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Diffusion and magnetic relaxation are studied in computer-generated model two-dimensional porous media
whose three-dimensional analogs resemble commercially prepared Vycors and aerogels. When diffusion rates
are compared for two different samples, one with average pore diameter much shorter than the other but with
the same porosity, acrossoveris observed where the asymptotic long-time diffusion rateD(t) for the smaller
pore becomes larger than the bigger one. However, thiscrossoverdisappears for relatively larger pores of fixed
porosity. Physically, this crossover is a characteristic of changed surface morphology where for a fixed poros-
ity, pore diameters could be made bigger but at the cost of separating the pores from each other by thin but
more ordered walls, linked to each other with very narrow necks. This results in a net decrease in the long-time
diffusion constant. We have also been able to relate thiscrossoverto the absence ofdynamical scalingfor the
structures. Adding a surface relaxation term at the pore wallsincreasesthe effective diffusion rate at early
times. We compare our simulation results for the model systems, wherever possible, with some of the general
results for porous media obtained analytically.

I. INTRODUCTION

Understanding various physical processes such as fluid
transport, phase transitions, etc., occurring inside porous me-
dia and how they are influenced by the geometry and disor-
der has attracted a great deal of both experimental and theo-
retical attention for the last several decades. Examples of
porous media are naturally occurring rocks, biological cells,
zeolites, intercalated layered systems such as pillared lamel-
lar oxides and more recently discovered nano and meso tubes
like MCM-41. Measurement of magnetic relaxation and dif-
fusivity has been routinely used to extract information about
the geometry and connectivity of these porous media. Many
of the earlier work on porous media have dealt with models
of highly consolidated structures of naturally occurring sand-
stones and rocks1 and commercially synthesized zeolites
whose porosities can be extremely low. In this paper we have
explored diffusion and magnetic relaxation in a class of two-
dimensional model porous media of relatively larger porosi-
ties with varying degree of nonuniformity and connectivity.
One of the key features of these computer-generated model
porous media is that for a fixed porosity it is possible to
generate structures with very different surface morphologies.
These structures have very marked effect on both the short-
and long-time diffusion rates. Furthermore these morpholo-
gies can be changed in a controlled manner which enables us
to study transport and relaxation in a very systematic way.

Nuclear magnetic relaxation has been widely used to ex-
tract information about transport processes in porous media
in general and the fluid-saturated porous media in particular.
In a proton NMR experiment in the latter system, the rate of
decay of magnetization depends on the characteristic length
scales of the pore space and on the interactions at the pore
grain interface. The additional interaction of protons with
paramagnetic impurities located on the grain surface en-

hances the relaxation process. The continuum description of
this process has traditionally been described through diffu-
sion equation. The effect of the surface relaxers are taken
into account through boundary condition at the pore surface.
In one of the pioneering works in this field Brownstein and
Tarr2 made a very important observation that for very small
pores the decay was multiexponential, the geometry of the
pore being the decisive factor for the relevant time scales for
the magnetic relaxation. Since then a number of approaches
have been developed to study particle diffusion in such re-
stricted geometries in general. The method of random
walkers3,4 has proven to be a very successful tool. It has been
widely used to extract information about permeability in sev-
eral models of rocks.3 More recently in a series of papers Sen
and co-workers,5,6 and Mitra and Sen7,8 have extensively
analyzed the diffusion and relaxation processes in porous
media starting from the diffusion equation. They have de-
rived analytic results for periodic geometries to illustrate the
important differences between diffusion rates for the cases
when the surface relaxivityr50 and rÞ0. Bergman and
Dunn9 have developed a method of matrix eigenvalue prob-
lem for the diffusion eigenstates of a periodic porous media.
The later approach seems to be complementary to the
method of Mitraet al., and in many of the cases they give
identical results.10

In this paper we have ventured away from the well-
studied cases of porous rocks or periodic geometries; our
focus is on two different types of porous media, which re-
semble Vycor and aerogel. The porosity of these media are
significantly higher. Secondly these are examples of corre-
lated disorder where in addition to porosity, the surface mor-
phology plays a very crucial role. The motivation for this
work also comes from various other recent theoretical and
experimental studies on Vycor and aerogels; it has been ob-
served that these porous media have dramatic effects on the
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phase transition and dynamics of confined fluids.11

Another aspect of these computer-generated porous media
is that they are highly controllable and therefore it is possible
to make a systematic study of diffusion and magnetic relax-
ation processes. For simplicity we consider two-dimensional
~2D! models in this paper. However many of our results are
quite general and should be applicable to the more realistic
3D systems. In the following section we describe in detail
the underlying theory of preparation of model Vycors and
aerogels. In the next two sections we give a brief history of
earlier work, present our results on the time dependence of
diffusion rates and spatially averaged magnetic moment, and
compare our work with the earlier ones, wherever possible.
The last section gives a summary and then describes the
work in progress.

