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We study the kinetics of phase separation of a model binary fluid confined within a narrow strip in two
dimensions by numerically integrating the Cahn-Hilliard-Cook equation. We explore the systematics of
the time evolution of domain shapes as a function of temperature and wetting field. The domains exhibit
similar configurations as seen in recent Monte Carlo simulations of a related lattice model. We provide a
quantitative estimate of the breakdown of power-law growth of domains once the domain size becomes
comparable with the strip width, and show the relevance of the model to domain growth in Vycor
glasses. Next we argue for the incorporation of an anisotropic kinetic coefficient in the coarse-grained
dynamical equations. We find that even the slightest amount of anisotropy modifies the shapes of
domains drastically and allows for complete phase separation.

PACS number(s): 47.55.Mh, 64.60.Cn, 68.45.Gd

I. INTRODUCTION

Binary fluid mixtures quenched inside their miscibility
gap separate into two bulk coexisting phases. For a criti-
cal composition of the mixture, the phase separation is
driven by small-amplitude long-wavelength fluctuations
of the order parameter, known as spinodal decomposi-
tion. At late times a single length scale associated with
the domain size governs the physics and the system
enters a scaling regime [1].

Very different growth processes are observed during
the phase separation of binary fluids in porous media
such as Vycor glasses [2]. The two phases do not
separate completely, even deep inside the coexistence re-
gion; instead, they form many microdomains, rich in ei-
ther one phase or the other. While a complete theoretical
understanding of this phenomenon is lacking, two very
different interpretations have emerged so far. One is to
map the phase separation of binary fluids in a porous
medium onto the conserved dynamics of a random-field
Ising model (RFIM) [3]. The slow dynamics is interpret-
ed as arising from the random convolutions of the pore
surface. A coarse-grained description in terms of the
RFIM model would then predict that the length scale of
the frozen microdomains is many times larger than the
pore radius. Although qualitatively this model captures
many features of slow kinetics and metastability, it has
been recently criticized by Liu and co-workers [4-6].
They argue that the mapping onto the RFIM model is
not appropriate for low-porosity media such as Vycor
glasses (though it may possibly be applicable to high-
porosity media such as silica gels) [6].

The alternate scenario proposed in Ref. [4] is that the
metastability and slow kinetics of domain growth seen in
experiments, originate not from the random convolutions
of the pore surface but from the geometric confinement of
the binary mixture inside the pores. To prove their point
these authors investigate the dynamics of phase separa-
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tion and wetting of the spin-exchange kinetic Ising
(SEKI) model [6], confined within a single parallelepiped
pore, using a Monte Carlo simulation. The equilibrium
wetting “phase diagram” exhibits phases characterized
by distinct shapes of the coexisting domains and separat-
ed by first-order boundaries. On quenching into any one
of these two-phase regions, they find that as soon as the
size of the evolving domains reaches the pore size, the
growth towards equilibrium slows down drastically.
However, a quantitative study detailing the growth kinet-
ics for various quench temperatures and surface fields has
not been undertaken.

In this paper we present a systematic investigation of
the kinetics of domain growth of a model binary fluid
confined to a single strip of finite width. The dynamics is
modeled by a coarse-grained Cahn-Hilliard-Cook [1]
equation which belongs to the same universality class as
the SEKI model for bulk phase separation [7]. We also
compare our results to a recent simulation of domain
growth in a model porous medium in two dimensions [8]
(which resembles a commercially prepared Vycor glass).
This comparison is important since it is not a priori obvi-
ous that a single-pore model can do full justice to the
very complex interconnections and the tortuous geometry
of Vycor glasses.

We find that despite its simplicity, the coarse-grained
model considered here captures the essential physics of
phase separation in porous media. Our findings are in
qualitative agreement with the results of Liu and co-
workers and recent experiments [9] on phase separation
of a binary mixture (polyvinyl methyl ether and water)
confined in a capillary. As mentioned above, we actually
go beyond these studies in providing quantitative esti-
mates of the slow growth of domains. Comparison with
the results of the computer simulation on phase separa-
tion in model Vycor glass lends strong support to the va-
lidity and the applicability of the single-pore model for a
description of phase-separation processes inside porous
glasses.
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Finally, we incorporate an anisotropy in the kinetic
coefficients entering into the dynamical equations dynam-
ical equations. Though this anisotropy does not affect
the asymptotic scaling behavior [10], it has a strong effect
on the intermediate long-lived configurations that arose
in our previous analysis. We find that even the slightest
amount of anisotrpy promotes complete phase separation
on time scales comparable to bulk phase separation
times. We argue that this anisotropy in the kinetic
coefficients originates from the anisotropic coarse-grained
surface tension [10], which in turn, arises from the
confining geometry.

