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ABSTRACT
We study the universal aspects of polymer conformations and transverse fluctuations for a single swollen chain characterized by a contour
length L and a persistence length ℓp in two dimensions (2D) and three dimensions (3D) in the bulk, as well as in the presence of excluded
volume (EV) particles of different sizes occupying different area/volume fractions. In the absence of the EV particles, we extend the previously
established universal scaling relations in 2D [Huang et al., J. Chem. 140, 214902 (2014)] to include 3D and demonstrate that the scaled end-

to-end distance ⟨R2
N⟩/(2Lℓp) and the scaled transverse fluctuation

√
⟨l2
�⟩/L as a function of L/ℓp collapse onto the same master curve, where

⟨R2
N⟩ and ⟨l2

�⟩ are the mean-square end-to-end distance and transverse fluctuations. However, unlike in 2D, where the Gaussian regime is
absent due to the extreme dominance of the EV interaction, we find that the Gaussian regime is present, albeit very narrow in 3D. The scaled

transverse fluctuation in the limit L/ℓp ≪ 1 is independent of the physical dimension and scales as
√
⟨l2
�⟩/L ∼ (L/ℓp)ζ−1, where ζ = 1.5 is the

roughening exponent. For L/ℓp ≫ 1, the scaled fluctuation scales as
√
⟨l2
�⟩/L ∼ (L/ℓp)ν−1, where ν is the Flory exponent for the corresponding

spatial dimension (ν2D = 0.75 and ν3D = 0.58). When EV particles of different sizes for different area or volume fractions are added into 2D
and 3D systems, our results indicate that the crowding density either does not or does only weakly affect the universal scaling relations. We
discuss the implications of these results in living matter by showing the experimental result for a dsDNA on the master plot.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143814

I. INTRODUCTION

Polymers in a crowded environment are a common phe-
nomenon both in synthetic systems and in living matter.1–3 Molec-
ular crowding significantly affects the structure and function of
bio-macromolecules. For example, individual DNA molecules in a
crowded environment have been observed to undergo compactifi-
cation in the presence of negatively charged proteins.4 Likewise, in
the industrial world, the presence of nanoparticles affects the static
phase diagram and dynamics of polymer-nano-composites in a non-
trivial way. Various factors, e.g., the volume fraction of the crowding
species, the strength of the polymer–particle, intra-polymer, and
intra-particle interactions, the temperature, the contour length L,
and the persistence length ℓp, affect their statics and dynamics.
Thus, it is useful to use scaling theories of polymers5 to under-
stand the interdependencies of various factors toward a universal
theory of polymer conformations and dynamics in such systems.

This approach also helps to plot experimental data in terms of scaled
quantities to develop a better understanding of the experimental
system studied.6–12

In order to understand experimental data, biopolymers are
typically described by a Worm-Like-Chain (WLC) Kratky–Porod
model13,14 whose mean square end-to-end distance ⟨R2

N⟩ is given
by13

⟨R2
N⟩

L2 = 2ℓp

L
(1 − ℓp

L
[1 − exp (−L/ℓp)]). (1)

For ℓP ≫ L, ⟨R2
N⟩ = L2 and the chain behaves like a rod, while for

L≫ ℓp, the limiting behavior of the WLC is that of a Gaussian chain
(⟨R2

N⟩ = 2Lℓp). However, it is expected that for L≫ ℓp, the chain will
eventually feel the effect of the EV interaction and will exhibit the
conformation statistics for a swollen chain that are not captured in
the WLC description. Indeed, we know from theoretical arguments
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following Schaefer et al.15 and Nakanishi16 that a proper description
of an EV swollen chain in d spatial dimensions is given by

√
⟨R2

N⟩ ≃ b
d−2
d+2
l N

3
d+2 ℓ

1
d+2
p = b

d+1
d+2
l (

L
bl
)

ν
ℓ

1
d+2
p . (2)

Here, N is the number of monomers of the chain so that L = (N
− 1)bl ≃ Nbl (for N ≫ 1), bl is the bond length between two neigh-
boring monomers, and the mean field Flory exponent ν = 3/(d + 2)
in 2D = 0.75 and in 3D = 0.60 (≈0.588 actual), respectively.

