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Polymer translocation induced by a bad solvent
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We study polymer translocation through a nanopore subject to conformational differences created by putting
two different solvents at the cis and trans compartments using Langevin dynamics in three dimensions (3D).
Initially a fraction of the chain is placed in a good solvent at the cis side and the rest of the chain at the trans side
is immersed in a bad solvent where it forms a globule. We study several aspects of the translocating chain as a
function of the strength of the interaction ε/kBT for the bad solvent, where the temperature T is kept below the
� temperature for the specific bead-spring model that we have used to describe the chain. For ε/kBT � 1 we
find the mean first passage time 〈τ 〉 ∼ ( ε

kBT
)−1 and 〈τ 〉 ∼ N 1.1±0.05. In that regard, translocation under solvent

asymmetry is similar to the case of driven translocation under a bias inside the pore. However, the globule formed
at the trans in the immediate vicinity of the pore readily absorbs the incoming particles making the translocation
process faster than the driven translocation. Our simulation results for long chains and ε/kBT � 1 agree well
with a theoretical prediction by Muthukumar [M. Muthukumar, J. Chem. Phys. 111, 10371 (1999).].
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I. INTRODUCTION

Translocation of biomolecules through a small pore in a
membrane is a common but important phenomenon in all living
matters [1]. The entry and exit of DNA or RNA through pores
in cell and nuclear membranes triggers other essential activities
in these systems. About a decade ago in a series of experiments
through a α-hemolysin protein pore it was demonstrated that
not only the mean first passage time (MFPT), but the shape
of the histogram of the MFPT depends on the nature of the
interaction of the polymer with the pore [2–5]. This important
observation immediately generated other experimental studies
to control the motion of the chain through the pore by using
magnetic tweezers and other devices with an aim to develop
fast and cheap DNA sequencing kits. Quite naturally, these
experimental studies provided enough impetus for further
theoretical [6–20] and simulation studies [21–37].

There have been quite a number of insightful theoretical
studies pioneered by Sung and Park [6,7], Muthukumar [8,9],
Chuang, Kantor, and Kardar [10], Kantor and Kardar [11] in
terms of the reaction coordinate s whose time evolution is
governed by a Fokker-Planck equation containing free energy
due to entropy of the chain at the cis and trans compartments.
Dubbeldam and coworkers approached the problem using
a fractional Fokker-Planck equation characterized by an
exponent for anomalous diffusion [12,13]. These approaches
are justified for slow translocation where the relaxation time
is comparable to the translocation time. However, for biased
translocation where the translocation time is typically much
faster than the relaxation time, a number of simulation studies
reported the out of equilibrium aspects of the translocating
chain [35–37]. Under a bias the chain conformations not only
show large variations, but the conformations at the trans side
is very different from those at the cis side.
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Driven translocation under a bias has been studied by
a number of authors using a bead-spring model of homo
and heteropolymer chains using Monte Carlo [13,23] and
molecular dynamics methods [22,28,36,37]. Using Langevin
dynamics simulation on a coarse-grained bead-spring model
it has also been demonstrated as a proof of principle that
the residence time of the translocating beads oscillates with a
definite pattern that depends on the specific pore-monomer
interaction from which the sequence of the chain can be
predicted [24,25]. Langevin dynamics simulation has also been
carried out to study translocation through a pore while one
end of the chain is being pulled with a force [26]. One of the
central questions that has been asked in the community is how
the MFPT 〈τ 〉 depends on the chain length N characterized
by the translocation exponent α defined as 〈τ 〉 ∼ Nα . It is
now accepted that for driven translocation this exponent is
not universal and for a narrow pore and a thin wall whose
linear dimension and width are of the order of the size of
the individual beads, respectively, the translocation exponent
α lies within 2ν < α < 1 + ν [17,28,36]. The upper limit
〈τ 〉 ∼ N1+ν is the prediction of Kantor and Kardar [11] in
the limit of small bias where one assumes the gyration radius
Rg ∼ Nν and the velocity of the center of mass of the chain
vCM ∼ 1/N , so that 〈τ 〉 ∼ Rg/vCM ∼ N1+ν .