The rest of the paper is organized as follows. In Sec. II
we describe our model and the numerical procedure. In
Sec. III we describe our results and compare them with
previous simulation studies on microscopic Ising models.
In Sec. IV we consider the effects of including an aniso-
tropic kinetic coefficient in the coarse-grained model. Fi-
nally we conclude in Sec. V with a brief summary and
discussion of the results.

II. MODEL AND NUMERICAL METHODS

We model the binary fluid by a coarse-grained order
parameter ¢(r,¢), which is the difference in the concen-
trations of the two species a and S of the binary fluid,
¢=c,—cp. The binary fluid is confined in the X direction
(¥ is along the impenetrable walls) to a strip of width L, .
The phenomenological Landau expansion [11] of the free
energy of a binary system in this strip geometry is given
by

F[¢]=Fbulk+Fsurface
=1 [dxdy K|V¢|2—b¢2+—;-¢“
+ [ dy (AT [¢Hx=0,9)+¢Ax =L, y)]

—h[¢(x =0,p)+d(x =L, y)]} . (1)

Since we will be interested in quenches below the bulk
critical point, we have explicitly introduced a negative
sign in the quadratic term in Fy,,. Moreover the
coefficient K, related to the bare surface tension, has been
chosen to be isotropic. We shall return to this point later
in Sec. IV. The surface free energy consists of two
parts—a surface-wetting field 4, which favors the a com-
ponent if & >0, and a surface-enrichment (depletion) term
A71¢2 e The surface-wetting field & is taken to be
short ranged and constant, acting only on the spins adja-
cent to the walls. The coefficient A has the dimension of
length and is called the extrapolation length. This Lan-
dau expansion is the continuum generalization of the lat-
tice model studied by Monette, Liu, and Grest [6], with
A~! proportional to the enhancement of exchange in-
teractions in the surface layer J,. Since in this study we
are merely interested in the kinetics of phase separation
between two bulk phases a and B, we henceforth set
A~ =0 without any loss of generality. The ordering tem-
perature T, at A~ '=0 turns out to be a multicritical point

[12] and is called the special transition. The equilibrium
mean-field equations obtained by a variation of the free-
energy functional [Eq. (1)] is

—KV%—bo+ud’=0, )
which admits the natural boundary conditions

9% 9

ox ox —h- ®)

x =L

x=0

We now quench a critical composition of the binary
fluid from the infinite-temperature disordered phase
through the special transition point into the two-phase
coexistence region. Bulk phase separation proceeds in
time, throughout which the composition is kept fixed.
Thus the spatial integral of the order parameter is con-
served and ¢(r,?) evolves in time as

%=Mvzy+n(r,t) , )

where p is the local chemical potential, u=086F /8¢, with
F given by Eq. (1). The kinetic coefficient M is taken to
be a constant, isotropic quantity. In Sec. IV we analyze
the effect of introducing a small anisotropy in the kinetic
coefficient. We note that in Eq. (4) ¢(r,t) is coarse
grained up to the bulk correlation length. The noise
7(r,t) is taken to be a Gaussian white noise with variance
proportional to temperature T,

(q(r,t)m(r',t")) = —2ky TMV®S(r—1)8(t —1t') . (5)

Before proceeding further,, we would like to remark that
our analysis ignores the coupling of the order parameter
to the momentum density of the fluid (hydrodynamics).
This is an unjustified assumption and we hope to return
to the full hydrodynamic problem in a future publication.
Our study of domain growth is thus based solely on the
evolution equation for the order parameter, Eq. (4). It is
convenient to rescale variables

L, 1, _L_,¢ ©6)
VK /b K /2Mb? V'b/u

to obtain the simplified dimensionless equation

B — 1A~V g4+ Vet . ™
The parameter € is proportional to the temperature
€=kgTu/bK and the scaled Gaussian noise &(r,t)
satisfies

(E(r,t)E(r', ")) =—V38(r—1r')8(t —1') . (8)

These dynamical equations should be supplemented by
boundary conditions appropriate to the strip geometry.
Since the walls at x =0 and L, are impenetrable, global
conservation of the order parameter would demand that
no ¢ flux pass through it, so that

du(r,t)

O =0. 9

x=Lx;x =0

We also obtain a set of natural boundary conditions at
the two walls which requires Egs. (3) to hold at all times.
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We impose periodic boundary conditions in the J direc-
tion.