In previous publications, we demonstrated the universal scal-
ing behavior of conformation and transverse fluctuations17 and
crossover dynamics18 of an excluded volume (EV) swollen chain
in 2D. We showed that the scaled chain conformation, ⟨R2

N⟩/2Lℓp,

and the transverse fluctuations
√
⟨l2
�⟩/L obey universal scaling

laws in that, when plotted as a function of L/ℓp, both ⟨R2
N⟩/2Lℓp

and
√
⟨l2
�⟩/L for all combinations of L and ℓp collapse onto the

same master curve (Figs. 3 and 4). For L/ℓp ≪ 1, in the rod limit,
we observe the expected behavior: ⟨R2

N⟩/2Lℓp ∼ L2/2Lℓp → 1
2 L/ℓp.

However, for L≫ ℓp, we found the absence of the Gaussian regime
and the scaling behavior of a swollen chain such that ⟨R2

N⟩/2Lℓp

∼ L2ν/(Lνℓp) ∼ (L/ℓp)0.5. We interpret that, in 2D, the extreme dom-
inance of the EV interaction results in a complete absence of the
Gaussian regime, and we observe a direct crossover from the rod
limit to the EV swollen chain. The universality of the result was
further reassured by the observation that the data from lattice
Monte Carlo simulations using the pruned-enriched Rosenbluth
scheme by Hsu et al. without any fitting parameter collapsed onto
the data obtained from Brownian dynamics (BD) simulations on
the Grest–Kremer bead-spring model.19,20 We also provide general
arguments regarding the collapse of the transverse fluctuations onto
the same master plot for all values of L/ℓp.

In this article, we first generalize and establish those results in
three dimensions (3D) and then extend these studies in the presence
of additional particles interacting with themselves as well as with a
single polymer chain with a short range repulsive (EV) interaction
for several different area/volume fractions in 2D/3D. We have also
studied the size effect of the EV particles on these scaling relations.
The investigation in 3D is partly motivated by the theoretical results
using the scaling theory of polymers due to Nakanishi, who conjec-
tured that in 3D there will be a broad Gaussian regime before the
chain conformation develops characteristics of a swollen chain for
L≫ ℓp.16 Using lattice MC methods, Hsu et al. demonstrated that
for a 3D semi-flexible chain, there is a Gaussian regime, which even-
tually becomes dominated by EV effects. We will demonstrate that,
unlike as depicted in Ref. 16, the width of the Gaussian regime is very
narrow, although it can, however, be differentiated from that of a 2D
universal master curve [Figs. 3(a) and 3(b)].

II. THE MODEL AND THE METHOD
Our BD scheme is implemented on a Grest–Kremer bead-

spring model of a polymer21 with the monomers interacting via
an excluded volume (EV), a Finite Extension Nonlinear Elastic
(FENE) spring potential, and a three-body bond-bending potential
that enables variation of the chain persistence length ℓp [Fig. 1 and
Eqs. (6a) and (6b)].

FIG. 1. Schematic showing an eight unit long (N = 8) bead-spring model of a
polymer (purple beads connected by black springs) in a crowded environment
consisting of mobile (pink) particles. The bond angle for the ith bead is shown as
described in Eq. (5). In the figure, the diameter of the EV particles σpart = 1.5σpoly .

The EV interaction between any two monomers along the chain
is given by a short-range Lennard-Jones (LJ) potential,

ULJ(r) = 4ϵ[(σ
r
)

12
− (σ

r
)

6
] + ϵ, for r ≤ 21/6σ

= 0, for r > 21/6σ. (3)

Here, σ = σpoly is the effective diameter of a monomer on a poly-
mer chain and ϵ is the strength of the LJ potential. The connectivity
between neighboring monomers is modeled as a FENE spring with

UFENE(ri j) = −
1
2

kFR2
0 ln (1 − r2

i j/R2
0). (4)

Here, ri j = ∣r⃗i − r⃗ j ∣ is the distance between the consecutive monomer
beads i and j = i ± 1 at r⃗i and r⃗ j , respectively, kF is the spring con-
stant, and R0 is the maximum allowed separation between connected
monomers. The chain stiffness κ is introduced by adding an angle
dependent three-body interaction term between successive bonds as
(Fig. 1)

Ubend(θi) = κ(1 − cos θi). (5)

