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The interaction potential of three helium atoms in symmetric linear configurations is calculated 
under the Born-Oppenheimer approximation using an “exact” Green’s function quantum Monte 
Carlo method. The results are compared with those of “exact” quantum Monte Carlo calculations 
for the helium dimer and the Axih-od-Teller triple-dipole energy expression. For nearest neighbor 
separations of 5.6 bohrs, the equilibrium distance for a helium dimer, the corresponding trimer 
energy is -21.5% 1.9 K, compared to -22.3kO.2 K, calculated for pairwise additive behavior. For 
all internuclear separations in the neighborhood of the van der Waals well (-5.6 bohrs), the 
nonadditive contribution is found to be very small. 

The interaction between two helium atoms has recently 
been calculated accurately by analytic variational”2 as well 
as “exact” Green’s function Monte Carlo methods.3 The cal- 
culated potentials are in good agreement with an experi- 
mental-theoretical compromise potential” which is consis- 
tent with many experimental measurements. For distances 
close to the van der Waals minimum for the three helium 
atoms, the interaction is generally expected to be very nearly 
equal to the sum of the interaction of the three pairs of at- 
oms. The higher order terms are believed to be extremely 
small and are usually referred to as the “nonadditive” con- 
tribution to the total energy. In this paper, we present “exact” 
results for the interaction potential of a helium trimer in sym- 
metric linear configuration. 

Calculations for helium trimers began in the 1940s. The 
first set of perturbative calculations were due to Axilrod and 
Tellers and Muto. Their expression for the triple-dipole in- 
teraction energy calculated from a third-order perturbation 
expansion is given by 

AE3=C 
3 cos y1 cos y2 cos y3f 1 

3 3 3 > 
r12123r31 

(1) 

where r12, r23, and r3, are the internuclear distances and yl, 
y2, and y3 are the angles included by the corresponding 
sides. The constant C is independent of the geometry and is 
directly proportional to the polarizability.7 We refer to this 
expression as the Axilrod-Teller form. For a linear trimer, 
the expression yields an attractive contribution to the energy, 
while for a right-angled or an equilateral triangle trimer, the 
contribution is repulsive. Midzuno and Kihara7 derived a 
similar expression for spherically symmetric atoms. It has 
been argued’ that the above expression is the only important 
contribution even for dense inert gases. Rosen9 calculated the 
repulsive part of the interaction by the valence bond method. 
Shostak” used Roothaan’s self-consistent LCAO method to 
calculate the interaction energy of a linear arrangement of 
three helium atoms. Sherwood, De Rocco, and Mason’* es- 
timated the effect of nonadditive three-body forces on the 
third virial coefficient. Novaro and Beltran-Lopez’2 pre- 
dicted the potential energy surface of He3 with self- 
consistent-field linear-combination-of-aton&-orbitals mole- 
cular-orbital (SCF-LCAO-MO) calculations to test the pair- 
wise additivity at short ranges. Based on their calculations 

they have raised interesting issues of how the three-body and 
four-body correlations, although small, can affect the conver- 
gence of many-body expansions. The many-body contribu- 
tions to interaction potentials and the nonadditivity of the 
second-order exchange-dispersion energy have also been ad- 
dressed in terms of very large basis set ab initio calculations 
by Parish and Dykstra13 and by Bulski and Chalasinski.14 
The recent quantum Monte Carlo treatments are due to Mo- 
han and Anderson,15 who calculated the interaction potential 
using the diffusion Monte Carlo method (DMC), and due to 
Tawa, Whitlock, Schmidt, and Moskowitz@ using variational 
quantum Monte Carlo methods. 

In this paper we present “exact” calculations of the in- 
teraction energies of helium trimers in symmetric linear con- 
figurations. Unlike DMC calculations the present calcula- 
tions are free from time-step errors. Second, by writing an 
efficient vectorized code suitable for C-90, we have been 
able to reduce the stochastic error bars significantly. A com- 
parison of our present results with those of similar prior cal- 
culations of interaction energies for helium dimers3 enables 
us to estimate the three-body interaction terms. 