In the present work we study yet another interesting
problem where the translocation is driven by differences in
conformational statistics of the chain segments residing at the
cis and the trans compartments arising out of the different
solvents in each compartment. More specifically, we study the
case here where the polymer at the cis side resides in a good
solvent and is characterized by the Flory exponent ν = 0.59
in three dimensions (3D) for a self-avoiding random walk
chain [38], while the polymer encounters a bad solvent at the
trans compartment where the translocated segments form a
globule. The polymer segments upon entering the tras side
get immediately adsorbed and become part of the globule.
The globule grows in size until the last bead translocates.
The globule at the trans side acts as a ratchet which promotes
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directional translocation. Other types of ratchets, such
as, Brownian ratchets, have also been discussed in the
literature in the context of an efficient but generic method of
translocation [6,39,40].

While drawing an analogy with the case of voltage driven
translocation we find interesting differences. In the case of
voltage driven translocation where both the cis and trans side
are in the good solvent the primary limiting factor for transloca-
tion is the formation of a high density region by the translocated
beads in the immediate vicinity of the pore. In the case of the
bad solvent, since the translocated segments are immediately
adsorbed to become part of the existing globule, we find the
translocation is faster in this case. The present simulation study
is a special case of the theoretical study of translocation due
to Muthukumar [8] where it was shown that any asymmetry
in the average conformation of the polymer across the pore is
sufficient to generate the driving force for the translocation.
We compare our results with this theoretical prediction.

II. MODEL

We use the Langevin equation to study the Brownian motion
of particles in a solution where the equation of motion for each
monomer at position ri is described by a stochastic differential
equation

mr̈i(t) = −∇Ui − �ṙi(t) + Wi(t), (1)

where the total interaction

Ui = Ui
FENE +

∑
U

ij

LJ , (2)

is the sum of the finitely extensible nonlinear elastic (FENE)
spring potential interaction [41] between two successive beads
in the chain
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2
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0 ln
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)2]
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and the Lennard-Jones (LJ) interaction between any two
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−
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The term W(t) describes the influence of Markovian white
noise due to the solvent, which is not taken into account
explicitly here. It satisfies the fluctuation-dissipation relation

〈W(t) · W(τ )〉 = 6kBT �δij δ(t − τ ), (5)

where kB is the Boltzmann constant and T is the temperature
of the bath. To model asymmetric solvent conditions at the
cis and trans sides, first we label the particles with index 1,
2, or 3 if they are located at the cis side, inside the pore, or
at the trans side, respectively, and introduce a 3 × 3 cutoff
matrix whose elements are either 21/6σ or 2.5σ as follows.
For all the monomers at the cis and trans sides r11

c = 21/6σ

and r33
c = 2.5σ , respectively. We choose r13

c = 21/6σ , but due
to the presence of the wall, this implies that the monomers
at the cis and trans sides do not interact with each other.
We index the monomers residing inside the pore according to
their horizontal distance from the pore in increasing order. The
rightmost monomer inside the pore sees the bad solvent so that

r23
c = 2.5σ . The rest of the monomers see the good solvent

so that r13
c = r22

c = 21/6σ . The cutoff matrix is symmetric.
Typically for the parameters chosen we find there are no
more than two monomers inside the pore. Likewise, the
interactions among all the monomers are characterized by a
3 × 3 symmetric matrix εij whose elements are set to unity for
all the elements excepting ε33 = εε11, where the parameter ε

is varied during the simulation.
The purely repulsive wall consists of one monolayer of

immobile LJ particles of diameter 1.5σ on a triangular lattice
at the xy plane at z = 0. The pore is created by removing
the particle at the center. The polymer beads interact with
the wall particles with the same LJ potential with a cutoff
distance 21/6( σ+1.5σ

2 ) = 1.25 · 21/6σ . The reduced units of
length, time, and temperature are chosen to be σ , σ