II. METHOD

A. Preparation of model 2D Vycor

Vycor is a porous glass. In reality these are prepared from
the phase-separated borosilicate glass by acid etching of the
boron.12 The underlying theory to produce a computer-
generated Vycor is the dynamics of a first-order phase sepa-
ration process for a binary mixture. It is now well known that
a binary mixture when quenched deep inside the coexistence
regime undergoes a phase separation process driven by small
amplitude large wavelength fluctuations of the order param-
eter, known as spinodal decomposition. The two components
form an interconnected structure. At late times a single time-
dependent length scaleR(t) associated with the domain sizes
of the two components govern the physics which implies that
the correlation functionC(r ,t) of the order parameter
f(r ,t), defined as

C~r ,t !5L2dE ddr 8^f~r1r 8,t !f~r ,t !&, ~1!

obeys a simpledynamical scalinglaw

C~r ,t !5g„r /R~ t !…, ~2!

whered is the spatial dimensionality of the system. Alterna-
tively, its Fourier transform, the structure factor
S(k,t)5^fk(t)f2k(t)& exhibits the following scaling form:

S~k,t !5Rd~ t !s„kR~ t !…. ~3!

The details of the kinetics of first-order phase transition
could be found in many excellent review articles listed in
Refs. 13 and 14. The dynamics is usually described by a
coarse-grained Cahn-Hilliard-Cook equation,13 which be-
longs to the same universality class as the spin-exchange
Kawasaki dynamics for the kinetic Ising model.15 An alter-
nate approach for the coarse-grained description is due to
Oono and Puri16 which is usually known as thecell dynamics
method. In this work we have used the cell dynamics method
to prepare the computer-generated 2D Vycors. Although,
some characteristics of these numerically generated struc-
tures are quite different from commercially available Vycor
glass,12 we will loosely call these interconnected structures
Vycors in this paper.

The Cahn-Hilliard or cell dynamics approach is a field-
theoretic description so that the concentration fieldc(r ,t)

describing the mixture~order parameter! takes continuous
values anywhere from21 to 11. Starting from an initial
zero value of the order parameter~i.e., a 50:50 mixture of the
two components, or̂c(r ,0)&50) as the coarsening time
(tcoarse) increases the separation process drives the field vari-
ables toward either11 or 21. Although the linear size of
domains of each component grows with time, the porosity
always remains close to 50% since the order parameter is
conserved. However one can define acutoff value for the
order parameterc etch such that order-parameter values for
whichc<c etchwill consist of the pore space and the values
for which c.cetch will be interpreted as glass. We call this
procedureetching in this paper.17 By adjusting the cutoff
value for the order-parametercetch the porosity may be var-
ied over a wider range. To make this point more explicit we
have shown an example in Fig. 1. Figures 1~a! and 1~b! show
a phase separated mixture attcoarse5100 and 1000~in arbi-
trary unit!. The corresponding cutoff values (cetch) are 0.49
and 0.885~i.e., from21 up to 0.49 or up to 0.885 is the pore
space, the rest is glass! which produce Vycors of 80% po-
rosity with average diameters 10.8 and 17.8, respectively.
We have used the coarsening timetcoarse and the etching
value for the fieldcetch as two tunable parameters to prepare
model Vycors of different porosities and average pore diam-
eters. The surface to volume ratio (S/V), which is a key
geometrical parameter is then obtained from the coordinates
of the pore and glass space. Similarly Figs. 1~c! and 1~d!
refers to two different aerogel samples of 80% porosity and
average pore diameter 9.1 and 13.4, respectively, prepared
by varying the aggregation time~see below!.