Here, θi is the angle between the bond vectors b⃗i−1 = r⃗i − r⃗i−1 and
b⃗i = r⃗i+1 − r⃗i, respectively, as shown in Fig. 1. The strength of the
interaction is characterized by the bending rigidity κ associated with
the ith angle θi. For a homopolymer chain, the bulk persistence
length ℓp of the chain in 2D and 3D in the continuum limit is given
by22

ℓp/σ = 2κ/kBT (2D), (6a)

ℓp/σ = κ/kBT (3D). (6b)

In the simulation, use a discrete chain, and the persistence length is
calculated from

ℓp/σ = −
1

ln (cos θi)
, (7)

where θi is the angle between two bond vectors connecting the ith
bead to the (i ± 1)th beads, as shown in Fig. 1. The additional EV
particles of diameter σpart are introduced using the same short-range
Lennard-Jones potential with repulsive cutoff rc = 21/6σij as in Eq. (3)
with σi j = σi+σ j

2 . Here, the indices i and j span all the polymer beads
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and the additional EV particles with σi or σj being either σpoly or
σpart , respectively.

We use Langevin dynamics with the following equations of
motion for the ith monomer:

m ¨⃗ri = −∇(ULJ +UFENE +Ubend +Uwall) − Γv⃗i + η⃗i. (8)

Here, η⃗i(t) is a Gaussian white noise with zero mean at temper-
ature T and satisfies the fluctuation-dissipation relation in d = 2 and
3 physical dimensions,

< η⃗i(t) ⋅ η⃗ j(t′) >= 2dkBTΓδi jδ(t − t′). (9)

We express length and energy in units of σ and ϵ, respectively. The
parameters for the FENE potential in Eq. (4), kF and R0, are set to
kF = 30ϵ/σ and R0 = 1.5σ, respectively. The friction coefficient and

the temperature are set to Γ = 0.7
√

mϵ/σ2 and kBT/ϵ = 1.2, respec-
tively. The force is measured in units of kBT/σ. The mass of each
bead for both the polymers and the EV particles is chosen to be the
same.

The numerical integration of Eq. (8) is implemented using the
algorithm introduced by van Gunsteren and Berendsen.23 Our pre-
vious experiences with BD simulation suggest that for a time step
Δt = 0.01, these parameter values produce stable trajectories over a
very long period of time and do not lead to the unphysical crossing
of a bond by a monomer.17,24 The average bond length stabilizes at
bl = 0.971 ± 0.001 with negligible fluctuation regardless of the chain
size and rigidity.17 We have used a Verlet neighbor list25 instead of
a link-cell list to expedite the computation. In addition, the simu-
lation runs for the EV particles were done using LAMMPS26 with
the same potentials for numerical expediency. We have checked that
these runs yield the same results.

III. RESULTS
We first present results for a single semi-flexible chain and the

universal scaling properties in 2D and 3D in Secs. III A–III C. In
Secs. III D and III E, we present the results for the effect of the
additional EV particles.

A. Persistence length and end-to-end distance
First, we show the results for the universal properties of a 3D

semi-flexible chain. For comparison, we have also shown the 2D
results published earlier but with new, added data points.17 This is
required to compare the 2D results in the presence of the EV parti-
cles. A large number of combinations of chain lengths, N = 16 − 512
for 2D systems and N = 16 − 1500 for 3D systems, were chosen. A
larger chain length for the 3D system was necessary to study the
crossover from a Gaussian regime, as discussed later. Before we
show the scaling results, we would like to mention that the expres-
sion of the persistence length in Eqs. (6a) and (6b) is derived for a
WLC22 in the continuum limit, but we used Eq. (2) to describe a
swollen chain. The validity of Eqs. (6a) and (6b) and of Eq. (2) for
a swollen chain in 2D and 3D are shown in Fig. 2. We rationalize
this result by arguing that the persistence length is a local property
of the chain. Thus, when ℓp is calculated using a discrete model for
a swollen semi-flexible chain with the three-body interaction term

FIG. 2. The scaled end-to-end distance
√

⟨R2
N⟩/l

(1/d+2)
p as a function of Nν in

(a) 2D and (b) 3D. The dashed line in each figure is a straight line that fits through
the points. The inset in each figure shows the verification of the standard definition
of persistence length (a) ℓp = 2κ/kBT in 2D [Eq. (6a)] and (b) ℓp = κ/kBT in 3D
[Eq. (6b)] in the presence of the EV interaction (blue solid lines) with simulation
data using Eq. (7) (red circles).

incorporated using Eq. (7), it does not affect the result derived using
a continuum approximation.

