, we discuss how the escape problem for the fully flex-

ible chain can be generalized for a stiff chain by calculating the
stand-alone stiffness factor. The escape problem through an ideal-
ized nanopore in a thin membrane has been studied theoretically by
various authors.26–29 For a fully flexible chain, it was proposed27,29

that α = 1 + 2ν so that the average translocation time for the unbi-
ased translocation scales with the chain length as ⟨τ0⟩ = AN1+2ν. This
follows assuming the quasi-equilibrium condition so that the gyra-
tion radius, ⟨Rg⟩ ∼ Nν, is the same as that of the bulk and that in
the absence of the hydrodynamic effects, the diffusion constant of
the center of mass of the chain is D ∼ 1/N. Thus, the translocation
time ⟨τ⟩ to travel a distance of the order of ⟨Rg⟩ can be estimated by
substituting

⟨R2
g⟩ ∼ N2ν (11)

in the diffusion equation ⟨R2
g⟩ ∼ D⟨τ⟩, which results in

⟨τ0⟩ ∼ ⟨R2
g⟩/D = AN1+2ν. (12)

Thus, the translocation time in this picture scales as the Rouse
relaxation time.25

Equation (12) for a fully flexible chain can be generalized for a
semiflexible chain using the generalized Flory theory due to the work
of Nakanishi30 and Schaefer, Joanny, and, Pincus,31 which incorpo-
rates the persistence length ℓp into the Flory equation (11) as follows:

√
⟨R2

g⟩ ∼ ℓ1/(D+2)
p Nν (13)

in D physical dimensions. Previously, we have shown that in two
dimensions (2D), Eq. (13) holds for L/ℓp > 1.17 Hence, for the unbi-
ased translocation, the generalization for the translocation time ⟨τℓp⟩
for a semi-flexible chain of persistence length lp is

⟨τℓp⟩ = Aℓ
2

D+2
p N1+2ν = ⟨τ0⟩ℓ

2
D+2
p . (14)

FIG. 5. ⟨τℓp ⟩/⟨τ0⟩ as a function of ℓp (blue squares). The dotted line is a power
law fit (⟨τℓp ⟩/⟨τ0⟩ ∼ ℓ0.4

p ) through the points validating Eq. (14). The inset shows
the same (green circles) on a log–log scale. The straight line is a linear fit with
slope 0.40 ± 0.01.

In making generalization of Eq. (12) to Eq. (14), we assumed
that the amplitude factor A remains the same. In other words, we
have decoupled that stiffness factor from the intrinsic translocation
time of a fully flexible chain, an assumption is not fully justified
a priori. However, we observe that this works reasonably well for the
escape problem that we have studied here. Slater33 and Panja34 have
suggested an alternative expression for ⟨τ0⟩ based on the memory
effect to Eq. (12) where the exponent is α = 2 + ν so that ⟨τ0⟩ ∼ N2+ν.
If we assume that the stiffness factor ℓ2/D+2

p decouples from the sol-

vent factor, then instead of Eq. (14), one gets ⟨τ̄ℓp⟩ = Āℓ
2

D+2
p N2+ν

= ⟨τ̄0⟩ℓ2/D+2
p . Here, ⟨τ̄0⟩ = ĀN2+ν. We assume that the stiffness factor

ℓ
2/D+2
p enters in to this equation the same way as in Eq. (14) irrespec-

tive of the mechanism of ⟨τ̄0⟩. Figure 5 verifies this decoupling of the
stiffness factor from the intrinsic translocation time ⟨τ0⟩ for a fully
flexible chain. In 3D, the factor is ℓ2/D+2

p = ℓ0.4
p . A plot of ⟨τℓp⟩/⟨τ0⟩ as

a function of the chain persistence length ℓp validates the prefactor
ℓ

2/D+2
p = ℓ0.4

p in Eq. (14). In Sec. III C 2, we explore the chain length
dependence of ⟨τ0⟩ ∼ Nα in the double nanopore system.