B. Preparation of model 2D aerogel

The model aerogel is prepared by diffusion limited cluster
aggregation~DLCA! method.18 Initially each cluster consists

FIG. 1. Pictures of computer-generated 2D model Vycors and
aerogels of 80% porosity.~a! and ~b! correspond to model Vycors
with average pore diameters 10.8 and 17.8, respectively.~c! and~d!
correspond to model aerogels with average pore diameters 9.1 and
13.35, respectively.
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of a single particle. For a given porosity the number of par-
ticles is fixed~for a fixed size lattice!. As time proceeds they
aggregate irreversibly to form bigger clusters. The clusters
also diffuse rigidly and stick irreversibly when they come
into contact with other clusters. In three dimensions, this
model is a good representation of an aerogel structure.18 It is
also known that the structures generated this way show dy-
namical scaling behavior similar to spinodally decomposed
binary mixtures at late times.19 The average pore radius and
the surface-to-volume ratio is then controlled by monitoring
the aggregation time. We will again loosely call these two-
dimensional structures aerogels. For a set of aerogels~or
model Vycors! with fixed porosity, bigger pore radii would
reflect surfaces with bigger correlation length. Therefore the
diffusion rate measured in this set will provide information
about how the surface morphology affects the diffusivity in
this medium.

C. Random-walk method

Random walkers have been used earlier to study transport
and magnetic relaxation in porous rocks.3,4 It is also possible
to model pulsed gradient NMR by a random walker by at-
tributing additional phases proportional to the local magnetic
field to each walker.4 After generating a model porous sys-
tem we have checked if the pore space percolates and then
let random walkers move around one at a time starting from
different initial positions inside the pore space. For any at-
tempted move by the walker towards a grain boundary it
stays at the same point but the clock advances one unit. For
magnetic relaxation studies the proton magnetization of the
walker decays at the grain boundary with a probabilityg.
Obviouslyg and the surface-relaxation strengthr appearing
in boundary conditions for the diffusion equation2 are inter-
related. For very weak relaxation it can be shown that
r5g/(12g).1 But in general there is no well-defined for-
mula to convert one from the other.9,20 In this work we will
describe our results in terms ofg512pf (pf is the survival
probability! and user andg synonymously.

For each sample the initial position of the walker is aver-
aged over 500 different locations inside the pore space. The
final average is done with results for 200 samples. We have
checked that statistical uncertainties in the results obtained
after this large sample averaging is extremely small. For a
fixed set of parameters the results for two independent sets
are hardly distinguishable. In all the results shown here the
Vycor is embedded on a 1283128 square lattice. We have
checked by taking a few runs on 2563256 lattice that the
results are hardly distinguishable. Therefore we have taken
most of our runs on 1283128 lattices. This enabled us to
perform many sample averages which is extremely crucial to
reduce statistical fluctuations associated with disordered sys-
tems.

III. EARLIER WORK

The effects of the surface magnetic impurities on the
magnetic relaxation were studied by Brownstein and Tarr2 in
the context of a single spherical cell. Magnetic relaxation in
this case is multiexponential and the time dependence of
average magnetizationM (t) is given by

M ~ t !5 (
n51

`

AnexpS 2
t

Tn
D . ~4!

The complete set of eigenfunctionsAn and eigenfrequencies
Tn are obtained from the solution of the diffusion equation

D0¹
2M2

]M

]t
50, ~5!

whereD0 is the bulk diffusion constant and the effect of the
surface relaxation is incorporated through the boundary con-
dition

@D0n̂•M1rM #S50. ~6!

In Eq. ~3! r is the surface relaxation strength. The presence
of the surface relaxation introduces another scale into the
problem which is conveniently expressed in terms of a di-
mensionless parameter

r̄5
ra

D0
. ~7!

It governs the competition between how fast the diffusion
takes place and how rapidly the walkers get killed at the
surface and therefore characterizes the over all relaxation
process. In two extreme limits the characteristic single relax-
ation times are

Tsurface5H a2

D0
,

ra

D0
@1

a

r
,

ra

D0
!1.

~8!

In the fast diffusion regime (ra/D0!1) the magnetiza-
tion becomes uniform over the entire pore volume very rap-
idly and the smallest relaxation time~denoted asT) governs
the diffusion problem. On the other hand in the slow diffu-
sion regime (ra/D0@1), it is basically the time a particle
takes to diffuse to the surface (a2/D0) that governs the re-
laxation process.21

Now consider the case where, instead of one pore, two
pores of different average radii are connected through a
neck23 as shown in Fig. 2. Assuming the fast diffusion con-
dition holds and the link between the pores is weak the two

FIG. 2. Two pores connected by a narrow throat. Each pore
relaxes with its characteristic relaxation time.
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pores will then relax with their characteristic decay times It
can be shown that in the case where many pores are joined
by such weak links the decay is given by

M ~ t !;E
0

`

PS 1TDexpS 2
t

TDdS 1TD . ~9!