√
m
ε

, and
ε11/kB , respectively. For the spring potential we have chosen
k = 30 and Rij = 1.5σ , the friction coefficient. � = 1.0,
and the temperature is kept at T = 2.0/kB throughout the
simulation. The � temperature for this model for this set
of parameters � � 4.0/kB [42]. Therefore, this ensures that
the monomers at the trans compartment are immersed in a
bad solvent. For a chosen fraction of the monomers at the
cis/trans [Figs. 1(a)–1(c)] we equilibrate the chain for a time
on the order of the Rouse relaxation time τ ∼ N1+2ν , where
the Flory exponent ν = 0.588 in 3D [38]. The chain is then

(a)
N=32

trans
x     (t=0)=0.5

N=32
(b)

trans
x     (t=0)=0.25

(c)
N=32

trans
x     (t=0)=0.125

FIG. 1. (Color online) Depiction of the initial configuration of
the chain of length N = 32 to be translocated. At t = 0 (a) 50%
[Ntrans(t = 0) = 16], (b) 25% [Ntrans(t = 0) = 8], and (c) 0.125%
[Ntrans(t = 0) = 4] of the chain is on the trans side. These configura-
tions are equilibrated up to Rouse relaxation time with the monomer
inside the pore being pinned at the center of the pore before allowing
the chain to translocate.
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FIG. 2. (Color online) Mean translocation time 〈τ 〉 for a chain of
length N = 128 as a function of (a) the attractive strength ε/kBT for
xtrans(t = 0) = 0.5 and (b) as a function of xtrans(t = 0) for ε/kBT =
1.0 to show how 〈τ 〉 increases as the interaction strength and
xtrans(t = 0) are lowered.

allowed to translocate using a time step of dt = 0.005. As
the last bead exits the pore, a translocation event is completed
and the process is repeated for 2000 times for averaging. The
free energy landscape with these different cutoff values for
the interactions favors translocation from the cis to the trans
side. We study how this effective chemical potential difference
introduced through the parameter ε/kBT drives the system
toward a faster translocation.

III. RESULTS AND THEIR INTERPRETATION

A. Initial configuration of the chain

Evidently, the translocation time for a chain is a function of
the number of monomers on the trans side at the beginning of
the translocation process Ntr (t = 0). Ideally to calculate the
first passage time and hence 〈τ 〉 one would like to place the first
monomer of the chain at the pore and monitor the translocation
time. But for ε/kBT � 1, having only a few monomers at
the trans side 〈τ 〉 becomes very large as shown in Figs. 2(a)
and 2(b). Therefore, to overcome this problem we have studied
translocation for three different values of xtrans(t = 0) = 0.5,
0.25, and 0.125 and systematically extracted the results for
large chain length in the limit xtrans(t = 0) → 0. While this
strategy may not be universally valid, this has been possible
for this specific case because of steady, single file translocation
for the major fraction of the chain as will be discussed in the
next sections. The initial conditions are depicted in Figs. 1(a)
through (c).

FIG. 3. (Color online) Snapshots of a translocating chain of
length N = 256 for ε/kBT = 0.5 at times (a) t = 0, (b) 0.25τ ,
(c) 0.5τ , (d) 0.75τ , and (e) 1.0τ , respectively.

011914-3



LÖRSCHER, ALA-NISSILA, AND BHATTACHARYA PHYSICAL REVIEW E 83, 011914 (2011)

FIG. 4. (Color online) Snapshots of a translocating chain of
length N = 256 for ε/kBT = 1.5 at times (a) t = 0, (b) 0.25τ ,
(c) 0.5τ , (d) 0.75τ , and (e) 1.0τ , respectively.
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FIG. 5. (Color online) Variation of 〈Rg〉 as a function of chain
length N immediately after the completion of the translocation
process for ε/kBT = 0.5 (circles), ε/kBT = 1.0 (squares), and
ε/kBT = 1.5 (diamonds). In each case the different colors black, red,
and green correspond to xtrans = 0.5, 0.25, and 0.125, respectively,
which are almost indistinguishable from each other.