2. The translocation exponent
Having theoretically justified and validated by simulation

Eq. (14), we now use the simulation data for different contour and
persistence lengths to study the exponent α [Eq. (10)] and dis-
cuss the result in the context of a single nanopore escape prob-
lem. The polymer escape problem has been studied by several
authors in the past, making its connection to the translocation prob-
lem.27–29,32,33,36 One would like to distinguish between transloca-
tion and escape in this context. Typically, in a translocation prob-
lem, the entire chain crosses from the cis side of the pore to the
trans side. For the case of driven translocation, simulation stud-
ies are also carried out by placing the first monomer either at
the center of the pore or slightly shifted at the trans side.19,20 For
the unbiased case, this will be prohibitively large, as the polymer
has to cross a huge barrier. In order to circumvent this prob-
lem, Chuang, Kantor, and Kardar (CKK) put an artificial constraint
that once a monomer is on the cis side, it cannot go back to the
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trans side.29 With this constraint, their numerical calculation con-
verged on the translocation time ⟨τ⟩ = AN1+2ν. CKK further argued
that the prefactor is larger compared to the unconstrained case to
account for the slower diffusion due to the constraint imposed by
the nanopore and the wall and concluded that for the unbiased case,
the translocation exponent is the same as the as that of the relaxation
process.

Dubbeldam et al.35 mapped the escape problem in the one-
dimensional anomalous diffusion problem in terms of the reac-
tion coordinate and predicted the anomalous exponent α′ = 2/(2ν
+ 2 + γ1) = 0.801(3d) by introducing the surface exponent term
γ1 = 0.68(3d). Dubbeldam et al. set up MC simulation with a direc-
tional constraint on polymer movement and showed ⟨τ0⟩ ∝ N2/α′

= N2.496, which agrees with their theoretical framework. de Haan and
Slater33 incorporated memory effects during unbiased-translocation
and asymptotically estimated ⟨τ0⟩ ∼ N2.516 for a very long polymer.

Luo et al. revisited the same problem in two dimensions and
studied polymer escape through a single nanopore using the bond-
fluctuation model.36 Their initial condition is the same as ours,
namely, to release the polymer from the peak of the entropic bar-
rier and let it diffuse down the entropic valley. They observed that
for the escape problem in 2D (ν = 0.75), ⟨τ⟩ ∼ N2.5, confirming that
the escape problem and the translocation problem have the same
(relaxation) exponent 1 + 2ν.

We studied the same problem albeit in the context of a dou-
ble nanopore and having the DNA in a tug-of-war with two equal
and opposite forces so that the net force is zero. Specifically, we
studied the variation of the exponent α, when one increases the
chain persistence length from ℓp < dLR to ℓp > dLR. The logarith-
mic plots in Fig. 6(b) (ℓp < dLR) and Fig. 7(b) ℓp > dLR show a
systematic increase in slope (α) from 2.37 to 2.52 as expected due
to the stiffness factor ℓ0.4

p in Eq. (14) as ℓp is increased from 4–32.
However, Figs. 6(c) and 7(c) show plots of τℓp/ℓp

0.4 = ⟨τ0⟩ ∼ Nα

[see Eq. (14)] where the data for different ℓp collapse on to the same
straight line. We obtain α = 2.4 ± 0.05 for κ = 4 and 8 (ℓp < dlR)

FIG. 6. (a) Histograms of normalized escape time τ/N2.4ℓ0.4
p for chain length

N = 192 (cyan and blue squares for κ = 4.0 and 8.0) and for N = 256 (light and
dark green diamonds for κ = 4.0 and 8.0), respectively, show data collapse. (b)
⟨τ⟩ as a function of N (log scale) shows slopes 2.37 and 2.50 for κ = 4.0 and
8.0, respectively. (c) The renormalized ⟨τ⟩/ℓ0.4

p as a function of N (log scale),
which shows collapse of both the curves with slope α = 2.40 ± 0.07 consistent
with (a).