B. Universal aspects of chain conformation
Now we show the universal aspects of a swollen chain.

Figures 3(a) and 3(b) show the universal scaling and crossover plots
in 2D and 3D, respectively. First, we discuss the data collapse of the
root-mean-square (rms) end-to-end distance ⟨R2

N⟩. The choice of
the dimensionless y-axis ⟨R2

N⟩/2Llp in Figs. 3(a) and 3(b) is guided
by noting that in the limit L≫ ℓp Eq. (1) results in ⟨R2

N⟩→ 2Llp, the
Gaussian limit of the WLC. Thus, in the absence of the EV inter-
action, the quantity ⟨R2

N⟩/2Llp → 1 and would exhibit a zero slope
[dashed purple line in Figs. 3(a) and 3(b)]. However, for L≫ ℓp,
eventually, the EV effect will become important, and from Eq. (2), it
is easy to check that ⟨R2

N⟩ ∼ (L/ℓp)2ν−1. This is clearly the case, as evi-
dent from Figs. 3(a) and 3(b) for 2D and 3D, respectively. However,
we note that for 2D, there is no Gaussian regime. For the 3D case,
the Gaussian regime is very short. This trend has also been reported
in the MC simulation20 using a completely different method.
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FIG. 3. Log–log plot of the scaled end-to-end distances, ⟨R2
N⟩/2Llp, as a function

of L/lp for (a) 2D chains and (b) 3D chains for a variety of combinations of L and
ℓp. The dashed purple line in each figure shows the behavior of the WLC model
[Eq. (1)]. The insets in each figure are the plots as a function of (L/ℓp)

2ν−1, which
show the unit slopes for the SAW regime and clearly bring out the sharpness of
the crossover in 2D and the rounded narrow Gaussian regime in 3D. The symbol
brown colored rhombus refers to the experimental value for λ-phage dsDNA from
Table I.

TABLE I. Experimental values of the contour length L and persistence length ℓp of
various semi-flexible bio- and synthetic polymers in the bulk and their description
using the scaling plot of Fig. 3(b). For the λ-phage dsDNA, ⟨R2

N⟩ = 3844 nm9 and falls
onto the Gaussian regime of the master plot of Fig. 3(b) [the symbol ◇ in Fig. 3(b)].

Polymer L lp ln ( L
lp
) Regime

Microtubules12 28.9 μm 5.2 mm −5.193 Rod
BCHV-PPV11 0.6 nm 40 nm −4.199 Rod
BEH-PPV11 0.6 nm 11 nm −2.909 Rod
MEH-PPV11 0.6 nm 6 nm −2.303 Rod
Actin10 30 μm 16.7 μm 1.796 Gaussian
λ-phage dsDNA9 75 nm 46.6 nm 0.476 Gaussian
ssDNA8 120.4 nm 3.1 nm 3.13 SAW

2316 nm 5.2 nm 6.61 SAW

C. Universal aspects of transverse fluctuations
We now discuss the universality of transverse fluctuation. For

each configuration of the polymer chain generated during the sim-
ulation, we choose the unit vector R̂N = R⃗N/RN as the longitudinal
axis to calculate transverse fluctuations as follows:

⟨l2
�⟩ = ⟨

1
N

N

∑
i=1

y2
i ⟩, (10)

where yi is the perpendicular distance of the ith monomer with
respect to the instantaneous direction R̂N and ⟨⋅ ⋅ ⋅⟩ represents the

FIG. 4. Log–log plot of the scaled transverse fluctuation
√

⟨l2�⟩/L, as a function
of L/lp for (a) 2D and (b) 3D chains for a variety of combinations of L and ℓp. The

inset in each case shows the log–log plot of
√

L2
� lp as a function of the chain’s

contour length.

ensemble average. We have repeated this calculation for several
chain lengths, from extremely stiff chains to fully flexible chains.
In the rod limit ℓp ≫ L, it can be shown that for a WLC chain, the
transverse fluctuation with respect to the direction of the end-to-end
vector obeys the following scaling relation:

⟨l2
�⟩ ∼ L3/ℓp. (11)