B. Translocation snapshots

To get an idea of the translocation process, we show typical
snapshots of a translocating chain in Figs. 3 and 4 at different
stages of the translocation process. At t = 0, the fraction of
the chain that is located on the cis side is characterized by
the equilibrium Flory exponent ν � 0.588 that corresponds
to the good solvent condition. Since the trans part of the
chain is in a poor solvent and the temperature is below the
� temperature [42], it will form a globule which is expected
to grow as a function of time. Comparing the snapshots for
ε/kBT = 0.5 (Fig. 3) and ε/kBT = 1.5 (Fig. 4), we note
that the globule formed by the translocated segments becomes
more compact as the strength of the interaction increases. We
have checked the N dependence of the radius of gyration
for chains immediately after the translocation process shown
in Fig. 5. We find that for ε/kBT = 0.5, ε/kBT = 1.0, and
ε/kBT = 1.5 the gyration radius is Rg ∼ N0.21, Rg ∼ N0.29,
and Rg ∼ N0.30, respectively. It is worth mentioning that if all
the globules for different chain lengths were perfect spheres
and fully relaxed then Rg ∼ N0.33. That the exponents are less
than 0.33 indicates that the chains do not form a compact
globule and/or the trans side of the chain does not have
sufficient time to relax during the translocation process as
discussed earlier in the literature [18,29,35,37].

C. Characteristics of the monomers inside the pore

One of the key questions that has been raised in polymer
translocation is how the average translocation time 〈τ 〉 depends
on the chain length N (〈τ 〉 ∼ Nα). As indicated in the
Introduction the exponent α, even for a fully flexible chain,
can depend on various factors. We know from previous
studies that for diffusive translocation α = 1 + 2ν while for
forced translocation α � 1 + ν. For the case studied here we
find that for long chains and large interaction strengths α �
1.10 ± 0.05. To gain a physical understanding in the following
section we show results for the average monomer waiting time
W (m), the z component of the monomer velocity vz(m), and
the z component of the LJ part of the force on the monomer
f LJ

z (m), respectively. We will see shortly that these quantities
will reveal the translocation mechanism in operation.
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FIG. 6. (Color online) Average waiting time W (m) as a function
of monomer index m for various chain lengths. The symbols circles
(black), squares (red), diamonds (green), triangle up (blue), and
triangle left (magenta) correspond to the chain lengths N = 16,
32, 64, 128, and 256, respectively; (a) for ε/kBT = 0.5, (b) for
ε/kBT = 1.0, and (c) for ε/kBT = 1.5, respectively.

1. Residence time W (m)

Figure 6 shows the average waiting time of those monomers
which were at the cis compartment at t = 0. To show the
results for various chain lengths on the same scale, we have
normalized the monomer index m by the corresponding chain
length N . The waiting time W (m) is defined as the fraction of
the total time a monomer having index m spends inside the pore

W (m) = 〈τ (m)〉
〈τ 〉 . (6)

Therefore, by definition

N∑
m=1

W (m) =
N∑

m=1

〈τ (m)〉
〈τ 〉 = 1. (7)

The notation 〈··〉 indicates ensemble average over 2000
iterations. We notice that there is a qualitative change for the
waiting times for short and long chains. For very short chains
(such as for N = 16 and 32) W (m) decreases monotonically.
For longer chains W (m) becomes relatively flat except for the
last 1–2% of the beads for which the residence time quickly
drops almost to zero. We observe that for a very long chain
W (m) becomes a constant except for the last few monomers at
the end (Fig. 6). However, a more careful look reveals that for
longer chains there is a slight increase in the residence time as
a function of the bead index m, which then decreases beyond a
certain value of mmax as shown in Fig. 7 for xtrans(t = 0) = 0.5
and for ε/kBT = 0.5. The dotted lines in Fig. 7 indicate the
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FIG. 7. (Color online) Average waiting time as a function of
the monomer index for various chain lengths for ε/kBT = 1.5 and
Ntrans(t = 0)/N = 0.5 shown for the entire chain to demonstrate that
W (m) decreases rapidly for the monomers which are originally at
the trans side at t = 0. The nonzero values of W (m) for m < Ntrans