The decay is in general nonexponential. If the diffusion is
not sufficiently fast then one has to include other modes on
top of the lowest mode in each pore. Therefore we notice that
for a general situation the presence of many relaxation times
may arise not only from a single pore but from a distribution
of pore sizes as well which makes it intrinsically very diffi-
cult to extract information about pore geometries from the
decay ofM (t).

However recent analytic treatments of the diffusion prob-
lem starting from the diffusion equation5–8 have made some
general predictions about the diffusion coefficient and its ef-
fect on surface relaxation. Let us define the time-dependent
diffusion rateD(t) as ^r 2(t)&s/2dt, where ^r 2(t)s& is the
mean-square displacement for those walkers which havesur-
vived until time t and d is the spatial dimension. Then for
very early time it is shown that

D~ t !

D0
512

4

9Ap

S

V
AD0t2

S

12V K 1

R1
1

1

R2
LD0t

1
1

6

rS

V
D0t1•••, ~10!

and the net magnetization decreases as

M ~ t !512rt
S

V
, ~11!

whereS andV are the pore surface area and pore volume,
R1 andR2 are the two principal radii of curvatures of the
pore walls. The origin of theAt term in Eq.~7! comes from
the fact that molecules which are withinD0At distance away
from the pore surface are the ones who get affected by the
surface and contribute to a decrease in the value of the dif-
fusion rate. It is interesting to note that the presence of the
surface relaxers only affects in the order (At)2.

The long-time diffusion constant in a porous media is
usually written in the following way:23,24

D~ t !

D0
5

1

a0
1

a1

t
1

a2

t3/2
1•••, ~12!

wherea0 is known as tortuosity of the porous material which
in addition to other variables depend on the porosityf.

In the fast diffusion regime for periodic systems with non-
overlapping spherical grains it has been shown by Mitra and
Sen8 that the long-time diffusion constant is given by

lim
t→`

Deff

D0
5

2

32f
2r*A~f!, ~13!

whereA(f) is a function of the porosity only. It is to be
noted that no other geometrical factor enters into this case.

One can show from a simple scaling argument that Eq.~13!
is true for regular periodic geometries. As an example let us
consider Figs. 3~a! and 3~b!, respectively, where the porous
media consist of periodic arrays of squares. In each case the
porosity is kept fixed at 0.75, butS/V has been reduced by
half in Fig. 3~b! compared to Fig. 3~a!. Under a simple scale
transformationx→ax and t→a2t the diffusion constant re-
mains invariant sinceD5Dx2/Dt. @When a52, Fig. 3~a!
will result in Fig. 3~b! whose long-time diffusion constant
will remain the same as that of Fig. 3~a!.# But at very early
time according to Eq.~10!, D(t) for Fig. 3~b! will be larger
because it has a smaller surface-to-volume ratio. The numeri-
cal results for this simple periodic arrays of small and large
squares are shown in Fig. 3~c!. The lower and the upper
curve show the diffusion rates for the geometries with
smaller and larger squares, respectively. The inset shows the
corresponding scaling plot where the time for the upper
curve has been scaled by a factor of 0.25 and compared with
the lower curve. As expected scaling is satisfied.

In the next section we will present results where we will
show that similar scaling will hold for geometries which are
of fixed porosity and obey adynamical scalingin the sense
alluded to in Eqs.~2! and~3!. On the contrary for geometries
which do not obey such scaling one observes acrossover. In
the next section we present the detailed results.

IV. RESULTS

A. Diffusion rate in the absence of surface relaxers„r50…

Before presenting the results let us first characterize the
model Vycor and aerogel samples first. In order to study the
effect of pore radius and porosity we have generated differ-
ent Vycors by stopping the spinodal decomposition at
tcoarse5100, 500, 1000, and 2500. For a giventcoarse,differ-
ent levels of etching will produce Vycors of different poros-
ity. For example fortcoarse5100, 500, and 1000, by etching
up to 0.365, 0.69, and 0.775, Vycors of 80% porosities are
obtained with pore diameters 7.8, 11.5, and 14 lattice units,
respectively. Table I summarizes the characteristics of differ-
ent Vycors.