The transverse fluctuation in this limit of a weakly bending rod is
related to the roughness exponent ζ,

√
⟨l2
�⟩ ∼ Lζ , (12)

where ζ = 3
2 .27–30 Thus, in the limit ℓp ≫ L for an extremely stiff

chain, the transverse fluctuation is governed by the roughening
exponent ⟨l2

�⟩ ∼ L1.5, independent of the spatial dimension of the
system. In the other limit of a fully flexible chain, the transverse fluc-
tuation depends on the physical dimension and is governed by the
Flory exponent of the given spatial dimension as follows:

⟨l2
�⟩ ∼ L2ν. (13)

These limits are shown in the insets in Figs. 4(a) and 4(b).
We also observe that all the data in Figs. 4(a) and 4(b) col-

lapses onto the same plot, with the peak fluctuation around L ≈ 3ℓp.
This can be understood in the following way. The transverse fluctu-
ations go to zero in the limit of an extremely stiff chain and begin to
grow as the ratio L/ℓp gets larger. Please note that in order for the
“transverse” fluctuation to remain significant compared to the lon-
gitudinal fluctuation, the chain has to be stiff enough. As the chain
becomes more flexible, the fluctuations start to grow in the lon-
gitudinal direction while weakening in the transverse component.
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We find that when ln(L/ℓp) ≃ 1, or L ≈ 3ℓp, the transverse fluctu-

ation becomes maximum. The limiting slopes for the
√
⟨l2
�⟩/L for

L/ℓp ≪ 1 and for L/ℓp ≫ 1 follow from Eqs. (12) and (13) can be
written as

lim
L/ℓp→0

√
⟨l2
�⟩/L ∼ (L/ℓp)ζ−1, (14a)

lim
L/ℓp→∞

√
⟨l2
�⟩/L ∼ (L/ℓp)1−ν. (14b)

These asymptotic limits are clearly shown in Figs. 4(a) and 4(b), both
in 2D and in 3D, respectively. The simulation data fits extremely well
with these predictions. The scaling relation can be used to extract
either the ℓp or the L if one or the other is known by simply adjusting
the ratio L/ℓp (such as a knob) until the point falls onto the universal
plot.

D. Effect of crowding
Having established the universal scaling relations for the con-

formations and fluctuations for a single chain, we now study the
effect of the EV particles on these results. The motivation comes
from the living world, where biopolymers such as a double stranded
DNA inside a cell encounter crowded environments that affect their
conformation and dynamics and, hence, their various functionali-
ties. In order to check how the universal scaling relations are affected
by the presence of the EV particles, we have studied chains of differ-
ent lengths (N = 64 − 192) in the presence of dynamic EV particles
of different diameters (σpart = 1.0σ, 1.5σ, and 2.0σ) with repulsive
cutoff interaction potentials as a function of the density ρ = 0.1 − 0.5
(or equivalent volume fraction ϕ = 1

4 ρπσ2
part in 3D) of the EV parti-

cles in both 2D and 3D. We have also varied the chain persistence
length ℓp such that the ratio L/ℓp spans a broad range of values.
First, we studied the effect of crowding due to EV particles whose
diameters are the same as those of the polymer beads (σpart = 1.0σ;
please refer to Sec. II and Fig. 1). Then, for two fixed area fractions
(ϕ = 0.2356 and 0.3927), we studied the size effects of EV particles
of different diameters σpart = 1.0σ, 1.5σ, and 2.0σ. For this part, we
have carried out the BD simulation in 2D, keeping the mass of the
beads the same.

1. Effect of the density of the EV particles
of the same diameter

Figures 5 and 6 show the results of the effect of the addi-
tional EV particles of the same diameter on the scaled end-to-end
distance and the transverse fluctuations, respectively, both in 2D
and 3D. The simulations were carried out for particle densities
ρ = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Only ρ = 0.1, 0.3, and 0.5
are shown along with ρ = 0.0 for comparison.

For all of the densities studied, the data indicates that the EV
particles have hardly any effect on the chain conformations and fluc-
tuations. We have provided raw and scaled data for two different
area fractions for further comparison.