At time t =0, we consider the critical mixture to be in
equilibrium at T = co; this specifies an initial random
configuration for ¢(r,0). Equation (7) is then solved nu-
merically on a two-dimensional square lattice of size
L, XL, (L,>L,), where the spatial grid size &r=1.
We use the standard Euler discretization with a time in-
terval 8¢=0.025. This choice allows us to probe late
times (up to ¢,,, = 10000) for the system sizes we consid-
er. In our simulations we take L, =1008r and L, =168r
or 328r. Our choice is consistent with typical values of
pore size encountered in Vycor glass [13]—the pore di-
ameter is roughly 60-70 A, which is around 20 times the
typical bulk correlation length.

We investigate the systematics of domain growth by
quenching the system to various temperatures (€) for
different values of the surface-wetting field A. For each
set of these parameters, we study the behavior of the
order-parameter profile and correlation functions after
averaging over 20 realizations of the initial configuration
of the order parameter and thermal noise.

III. RESULTS

As we have mentioned before, we restrict our analysis
to the case of a critical mixture where the volume frac-
tion occupied by each component is exactly half. The
equilibrium phase diagram (wetting diagram) has been
extensively discussed by Liu et al. [4]. Even though their
model is slightly different (see the discussion in Sec. II),
the qualitative features of our phase diagram should be
the same as theirs far below the critical (ordering) tem-
perature. Since we have set & >0, the @ component pref-
erentially wets the walls; 8 is thus the nonwetting com-
ponent. There are three distinct “phases” present in the
wetting diagram exhibited by this model [4]; (i) the tube,
where the a component forms a wetting layer of finite
thickness and the 8 component is trapped in the middle
in the form of a narrow strip. The a-f3 interface extends
along the length of the strip; (ii) the plug, where the «
and 3 components phase separate with the a-f3 interface
across the strip; (iii) the capsule, a ‘“shape transforma-
tion” from the tube state which comes about because of
our constraint of fixed volume fraction and finite L,.
Here the a component wets the walls, but the 8 com-
ponent gets trapped in the middle forming ‘‘bubbles”
elongated along the strip. These “phases” are stabilized
by an interplay between temperature-dependent surface
tension and wetting forces. In our two-dimensional mod-
el, the wetting transition is continuous [14], while the
shape transition between the tube and the capsule is first
order.

Consider the time evolution of the order parameter
during the spinodal decomposition process after a rapid
quench into one of these equilibrium phases. For small
surface wetting fields, the initial growth of domains
might proceed unhampered as in the bulk, until the size
of the growing domain is of the order of the strip width.
The a-f interfaces of these domains are now across the
strip, resembling a sequence of plug states. Each of these

mocroplugs have roughly the same size, and the curvature
of the interface is independent of their length; so the sur-
face pressure for each will be the same. Subsequent
growth by evaporation condensation (Ostwald ripening)
slows down drastically. The motion of the interface is
now along one dimension and so the kinetic coefficients
get renormalized leading to nonalgebraic slow growth
[15].

Though instantaneous snapshots of order parameter
configurations at different times provide a useful repre-
sentation of the kinetics [6], we have supplemented this
information with more quantitative estimates of growth
kinetics. We define the concentration profile p along the
X direction as

plx;,1)= <2¢ XVt > (10)

Jj=1

where the averages are taken over different realizations of
the initial configurations of the order parameter and
thermal noise. The thickness of the wetting layer /(#) can
be obtained as the value of x where the concentration
profile first goes to zero,

plx=1(1),t]1=0 . (1n

We next define pair-correlation functions along the X
and § directions. For example, along the § direction, the
pair-correlation function g, is defined as

LK

l p
n=—73 g1, (12)

g'V(y’ Lx =1

where g,,(y,?) is defined as

g, (9, 1)= <2¢ ]¢[r’=(i,j+y),t]>. (13)

A similar expression can be written for the pair-
correlation function g, (x,t). The locations of the first
zeros of these functions are taken as measures of average
domain size R, (¢) and R ,(¢) along the % and ¥ directions,
respectively. Due to the periodic boundary condition in
the § direction and the presence of the impenetrable walls
in the X direction, the correlations functions are comput-
ed for maximum separations of L,/2 and L, /2, respec-
tively.