For aerogels we have stopped the aggregation process at
taggre510 and 200 to prepare samples of 70 and 80 % porosi-
ties. Figures 1~c! and 1~d! show snapshots of 80% porous
aerogels fortaggre510 and 200, respectively. Table II sum-
marizes the average pore diameter and surface to volume
ratios for aerogels samples.

Figures 4~a!, 4~b!, and 4~c! shows the effective diffusion
ratesD(t) for model Vycors of porosities 70, 75, and 80 %,
respectively. Figures 5~a! and 5~b! show the corresponding
figures for aerogel. The squares and the circles represent
pores with smaller and larger diameters, respectively. The
pores with smaller diameters have higherS/V. Therefore at
the early time, according to Eq.~10!, they have a lower
D(t). But unlike what happens in Fig. 3, the long-time dif-
fusion rate for the system with different pore diameters are
not the same. In all the cases studied here the diffusion is
characterized by acrossoverwhen the diffusion for the
larger diameter pores falls below that of the corresponding
smaller diameter pores. Figure 6 also shows diffusion rates
for 80% porous Vycor for average pore diameters 17.8@as
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shown in Fig. 4~c!# and 23.6, respectively. Unlike all the
cases cited in Fig. 4, the crossoverdisappearsin this figure
and Fig. 6~a! resembles the case discussed in Fig. 3~c!. The
reason could be traced back to the scaling argument given
for the square pores shown in Fig. 3. If one looks at the
pictures in Figs. 1~a! and 1~b! one notices that the pores with
small diameters look very different from the bigger diameter
pores. Figure 1~b! cannot be obtained by a mere scaling of
Fig. 1~a!. In the case of the low diameter pore the pore di-
ameter does not vary much. A random walker does not get
stuck in any particular region for a long time and therefore
samples the entire pore space quicker compared to what is
shown in Fig. 1~b! for the large diameter pore. One notices

that for the bigger diameter pores, each pore is isolated by a
narrow window from the rest of the pore space. Therefore a
random walker is trapped inside the pore for very long time
before it gets out to make its way to a second pore where the
same thing happens. Hence although at the very early time
the bigger diameter pores have larger diffusion rates, even-
tually the effective diffusion constant for this system falls
below that of the lower diameter pores. The samecrossover
is observed in aerogels as well. Hence long time diffusion
constant in this class of systemsdoes notdepend onporosity
only. The same argument also explains why the diffusive
rate for smaller diameter pores approaches its long time
value much rapidly than the larger diameter pore as seen in
Fig. 4.

A critical look at the way the Vycors and aerogels are
prepared can help to understand thiscrossoverphenomenon
better. As discussed earlier, the Vycors are prepared by a
critical quench of a binary liquid mixture. Larger diameter
pores are prepared by etching configurations for which

TABLE I. Porosity, average pore diameter, and surface to vol-
ume ratio for computer-generated Vycors for differentcetch and for
different tcoarse.

tcoarse cetch f ^r pore& S/V

100 0.365 0.70 7.8 0.380
500 0.690 0.70 11.5 0.263
1000 0.775 0.70 14.0 0.215
100 0.430 0.75 9.1 0.351
500 0.760 0.75 12.5 0.255
1000 0.840 0.75 15.5 0.210
100 0.490 0.80 10.8 0.314
500 0.815 0.80 14.9 0.236
1000 0.885 0.80 17.8 0.196
2500 0.945 0.80 23.6 0.192

TABLE II. Porosity, average pore diameter, and surface-to-
volume ratio for computer-generated aerogels produced by DLCA
method for differenttaggre.