2. Size effect of the EV particles of different diameters
In order to investigate how the diameters of the EV particles

affect the results, additional simulations were carried out in 2D for
EV particles with diameters σpart = 1.5σ and 2.0σ, respectively. We

FIG. 5. Log–log plot of the scaled end-to-end distances, ⟨R2
N⟩/2Llp, as a function

of L/lp. The left column (2D) and the right column (3D) correspond to a variety
of combinations of L and ℓp for several different values of the densities of the
crowding particles with σpart = σ. The symbols green colored circle, brown colored
square, and red colored rhombus refer to chain lengths N = 64, 128, and 192 in
2D (left column) and to the chain lengths N = 32, 64, and 92 in 3D (right column),
respectively.

studied two area fractions of ϕ = 0.2356 and ϕ = 0.3927 in 2D. For
these simulations, the mass of each EV particle remained the same.
For an area fraction of ϕ = 0.2356, the densities for σpart = 1.0, 1.5,
and 2.0 were ρ = 0.3, 0.133, and 0.075, respectively. For an area frac-
tion of ϕ = 0.3927, the densities for particles with σpart = 1.0, 1.5,
and 2.0 were ρ = 0.5, 0.22, and 0.125, respectively. These results are
shown in Figs. 7 and 8. We find that for both the EV particle area
fractions of ϕ = 0.2356 and ϕ = 0.3927, regardless of the diameter
σpart of the included EV particles, the data points for each chain tend
to collapse onto the same curve. These results indicate that, for fixed
EV particle area fractions, the size of the additional EV particles that
are introduced does not appear to invalidate the scaling relationships
up to the maximum diameter of the EV particles that were tested.

We have further investigated the physical origin of the effect of
the EV particles on the scaling laws. We have analyzed the simula-
tion data for rms transverse fluctuation per unit length ⟨

√
l2
�/L⟩ and
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FIG. 6. Log–log plot of the scaled transverse fluctuations,
√

⟨l2�⟩/L, as a function
of L/lp. The symbols have the same meaning as in Fig. 5.

noticed that this quantity (≈0.1) is at least an order of magnitude
less than the average separation among the particles (1.26σ − 1.7σ)
for EV particle density ρ = (0.5 − 0.2). A similar argument holds for
the 2D system. Thus, the average presence of the particles hardly
affects the conformations of the chain. This explains the robustness
of the result.

E. Comparison with experiments
Biopolymers have a wide range of flexibility. Single stranded

DNA (ssDNA) is more flexible than double stranded DNA
(dsDNA). Actins and microtubules are much more rigid. We have
gathered experimental values of L/ℓp

8–12 in Table I and determined
how they will be described (rod, Gaussian, or a swollen chain) with
reference to the universal scaling plot of Fig. 3. We notice that a
microtubule and other synthetic stiff polymers are characterized by
rods, while a 30 μm long Actin10 filament with a persistence length
of ℓp = 16.7 μm falls in the Gaussian regime, while an ss-DNA8 is
described as a swollen chain. For the λ-phage dsDNA (L = 75 nm,
ℓp = 46.6 nm), we also have an experimental value for the mean-
square end-to-end distance, ⟨R2

N⟩ = 3844, nm, that enables us to
obtain the scaled coordinate (L/ℓp, ⟨R2

N⟩/2Lℓp) ≡ (1.61, 0.55). This

FIG. 7. Log–log plot of the scaled end-to-end distances, ⟨R2
N⟩/2Llp as a function

of L/lp in 2D for chain lengths N = 64 (green colored circle), 128 (brown colored
square), and 192 (red colored rhombus) for EV particle diameters of σpart = σ,
1.5σ, and 2.0σ, respectively. The left and right columns correspond to two area
fractions ϕ = 0.2356 and ϕ = 0.3927, of the EV particles in 2D. The last row
shows an explicit comparison of the scaled end-to-end distances for different
chain lengths and persistence lengths in the presence of particles with different
sizes: σpart = 1.0 (green colored rhombus), σpart = 1.0 (blue colored square), and
σpart = 1.0 (red colored circle).

coordinate falls right onto the universal plot (◇) in Fig. 3 in the Gaus-
sian regime and serves as a testimonial to our theory. It is worth
noting in this context that most of the biopolymers are described
as WLC. However, a large number of them will behave as swollen
chains. The universal curve of Fig. 3 can be used to classify them.
Figure 4 can then be used to extract the transverse fluctuations of
the chains.