We have used the Green’s function Monte Carlo method 
with an efficient cancellation scheme proposed by Anderson, 
Traynor, and Boghosian. I7 This method has been used suc- 
cessfully in determining the binding energy of a helium 
dimer3 and the interaction energy of He-H.18 It is based on a 
cancellation scheme first proposed by Arnow et al.” Here 
we describe it briefly. Fist one recasts the S&i&linger equa- 
tion in its integral form given by 

VW) 
T(X) =I dX’Go(X,X’) - E *\Ir(“)* (2) 

where X(x1 ,x2,..., x3,) is the 3N dimensional vector, V con- 
tains the interelectron and the electron-nucleus potentials. 
The form of the Green’s function Go(X,X’) is known 
exactiy2’ and is given by 

1 
G(X,X’)=(2T)(3N12j K~~NI~)-~(IX-X’IY 

lx-xq3N2-1, (3) 

where K,(lX-X’l) is the Bessel function of imaginary argu- 
ment. 
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TABLE I. Energies for the linear symmetric helium trimer calculated by the 
“exact” quantum Monte Carlo method. 
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One starts with a collection of representative wave func- 
tion samples (psips), usually drawn from a good ‘trial wave 
function, and samples their moves as indicated in Eq. (2). In 
order to get a large positive to negative ratio for the psips a 
cancellation scheme is used in which the weight of a particu- 
lar psip may be wholly or partially cancelled by a nearby 
psip with opposite sign. By canceIling the positive and nega- 
tive psips in close proximity, it is possible to maintain a 
steady large ratio of positive to negative psips. The energy is 
evaluated with the use of importance sampling, according to 
the formula 

EJ~=wfww 
J-dX’3WT ” 

I- = (4) 

and the Monte Carlo estimate of the energy is given by 

Separation 
rAB=rBC 

(bohrs) 

3.5 
4.5 
5.6 
6.5 

psips to negative psips was maintained at about 100 to 1. The 
preliminary testing and development of the code were car- 
ried out with an IBM RS/6000 machine. Production runs 
were carried out with a Cray C-90 using a code adapted to 
the vector capabilities of the machine to obtain speeds of 
a&ut 250-280 megaflops. The trial wave function and its 
derivatives for each’ psip could be calculated independently 
of the others. Since this part of the calculation, especially for 
the Hylleraas wave functions, was a major part of the pro- 
gram, efficient vectorization was necessary for efficient uti- 
lization of the C-90. 

E= 
ziSiWi*\Ii(H~T~pTli 

XiS{WiTTi ’ 
- (, (5) 

where Si and Wi are the sign and the weight of the psip with 
an approximate or trial wave function qTi. 

The trial wave function is constructed as an antisymme- 
trized product of Hylleraas 1s’ wave functions21 for helium 
as follows. With the three helium nuclei denoted as A, B, and 
C, spin up electrons as 1, 2, and 3, and spin down electrons 
as 3, 4, and 5, the complete antisymmetric wave function 
may be written as 

*=: Cn.pn.(~~~~.~~~~.~~~~.Jn)r (6) 
n=l 

where P, is the permutation operator and C, is -f 1 and - 1 
for even and odd numbers of permutations, respectively. The 
wave function +A,4 is a Hylleraas wave function containing 
189 terms due to Schwartz2’ given by 

+A14=exp( - ks/2) 2 CImns’tRum, 
Lm,n 

(7) 

where s=rlA+rdA, t=rlA-rdA, u=r14, and k=3.5 with 
l=O, 1, 1, 5, 2...etc., m=O, 1, 2 ,... etc, rz=O, 2, 4 ,... etc. The 
wave functions (PBZ5 and 4c,, are similar. The term J, is the 
product of the electron-electron and electron-nucleus Ja- 
strow correlation functions and is given by 

and 

Total energy 

(hE%&) 

-8.704 17428~0.000 187 6 
-8.710 755 07t0.000 024 6 
-8.71124134~0.000 006 0 
-8.711214 5310.000 004 2 

In the discussion of the results, the energies of an iso- 
lated helium atom, the dimer, and the trimer are denoted as 
E atom 9 Tier 2 ad Timer 7 respectively. Differences in ener- 
gies, which are the corresponding binding energies, are de- 
noted 

AEdirner= Edirner- 2Eatom 7 (10) 

&rimer= &rim- 3Ea0,. (11) 

The &XI-I-I &on-add, the nonadditive part of the total energy, is 
denoted 

AEnon-add=AEtrimer-AE~~~,-AE~i~~,-AE~~~r, (12) 

where Elixir, E~icm,, and E$& denote the dimer energies 
for the helium pairs AB, BC, and CA, respectively. 