(t = 0) is attributed due to the back and forth motion of the beads
during the translocation process. The insets (a) and (b) demonstrate
that W (m) has a maximum, and (c) shows that the positions of these
maxima shift at higher values for longer chains.
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FIG. 8. (Color online) Average velocity on the monomer beads
inside the pore as a function of the monomer index for chain lengths
N = 16, 32, 64, 128, and 256, respectively, for (a) ε/kBT = 0.5,
(b) ε/kBT = 1.0, and (c) ε/kBT = 1.5. The symbols have the same
meaning as in Fig. 5. We note that in the large N limit, the velocity
of the monomers becomes almost constant except for the last few
monomers.
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FIG. 9. (Color online) Average force on the monomer beads
inside the pore as a function of the monomer index for chain lengths
N = 16, 32, 64, 128, and 256, respectively, for (a) ε/kBT = 0.5,
(b) ε/kBT = 1.0, and (c) ε/kBT = 1.5. The symbols have the same
meaning as in Fig. 4.

average value of W (m) for N/2 < m < N − 4 for each chain
length. It is not hard to imagine from the data presented for
chain lengths N = 16–256 that the variation of W (m) will
become very small for long chains. The location of this peak
mmax is an increasing function of chain length N for a given
interaction strength and vice versa. The insets of Fig. 7 show
these aspects. The qualitative feature of this nonmonotonic
dependence of the residence time on the monomer index is
similar to the case of forced translocation [22] as well as
to the case of translocation by a pulling force through a
nanopore [26]. In both the cases the waiting time exhibits
a maximum. In the case of forced translocation this is due to
high density (jamming) of the segments just translocated but
yet to equilibrate in the vicinity of the pore. In the case of
pulling, the maximum occurs when the entropy of the pulled
segment is equal to the entropy of the chain on the cis side. Our
case is closer in analogy to the pulling case, which also has a
wider flat region that is a characteristic of a single file process.
For the case studied here the maximum occurs when the the
globule is big enough so that it just balances the entropy of the
self-avoiding chain on the cis side. However, the maximum is
weak for longer chains as there is no jamming on the trans
side as the translocated segment immediately becomes part of
the globule. We will notice in Sec. III C 4 that this results in a
faster translocation than the corresponding driven case. Once a
globule is formed on the trans side, the pulling force exerted on
the monomer inside the pore by the globule is roughly balanced
by the entropic force until the last few beads are left on the cis
side. One other aspect in Fig. 7 worth mentioning is the sharp
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FIG. 10. (Color online) Scaled histograms for the MFPT for
different chain lengths N = 16, 32, 64, 128, and 256 for (a) ε/kBT =
0.5, (b) ε/kBT = 1.0, and (c) ε/kBT = 1.5 for Ntr (t = 0)/N = 0.5.
The symbols have the same meaning as in Fig. 4. In general, for
these values of ε/kBT we do not notice universal scaling for all chain
length N . However, for longer chains and larger attraction strengths
[insets in (a), (b), and (c)], we begin to see scaling emerges quite
clearly.

fall of the residence time for m/N < xtrans(t = 0). These are
the monomers originally placed at the trans side (please note
that, with respect to Fig. 7, translocation occurs from right to
the left) that enter the cis side due to back and forth motion
of the chain. The probability of such events drops sharply
as m/N � xtrans(t = 0), simply because beads originally at
t = 0 placed far away from the pore at the trans side do not
reenter the pore. This explains also the sudden drop of the
residence time for m = Ntrans(t = 0). With increasing strength
ε/kBT we find that this probability decreases (not shown here)
even more sharply.