We will now describe our results for two values of the
surface-wetting field h —a “weak” field, where the value
of A in units of the surface tension (which in our rescaled
variables is unity) is much smaller than 1, and a “strong”
field, where A ~O(1), at various quench temperatures.

A. Weak surface field

We fix the surface field to be much smaller than the
surface tension (A =0.1) and study the dynamics follow-
ing temperature quenches deep in the two-phase region,
€=0.1 and 0.5 (note that the bulk critical temperature
€.=~0.75 [16]). The equilibrium phase for these values of
€ and h corresponds to the “plug” phase, with neither
component preferentially wetting the walls. Do we reach
this equilibrium phase at late times? Figure 1(a) shows a
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h=0.1, £=0.1, t=10000 =0.1, £=0.5, t=10000

(a) (b)

FIG. 1. (a) A typical configuration of the system at ¢t = 10000
for h=0.1, and €=0.1. Note the formation of the microplugs
which make the evolution of the system extremely slow. (b)
Same as in (a), with €=0.5. At this higher temperature, thermal
fluctuations make the a-B interface of the microplugs wander,
giving it curvature and promoting further, albeit slow growth.

typical configuration snapshot at a time as late as
t =10000 for the lower temperature e=0.1. We see that
microplugs, whose dimensions are of the order of the
pore size, preempt the formation of the equilibrium plug
phase. Once formed, as discussed earlier, further growth
stops, consistent with the flatness of the a-8 interface. At
a higher temperature €=0.5, thermal fluctuations make

p(x)
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FIG. 2. (a) Density profiles for #=0.1, and €=0.1 for

t=100, and t=10000. (b) Same as in (a), with €=0.5.

the a-B interface of the microplugs wander, giving it cur-
vature and promoting further, albeit slow growth [Fig.
1(b)].

In Figs. 2(a) and 2(b) we show the concentration
profiles, for e=0.1 and 0.5, respectively, at two different
times. For the lower temperature and at early times the
a component shows a tendency to wet the walls, which,
however, gives way to the formation of microplugs at
later times. Note the occurrence of short-lived secondary
peaks in the concentration profile [Fig. 2(a)], which is
considerably smoothened due to thermal fluctuations at
higher values of € [Fig. 2(b)].

In Figs. 3(a) and 3(b) we show log-log plots of the aver-
age domain size in both the X and § directions, R, and
R,, versus time for €=0.1 and 0.5, respectively. For the
lower temperature we find that R, shows a power-law
growth with an exponent of about 0.35, until it reaches
its maximal value equal to half the pore size. Though
this is comparable to the t!/? growth, we would hesitate
to associate this with the asymptotic Lifshitz-Slyozov
behavior, since clearly we do not reach the asymptotic
scaling regime. On the other hand, R (¢) [Fig. 3(a)] slows
down considerably as soon as R, reaches the size of the
pore. This is due to the breakdown of the Ostwald ripen-
ing mechanism mentioned earlier. For the higher tem-
perature, the domain size grows as shown in Fig. 3(b).
Large thermal fluctuations make these data very noisy
even after the averaging. We find that both R, and R,
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FIG. 3. (a) Log-log plot of the average domain size in the X
and § directions with time for A =0.1. The straight-line fit
yields an exponent of about 0.35. (b) Same as in (a), with e=0.5.
The straight-line fit yields an exponent of about 0.25.
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are quite similar to each other, until R, is equal to the
pore size, after which the growth of R, slows down. The
straight line fit to the data yields an exponent of 0.25, in-
stead of the asymptotic exponent of 1. As in Ref. [17],
we note that for large noise strengths, the asymptotic
scaling regime is numerically inaccessible.

B. Strong surface field

We now fix the surface field to be of the order of the
surface tension (A =1.0) and again study domain growth
at €=0.1 and 0.5. At equilibrium, the @ component
forms a thin wetting layer at the walls; the equilibrium
phase corresponds to the tube. Even at very low temper-
atures, the evolution towards this equilibrium phase
proceeds without any intervening long-lived microplugs
[Figs. 4(a) and 4(b)]. However, at early times [Fig. 4(a)],
we see the appearance of a secondary tube structure in
the configuration, which disappears at late times. At
higher temperatures the a-8 interface fluctuations are
enhanced [Fig. 4(c)].