In Table I we have listed trimer energies for several val- 
ues of the internuclear distances. In Table II the third column 
shows the trimer energies if the interaction were pairwise 
additive. We have calculated this pairwise additive contribu- 
tion from Ref. 3, wherever possible, and from the compro- 
mise potential by Aziz and Slaman. The last column shows 
‘=non-add . 

In Table III we compare our results with those from prior 
calculations. The second column refers to the analytic varia- 
tional calculations due to Parish and Dykstra.13 This paper 

TABLE II. Interaction energy for the symmetric helium trimer by “exact” 
quantum Monte Carlo method. 

The coefficients b, bl , b,, c, cl, and c2 were optimized 
to obtain the minimum variance in local energies.23 

The details of the calculations were similar to those de- 
scribed for a helium dimer in Refs. 3 and 17. Rotation and 
reflection operations consistent with the symmetry of the 
Hamiltonian were carried out in each step. These operations 
put the psips in a narrower region of the configuration space 
to allow more effective cancellation. The ratio of positive 

rAB=rBC hi,, 
@oW 09 

3.5 22Ol.OC60.0 
4.5 132.0k7.8 
5.6 -21.521.9 
6.5 -13.1k1.3 

“From Refs. 3 and 4. 
bEstimated error from Ref. 4. 

CAELner A&on-add 
(K) 6) 

2225.0C7.0b -24.1k70.0 
119.0+3.8 12.82 12.2 

-22.320.2 0.7k2.1 
- 13.8+0.2 0.821.3 
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TABLE III. Comparison of AE,,ti~ for a linear symmetric trimer 

r.48” k PD” ATb NBL’ Present work 
(bob) (K) 09 W) @I 

3.5 -2.907 - 13.29 12.31 -24.14+60.60 
4.5 -0.302 -1.38 -12.81~12.22 
5.6 -0.042 -0.19 0.73 c2.09 
4.5 -0.011 -0.05 0.7821.34 

‘From Ref. 13. 
bFrom Ref. 5. 
Carom Ref. 12. 

specifically addresses the issue of importance of pairwise 
additivity in helium complexes. The values listed in column 
two are obtained from a fitting formula as given by Parish 
and Dykstra. The corresponding values for the simple 
Axilrod-Teller form of Eq. (1) are listed in column three. 
The coefficient C in the calculation of AE3 in Eq. (l), as has 
already been mentioned, is directly related to the polarizabil- 
ity of the atoms. For identical atoms, as is the case here, 
C= 0.75a,u, where a is the polarizability and p is the di- 
pole moment. This has been discussed in detail by Midzuno 
and Kihara.7 For the helium atoms, C= 1.6588 a.u. The 
only value available for comparison from the SCF calcula- 
tion of Novaro and Beltmn-Lopez’2 is for the nearest- 
neighbor distance of 3.5 bohrs. Their calculated total energy 
for the trimer in this case is -8.574 609 a.u., a value signifi- 
cantly higher than the energy of the present calculation. Also, 
the pairwise nonadditive part is repulsive, as listed in the 
fourth column. The last column shows our results. For ari 
interatomic distance of 5.6 bohrs, the equilibrium distance 
for a helium dimer, the corresponding trimer energy is -21.5 
11.9 K, the nonadditive contribution being 0.7f2.1 K, a 
few percent of the total binding energy. 

To summarize, we have been able to calculate the inter- 
action energy of a helium trimer in symmetric linear configu- 
rations by an exact Green’s function quantum Monte Carlo 
method. Compared to the previous diffusion Monte Carlo 
calculations our error bars are lower by almost an order of 

magnitude. Calculations of similar accuracies were achieved 
by Tawa, Whitlock, Schmidt, and Moskowitz’6 for helium 
trimers in triangular configurations using variational Monte 
Carlo methods. For all the internuclear distances that we 
have considered here the estimated nonadditive contribution 
is found to be a few percent of the total interaction energy. 

The calculations were carried out at the Pittsburgh Su- 
percomputing Center (Grant No. CHE920039P). The re- 
search was supported by the National Science Foundation 
(Grant No. CHE-8714613) and by the Office of Naval Re- 
search (Grant No. N00014-92-J-1340). 
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