2. Monomer velocity vz(m) and force f z
LJ(m)

Since the residence time W (m) exhibits a weak maximum
one can guess from Fig. 7 that the velocity of the monomers
while inside the bead will exhibit a weak minimum. This is
shown in Figs. 8(a)–8(c). To a first approximation, we observe
that a major fraction of the the monomers cross the pore with a
near constant velocity except for the last few beads when they
are pulled to the golube formed at the trans side. We have also
looked at the longitudinal component of the corresponding
force f z

LJ(m) on the monomer m inside the pore. But since the
attractive part comes from the LJ part of the bad solvent, we
have taken out the FENE part as it produces high frequency
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FIG. 11. (Color online) Scaled histograms for the MFPT for
different chains N = 128 (open symbols), and 256 (closed sym-
bols) for three different values of the initial conditions for
xtrans(t = 0) for (a) ε/kBT = 0.5, (b) ε/kBT = 1.0, and (c) ε/kBT =
1.5. The open(closed) circles, squares, and diamonds correspond
to xtrans(t = 0) = 0.5, xtrans(t = 0) = 0.25, and xtrans(t = 0) = 0.125,
respectively, for chain length 128(256). In each case the inset shows
〈τ 〉 ∼ N for xtrans(t = 0) = 0.5, 0.25, and 0.125, respectively.

oscillations which are not important for this discussion. This
force as shown in Figs. 9(a) through (c) is very flat except for
the last few beads consistent with the behavior of the velocity
of the monomers. The force on the last few monomers is
large, but negative due to the deceleration when they become
part of the globule at the trans side. We have also checked
that the longitudinal velocity vz(m) and the force f z

LJ (m) are
proportional to each other.

3. Distribution of translocation time & translocation exponent

Previous studies of driven translocation through a nanopore
have revealed that histograms of the MFPT collapse on the
same master curve. In this study we monitor translocation
events having a fraction of the chain at the trans side at t =
0. Therefore, even if we assume that a power law relation
holds for the mean translocation time on chain length (〈τ 〉 ∼
Nα), due to the chosen initial condition (Fig. 1) we do not
expect to see data collapse on a single master curve. However,
by monitoring the trend of such a collapse as a function of
decreasing fraction of monomers xtrans(t = 0) on the trans side
(Fig. 1) we have been able to predict the trend. Figure 10 shows
the histograms of the MFPT normalized by the 〈τ 〉 for three
different values of the interaction strength for chain length N =
16–256. We begin to see the trend for the data to collapse on the
same master curve for larger values of ε

kBT
and also for longer

chains (N = 128 and 256) only. To understand the limiting
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FIG. 12. (Color online) Scaled histograms for the MFPT for a
N = 256 chain. (a) xtrans(t = 0) = 0.5, (b) xtrans(t = 0) = 0.25, and
(c) xtrans(t = 0) = 0.125 to check the dependence of 〈τ 〉 on ε/kBT .
In each figure we show the histogram for ε/kBT = 0.5 (circles),
ε/kBT = 1.0 (squares), and ε/kBT = 1.5 (diamonds).

case xtrans(t = 0) → 0, in Fig. 11 we show the histograms as a
function for xtrans = 0.5, 0.25, and 0.125 in for the two longest
chains N = 128 and 256. This shows that the scaling function
is independent of xtrans(t = 0). Therefore, from Figs. 10 and 11
we conclude that the translocation exponent extracted from
these data will be the same as one would have obtained in the
limit xtrans → 0. We further notice that the data for ε

kBT
= 1.0

and 1.5 are very similar. The insets of Fig. 11 show 〈τ 〉 ∼ N

on a log scale. If we use the last three data points (for the
reason that they collapse on the same master plot) we get α =
1.1 ± 0.05. It is worthwhile to note that the value α = 1.1 is
lower than the numerical exponent for forced translocation [36]
obtained for the same model. It signifies a faster translocation
process.