taggre f ^r pore& S/V

10 0.70 6.6 0.444
200 0.70 8.3 0.371
10 0.80 9.1 0.377
200 0.80 13.4 0.288

FIG. 3. Porous medium with periodic array of
squares of 75% porosity.~a! Surface-to-volume
ratio 0.025.~b! Surface-to-volume ratio 0.0125.
~c! Diffusion rates corresponding to~a! ~circles!
and ~b! ~squares!, respectively. The inset shows
the corresponding scaling where the time for the
upper curve has been scaled by 1/4.
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tcoarseis large. For example a pore diameter of 7.8 is made by
etching a configuration att coarse5100, as opposed to the case
for a pore diameter of 14.0 which is prepared by etching a
configuration attcoarse51000. It is only for the samples
which are prepared from very large coarsening time (tcoarse
large! the scaling described by Eqs.~2! and~3! holds. For the
samples described in this work we have checked that the
structure factors for the sample Vycors which are obtained
by etchingtcoarse51000, andtcoarse52500, respectively, ex-
hibit dynamical scaling as described by Eqs.~2! and ~3!,
whereas the various structure factors for the cases cited in
Fig. 4 do not. The structure factors for these two samples are
shown in Fig. 6~b!. The inset shows the scaled structure fac-
tors where the scale factorR in each curve~at the inset! is
proportional to the corresponding average pore diameter.
The scaling is satisfied very well which is reflected in the
scaling plots of the corresponding diffusion rates shown at
the inset of Fig. 6~a!. Notice that we do not have any adjust-
able parameter here. It is only the ratio of the pore diameters
~the same asa parameter for Fig. 3! which scales both the
structure factors and the corresponding diffusion constants.

Hence the scaling argument discussed in Fig. 3 breaks
down for early time structures generated for the Vycors and
aerogels and the asymptotic diffusion rates are different for
different samples. This observation may have important ap-

plication for creating environment for catalytic conversions.
Depending upon the need the long-time diffusion rate could
be controlled by putting samples in these model porous pre-
pared from different coarsening regimes.

B. Diffusion rate in the presence of surface relaxers„rÞ0…

Let us now consider the case when surface relaxationr in
Eq. ~1! is not equal to zero. As mentioned earlier in the
introduction we model the surface relaxation with the sur-
vival probability pf ~if the random number is bigger than
pf then the walker is killed! which is connected to the pa-
rameterr appearing in Eq.~2!. Hencepf51 will correspond
to no relaxation at all whilepf50 corresponds to infinite
absorption.

Figures 7 and 8 show the diffusion constantD(t) when
the surface-relaxation strengthgÞ0 and along withg50
case for comparison. Figure 7 summarizes results for the
model Vycors for 70 and 80 % porosities. Figure 8 shows the
corresponding figures for the aerogel. The corresponding av-
erage pore diameters and surface to volume ratiosS/V could
be found in Tables I and II. Since walkers get killed very
rapidly in the presence of surface relaxation it has been only
possible to study diffusion rates for short lengths of time
until when the statistics for the surviving walkers is good.
For the highest killing strengthpf50.4 and the next one
pf50.5 for which we carried out our diffusion studies we
have taken averages over 106 walkers; for the rest the aver-

FIG. 4. ~a! D(t) for model Vycor with 70% porosity for average
pore diameters 7.8~squares! and 14.0~circles!, respectively.~b!
D(t) for model Vycor with 75% porosity for average pore diam-
eters 9.1~squares! and 15.5~circles!, respectively.~c! D(t) for
model Vycor with 80% porosity for average pore diameters 10.8
~squares! and 17.8~circles!, respectively.

FIG. 5. ~a! D(t) for aerogel with 70% porosity and average pore
diameters 6.6~squares! and for 8.3 ~circles!, respectively. ~b!
D(t) for aerogel with 80% porosity for average pore diameter 9.1
~squares! and for 13.4~circles!, respectively.
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aging was done with 500 000 walkers. In each case we find
that at early time thepresenceof the surface relaxationen-
hancesthe diffusion rate.

To physically understand the enhancement of the diffu-
sion rate in the presence of surface relaxers, imagine a chan-
nel connected by dead ends as discussed by Senet al.6 ~Fig.
9!. The presence of these dead ends will lower the value of
the diffusion constant below the value corresponding to just
straight tubes. For walkers which will enter into those dead
ends thê r 2(t)& will saturate very soon; therefore the overall
effect will be a net decrease in the diffusion constant. Now
imagine a surface relaxation is turned on at the surfaces of
these dead ends but the tube is kept as it is. Those walkers
which will enter into these dead ends will die very soon and
will not contribute in decreasing the diffusion constant any
more. Hence adding a surface relaxation in this case in-
creases the diffusion rate. We cited this simple example to
show how one can get an enhancement in diffusion rate by
adding a surface relaxation term. We can think of a similar
scenario taking place in our model porous media. All of them
could be visualized as percolating channels with blockers.
Turning on a surface relaxation will then increase the effec-