IV. SUMMARY AND CONCLUSION
In conclusion, we have established the universal aspects of con-

formations and fluctuations of a semi-flexible chain by studying the
scaled end-to-end distance ⟨R2

N⟩/2Lℓp and the scaled transverse fluc-

tuation
√
⟨l2
�⟩/L as a function of the scaled contour length L/ℓp. The

purpose of the choice for the former is that in the limit of a flexible
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FIG. 8. Log–log plot of the scaled transverse fluctuations,
√

⟨L2
�⟩/L, as a function

of the scaled lengths, L/lp. The symbols have the same meaning as in Fig. 7.

chain, it exhibits the characteristics of a Gaussian chain and, thus, the
effect of the EV will become immediately observable. The purpose
of the choice of the latter is that the root-mean-square fluctuation
per unit length is what is important. Furthermore, the relative flex-
ibility of the chain is measured in units of L/ℓp and should be the
correct length unit to understand the results. Therefore, when plot-
ted as a function of L/ℓp, both the end-to-end distance and the
transverse fluctuations collapse onto the master plots. Comparing
the plots in 2D and 3D, we conclude that the Gaussian regime,
though present in 3D, is very narrow. Therefore, most of the long
semi-flexible polymers will be characterized by a swollen chain.
In deriving scaling relations and validating them with simulation
results, we have used Eq. (2), which correctly describes the prop-
erties of a semi-flexible chain. Historically, there have been a large
number of activities to generalize the Flory theory for a flexible chain
to include self-avoidance.31–36 A detailed survey of these activities
can be found in the monograph.31 A common feature of all these
calculations is to plot the chain extension parameter α2 = ⟨R2

N⟩/N
as a function of the excluded volume parameter z =

√
3

2πb2
l
νN1/2,

where the EV repulsive interaction is assumed to be −δ(r) ∫ (1 −

exp (−βV(r))d3r. As pointed out by Domb and Barrett,32 the plot
of α2 ∼ z resulted in many different curves33-36 with no definitive
answer. Later, the definition of the excluded volume parameter z
was extended to define a scaled EV parameter z̄ to account for the
chain stiffness.37 Equation (2) was derived using the same approach
using virial expansion, however, with a cleaner picture where the
EV effects are incorporated in the chain persistence length lp. This
is a natural and obvious simple generalization of the Flory theory,
where a semi-flexible chain is characterized by its contour length L
and its persistence length lp whose parameter-free universal aspects
we brought out in this paper.

The transverse fluctuations, as expected in the rod limit, are

independent of the spatial dimensions and grow as
√
⟨l2
�⟩ ∼ L3/2, as

described by the roughening exponent ζ = 1.5 (Fig. 4), while in the
limit of a flexible chain, the fluctuation is dimension dependent and

grows as
√
⟨l2
�⟩ ∼ Lν, where ν is the corresponding Flory exponent

in a given dimension. We extend our previous work and observe
that not only for the asymptotic limits but for all ratios of L/ℓp, both
the scaled end-to-end distance and the scaled fluctuations collapse
on universal plots, indicating that the appropriate length scale to
analyze the data is L/ℓp, which brings out these universal aspects.

Moreover, we observe that crowding due to EV particles of dif-
ferent area/volume fractions and of the same and different sizes does
not change the universality of these results. We understand this by
noting that the magnitudes of the scaled transverse fluctuations are
much less than the average separation of the EV particles, indicating
that, on average, chain fluctuations and conformations are hardly
affected by the EV particles for the densities studied here. Thus, we
believe these results will be useful to calibrate and characterize both
semi-flexible biopolymers and synthetic polymers with respect to a
universal scale. It is worth noting that the situation will be com-
pletely different if the EV particles are frozen, in which case reptation
will set in and the dynamics will be very different. We also would
like to point out that we have not varied the mass of the spheri-
cal particles as a function of their sizes and have not included the
hydrodynamic effects in this study. Varying the mass of the spheri-
cal particles alone is not likely to change the universal scaling laws,
as they are polymer specific and are not affected by the presence
of particles of equal mass. However, HD effects may change these
results, which is beyond the scope of these studies. We conclude
by stating that these results can be used as references to classify the
properties of intrinsically disordered proteins (IDPs), which remain
in an extended state and whose studies have become an increasingly
important and emerging field.38
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