The concentration profiles in Figs. 5(a) and 5(b) at the
two temperatures reflect the configuration snapshots
shown earlier. The sharpness of the drop in the concen-
tration (at late times) away from the walls at lower tem-
peratures is a restatement of the flatness of the a-f3 inter-
face [Fig. 4(b)]. The profile, Fig. 5(a), shows an early
time concentration banding induced by the wall poten-
tial. This is also seen in the configuration snapshots, Fig.
4(a) (although at a later time). We note that such concen-
tration banding (or the so-called spinodal wave) in the
presence of one wetting surface [18,19] and interference
of the spinodal waves in the presence of two opposing
walls [20] have been studied extensively in recent theoret-
ical and experimental work. The high cost in interfacial

h=1.0, e=0.1, t=1000 h=1.0, £=0.1, t=10000 h=1.0, £=0.5, t=1000

(b)

(c)

FIG. 4. (a) A typical configuration of the system at ¢ =1000
for 1 =1.0, and for €=0.1. Note the formation of the secondary
structure in the middle. (b) Same as in (a), at t=10000. The
secondary structure has disappeared and a final tube structure is
clear. (c) Same as in (a), with €=0.5. Once again we see a tube
structure, but at this higher temperature, thermal fluctuations
make the a-f3 interface quite rough.

=100 | e
‘ LTy

[=10000

p(x)
T ~
Q\
/-//

(a)
125 L ‘ L
to 165 "
X
125 ¢ -
7
\ l=100 |
75 1) h=1.0 |
025 -\
S \ 3 o
a \ /' N\
\
-0.25 \\ / \\
\\/ "
0.75 N

o 165 3u
X

FIG. 5. (a) Density profiles for #=1.0, and €=0.1 for
t =100, and t =10000. (b) Same as in (a), with €=0.5.

energy disrupts these bands leading to eventual thermal
equilibrium.

C. Comparison with phase separation in model Vycor glass

In Ref. [8], a model Vycor glass was prepared by
quenching a model binary mixture down to zero tempera-
ture. At a suitable intermediate time, the growth was
halted and one of the components was numerically
“etched out.” The resulting configuration snapshot is a
good imitation Vycor glass. Chakrabarti [8] then studied
the phase separation kinetics of a binary fluid confined
within this Vycor glass. As in this study, he found that
the crossover to slow growth (discussed in Sec. IITA)
occurs when the domain size gets to be of the order of the
pore size r,. The persistence length [ of the pores is a
good measure of the length scale over which pores curve.
If I >>r, then the single pore description should be ade-
quate to describe this slow dynamics. In some experi-
ments [13], however, / =45 A, while the average pore size
is r,=35 A; in such cases the curvature of the caps of the
microplugs would depend on the curvature of the pore
surface and the crossover to slow growth might happen
at a slightly larger length scale than the pore radius.

IV. EFFECTS OF
ANISOTROPIC KINETIC COEFFICIENT

We have noted in Sec. II that the coefficients of the
nonlocal terms K (surface tension) and M (kinetic
coefficient) in our coarse-grained model were taken to be
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isotropic. Rotational invariance of the Hamiltonian and
the corresponding Langevin equation in bulk systems
would demand that both K and M be symmetric in the X
and § directions, K, =K, and M, =M,,. This invariance
is broken explicitly by the presence of the confining walls.
Thus there is no reason for K and M to be the same in the
two directions any more. This asymmetry is of course ir-
relevant to the asymptotic scaling behavior. In a
renormalization-group sense, an isotropy in the surface
tension and the kinetic coefficient (above the roughening
temperature) is irrelevant [10] at the zero-temperature
fixed point which governs the dynamics in the order
phase. However, it can and does affect the early-time
behavior. In the context of phase separation in a strip, it
could lead to a faster initial growth of domains in the §
direction than in the X. Thus we would expect to see
growing domains elongated in the § direction which then
merge with other domains leading to a complete phase
separation. In this way, it might be possible to avoid the
intermediate microplug configurations seen for small
values of the wetting field at low temperatures.