FIG. 7. (a) Histograms of normalized escape time τ/N2.5ℓ0.4
p for chain length

N = 192 (magenta and red squares for κ = 16.0 and 32.0) and for N = 256 (brown
and cyan diamonds for κ = 16.0 and 32.0), respectively, show data collapse. (b)
⟨τ⟩ as a function of N (log scale) shows slopes 2.52 and 2.56 for κ = 16.0 and
32.0, respectively. (c) The renormalized ⟨τ⟩/ℓ0.4

p as a function of N (log scale),
which shows collapse of both the curves with slope α = 2.50 ± 0.07 consistent
with (a).

and α = 2.5 ± 0.04 for κ = 16 and 32 (ℓp > dlR), respectively.
This is further ensured from the data collapse in Figs. 6(a) and
7(a). We further observe that as in the case of a double nanopore
translocation problem, the shape of the histogram can be fitted with
P(x) ∼ xα exp(−βx) with the maximum located at α/β. We verify that
∫∞0 x.P(x)dx returns back the mean translocation time ⟨τ⟩. Thus, for
the double nanopore translocation, we observe that the translocation
exponent α > 1 + 2ν and α increases with increasing stiffness. Since
we have decoupled the intrinsic chain stiffness, this slow down of the
translocation process is likely due to additional constraints imposed
by the double nanopore.

IV. SUMMARY AND CONCLUDING REMARKS
We have studied the polymer escape problem in a double

nanopore system in a tug-of-war situation where the distance
between the pores is much smaller than the chain contour length
for several chain persistence lengths. The problem bears similar-
ities with the much studied problem of escape of a fully flexible
chain through a single nanopore. However, because of the pres-
ence of the two equal and opposite forces, our simulation studies
reveal additional intriguing features. First, during the escape pro-
cess, the chain segments in the region between the pores acquires
increased stiffness, which becomes more prominent for a fully flexi-
ble chain but also noticeable for stiffer chains. In contrast, the scaled
dwell time distributions for different chain stiffness collapse onto the
same master curve, indicating that an increased chain stiffness intro-
duces a global shift in the dwell time distribution of the individual
monomers with respect to the total translocation time.

We proposed a generalization of the chain length dependence
of the escape problem for semi-flexible chains [Eq. (14)]. Our simu-
lation data establish an important aspect of the escape problem that
the stiffness factor arising from the generalization of the Flory the-
ory [Eq. (13)] decouples from the escape time of a fully flexible chain,
and thus, to a first approximation, the theories developed for a fully
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flexible chain can be applied here leading to Eq. (14). Our simula-
tion studies validate that for a given contour length, the escape time
increases as a power law ℓ

2/D+2
p . For the unbiased translocation, the

chain conformations are in quasi-equilibrium, and hence, Eq. (13) is
valid. However, we observe from the plot of ⟨τ⟩/ℓ2/D+2

p = ⟨τ0⟩ = ANα

[Insets of Figs. 6(b) and 7(b)] that the translocation exponent α
depends on the chain stiffness and increases from 2.4 ± 0.01 to 2.5
± 0.01. This arises due to the additional constraint imposed by the
two pores and the system to develop characteristics of a reptation,25

which is intrinsically a slower process than diffusion.
It is also worth noting that, in general, nanopore experiments

are conducted in electrolyte solutions that span orders of magni-
tude (mM-M range). This does have an impact on the persistence
length. The scaling relation can be used to predict the experimental
outcome when one varies the electrolyte solution. Second, experi-
mentally, no two drilled nanopores are identical (for example, in Ref.
10, the diameters of the two nanopores were 25 nm and 27 nm, and
the pore-to-pore distance is 610 nm). However, unlike Ref. 1, where
the pore diameters were made to be different (10 nm and 16 nm), in
Ref. 10, it is more desirable to have the difference as small as possi-
ble to have the same time of flight from the left to the right pore and
vice versa the same for the same oscillating differential bias. Thus, it
will be worthwhile to design simulation with slightly different pore
diameters to estimate the asymmetry in time of flight from left to
right and vice versa. We believe that these results and discussions
will be useful for future double nanopore experiments.
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