tive diffusion rate as it happens in the example given above.
This is also consistent with the early time results predicted
by Mitra et al.as described by Eq.~10!. If the whole tube is
now made to relax, some of the walkers will be taken away
very soon before they take appreciable^r 2(t)& values and the
diffusion rate will approach a smaller saturation value. The
reason for the crossover that is seen in Figs. 7 and 8 is
simpler than the ones shown in Figs. 4 and 5. The same
surface relaxation which enhances the diffusion rate at early
time also make the diffusion rate saturate faster to a smaller
value as well. The crossover simply reflects the relative time
of this phenomenon and the saturation values for different
surface relaxation strengths. For the lower value of the sur-
face relaxation strength, its impact at early time is less pro-
nounced, but it is less effective too in making the diffusion
rate approaching the saturation value, which is itself close to
~but slightly smaller! than the saturation value in the absence
of surface relaxation.

V. SUMMARY

To conclude we have presented results of random-walk
simulation studies in computer-generated model 2D porous

FIG. 6. ~a! D(t) for model Vycor with 80%
porosity for average pore diameters 17.8~circles!
@as shown in Fig. 4~c!# and 23.6~squares!, re-
spectively. The inset shows the corresponding
scaling where the scale factorR for each curve is
proportional to the pore diameters~1.78 and 2.36,
respectively!. ~b! Scaling of the corresponding
structure factors with the same values ofR. The
symbols refer to the same as in 6~a!.
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media of relatively high porosity. In particular the two types
of porous media considered here resemble Vycors and aero-
gels. These porous media have drawn considerable attention
in recent years due to the fact that physical systems exhibit
very different behavior when imbibed into these materials.
We have calculated the structure factor for these materials.
When diffusion rate is compared for different samples of
fixed porosity, if the structure factors of any two samples do
not exhibitdynamical scaling~in the same way various late
time configurations of a binary liquid mixture do!, the diffu-
sion rates will exhibit acrossover. This is true for a set of
model Vycors and aerogels samples. To establish this fact
we have shown a counter example where two different Vy-
cor samples, both of them prepared from late time (tcoarse
large! configurations do not exhibit crossover. The snapshots
of different samples help to understand this phenomenon bet-
ter. In both Vycors and in aerogels the surfaces of larger
diameter samples form a more correlated pattern; our com-
puter generated pictures show that the pore geometries akin
to large pore spaces separated bynarrow but correlated
walls, and havingnarrow throats. Therefore although the
pore radii are larger the long time diffusion rate becomes
smaller. It also takes longer time to reach its saturation value.
Surface relaxation enhances the diffusion rate at early time.
We draw an analogy with a much simpler geometry of tube
with dead ends proposed by Senet al.A crossover in diffu-
sion rate,albeit of different origin, is also observed for a
given geometry for different surface relaxation strengths. We
also find that for smaller pores the magnetic relaxation is
characterized by a single relaxation time which decreases
with the enhanced strength of the uniform surface relaxers.
The bigger pores however show an initial nonexponential
decay followed by an exponential decay. It would be inter-
esting to study the effect of nonuniform surface relaxivity
which we plan to report in a future publication We are plan-
ning to extend our calculations for a real 3D Vycor and to
incorporate pulsed field gradient NMR into this scheme.
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FIG. 7. D(tur) for Vycor with 70% and 80% porosities for
different values of the survival probabilitypf ~0.4, 0.5, 0.6, 0.7, 0.8,
and 1.0 counted from the top to the bottom from the upper left
corner!. pf51 corresponds to no relaxation at the surface.~a! and
~b! correspond to 70% porosity and for average pore diameters 7.8
and 14.0, respectively.~c! and ~d! correspond to 80% porosity and
for average pore diameters 10.8 and 17.8, respectively.

FIG. 8. D(tup) for aerogel with 70% and 80% porosities for
different values of the survival probabilitypf ~0.4, 0.5, 0.6, 0.7, 0.8,
and 1.0 counted from the top to the bottom from the upper left
corner!. pf51 corresponds to no relaxation at the surface.~a! and
~b! correspond to 70% porosity and for average pore diameters 6.6
and 8.3, respectively.~c! and ~d! correspond to 80% porosity and
for average pore diameters 9.1 and 13.4, respectively.

FIG. 9. Picture of a tube connected to dead ends.
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