To test this hypothesis we quench the system from the
T = oo disordered phase to a zero-temperature ordered
phase in the absence of any surface field. The equilibrium
phase corresponds to a plug configuration. We have
chosen the width of the strip L, =16. With the kinetic
coefficients in the two directions being equal, the order
parameter evolves according to Eq. (7). For small values
of h (including A =0) and € (including €=0), we find as
before that the global equilibrium state is preempted by
the formation of long-lived microplugs. We now intro-
duce an asymmetry in M. The evolution equations for
the order parameter (after rescaling) are now given by

3g(r,t) _ . Fu o
o M E M, o +q(r,t) . (14)

We have solved these equations as before, subject to the
same boundary and initial conditions. For simplicity we
consider £ =0 and e=0. We find that, for an asymmetry
ratio R =M, /M, >1.035, the system phase separates
completely over time scales comparable to bulk separa-
tion time scales (#,,, =10000). There are no intervening
microplug configurations which would have prevented
global phase separation. Let us denote by R, the critical
asymmetry ratio beyond which complete phase separa-
tion is obtained and analyze its dependence on the pa-
rameters of the model. For fixed » and €, R, clearly de-
pends on L,, the width of the strip, and decreases to uni-
ty as L, increases. From our simulations done at various
values of L, (L, =11 to 16) and analytical arguments
based on finite size scaling of the surface tension [21], we
deduce that R, =1+ A exp(—BL}), where A and B are
some constants. Putting in experimentally relevant pa-
rameters [13] of L, =20 (in units of correlation length),
we find that the asymmetry required for complete phase
separation is less than 0.2%. This behavior is also seen in
the presence of a weak surface field but still in the plug
phase.

Having shown explicitly how a small amount of asym-

metry in the kinetic coefficient may give rise to quite
different phase separation kinetics, we will now try to ex-
plore the origins of such an asymmetry. Our arguments
here will be purely heuristic; we leave detailed calcula-
tions for another publication [21]. The final content of
the argument is the following: anisotropic surface ten-
sions in the Hamiltonian lead to anisotropic kinetic
coefficients in the Langevin equation. Restricting our-
selves to the strip geometry, we see, following the work
by Abraham, Svrakic, and Upton [22], that a bubble of
the nonwet component possesses an interface more
elongated along the § direction than along the X. Thus
the surface tension K, normal to the elongated interface
is smaller than K,. An anisotropic square-gradient term
in the continuum limit also arises if one considers an an-
isotropic bulk coupling in the original lattice theory [23].
Thus the presence of an anisotropic square-gradient term
is expected if the interactions between the molecules are
anisotropic.

Siegert [10] has demonstrated in the context of a non-
conserved order parameter that the inclusion of an aniso-
tropic surface tension in the Langevin equation reflects in
an anisotropy in the kinetic coefficient when written in
terms of interface variables. The anisotropic kinetic
coefficient is inversely related to the anisotropic surface
tension. Thus M, should be larger than M,. A similar
analysis should hold even in the presence of a conserva-
tion law. That the kinetic coefficients should become an-
isotropic under renormalization is not surprising, since
clearly the asymmetry in M, and M, should grow as the
coarse-graining length scale gets to the order of the width
of the strip. At this length scale, the dynamics becomes
one dimensional and M, goes to infinity while M, gets re-
normalized to an exponential form leading to the loga-
rithmically slow growth [15].

V. CONCLUSIONS

In summary, we have numerically studied a coarse-
grained model of phase separation of binary fluids kept
inside a two-dimensional strip geometry. Both the kinet-
ics of domain growth and the equilibrium behavior of the
binary mixture are investigated in this paper. In the first
set of calculations, we have considered a constant, isotro-
pic kinetic coefficient in our model calculations and ap-
plied various values of surface fields at the confining
walls. In agreement with theoretical arguments and pre-
vious simulation results in a microscopic lattice model,
we find that for small fields and low temperatures, the
kinetics of domain growth becomes very slow due to the
breakdown of Ostwald ripening mechanism, once the
domain size becomes comparable to the pore radius.
This leads to the formation of the long-lived microplugs
and the system is not allowed to reach the equilibrium
phase within any reasonable time scale. On the other
hand, for strong values of the wetting field, the system
forms the so-called tube configurations, and equilibrium
is readily reached at all temperatures.

Next we considered the effect of a slight anisotropy in
the kinetic coefficient on the phase-separation behavior.
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We provided heuristic arguments of how such an anisot-
ropy in the kinetic coefficient could arise due to an aniso-
tropic surface tension originating from the confining
geometry. We find that for fixed values of the wetting
field and the temperature, there is a critical value of the
anisotropy which allows complete phase separation
avoiding the intervening microplug configurations. We
have also computed how this critical value of the anisot-
ropy depends on the strip width and find that for experi-
mentally relevant situations, the anisotropy required for a
complete phase separation is quite small, even at low
temperatures.
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