We further extend our scaling analysis drawing analogy
with the biased translocation. Previous studies of forced
translocation have shown that [36] when the external bias
fext is small 〈τ 〉 ∝ 1/fext , so that histograms for different
bias when scaled by 〈τ 〉fext collapse on the same master
curve. In our studies the globule at the trans side pulls the
rest of the chain at the cis side and therefore exerts a force on
the monomer inside the pore. For clarity, in Fig. 12 we show
these scaled histograms for N = 256 only where we notice
excellent data collapse for ε

kBT
= 1.0 and 1.5. This implies that

when we plot the scaled average translocation time 〈τ 〉 · ε
kBT

as a function of the chain length N the data points will be
the same within statistical error bars. Figure 13 confirms
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FIG. 13. (Color online) Variation of 〈τ 〉 ε

kBT
as a function of N

(log-log plot) for (a) xtrans(t = 0) = 0.5, (b) xtrans(t = 0) = 0.25, and
(c) xtrans(t = 0) = 0.125. The symbols have the same meaning as in
Fig. 11.

that this is indeed the case for different initial conditions
xtrans(t = 0) = 0.5, 0.25, and 0.125, respectively.

D. Free energy analysis

Let us now analyze the results in terms of an analytical
expression for the free energy following Muthukumar [8].
For a translocating chain of length N having m translocated
monomers at the trans side the free energy is given by [8]

F (m)

kBT
= (1 − γtrans) ln(m) + (1 − γcis) ln(N − m) + m

�μ

kBT
.

(8)

Here γcis and γtrans = 0.5, � 0.69, and 1 for Gaussian, self-
avoiding, and rod-like chains, respectively [8,43]. For the
case that we consider here, γcis = 0.69 and the first term
is not present as the chain conformation at the trans side
is not a random walk, rather it is a globule. The difference
in the solvent conditions is put in through the m

�μ

kBT

term. In Fig. 14 we show two cases where (a) N�μ =
0.1(1 − γcis) ln(N ) and (b) where N�μ = (1 − γcis) ln(N ).
In other words, we look at the cases where the net change
in chemical potential after the translocation is either a small
fraction of the total change in the entropy [Fig. 14(a)], or

0 1
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FIG. 14. (Color online) Free energy landscape using Eq. (8)
for γcis = 0.69, and neglecting the first term as a function of the
monomer fraction m/N ; (a) for N�μ = 0.1(1 − γcis) ln(N ) and (b)
for N�μ = (1 − γcis) ln(N ) in units of kBT . The circles, squares, and
diamonds represent the entropic part of the free energy, the chemical
potential difference, and the total free energy F (m); the blue triangles
represent dF (m)/dm.

comparable [Fig. 14(b)]. In the same figure we also plot the
derivative of the total free energy ∂F (m)/∂m. Notice that in
either case the drop in �μ is always linear. Therefore, the
rapid change in the free energy near the end of the translocation
process is predominantly due to the entropic term. We also note
that the derivative of the free energy, which is proportional to
the velocity or the force, is relatively flat for a large fraction
of the translocation process and largely insensitive to this ratio
of entropy and chemical potential difference. This free energy
landscape, which produces a relatively flat velocity profile,
essentially explains our simulation results.

IV. SUMMARY

We studied polymer translocation through a narrow pore
induced by different conformation statistics at the cis and
trans side of the pore. Specifically, we studied translocation
induced by a bad solvent at the trans side. The trans segments
of the polymer form a globule which acts as a ratchet
eventually forcing the chain to translocate from the cis to
the trans side. We check the similarities and differences of
this conformation-induced translocation with that of a driven
translocation where there is a bias inside the pore, and with the
case where the polymer chain is pulled at one end. We analyze
the results using the free energy proposed by Muthukumar.
We find the free energy eventually goes downhill, but the
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derivative of the free energy with respect to the monomer
index is relatively flat except for the last few monomers,
where the free energy is dominated by entropy. This flatness of
the free energy derivative qualitatively explains the behavior
of the longitudinal components of the velocity and force,
respectively, for the monomer inside the pore.

We find that 〈τ 〉 ∼ N1.1±0.05 and 〈τ 〉 ∝ (ε/kBT )−1 for
ε/kBT � 1.0, so that the histograms P (τ · ε

kBT
) as a function

of τ · ε
kBT

collapse on the same master curve (Fig. 12). We find
the translocation exponent α � 1.1 ± 0.05 is lower than that
of the case of forced translocation [44]. This we attribute due to
the absence of jamming in the trans side where the bad solvent
favors the incoming monomer to be readily adsorbed to the
preexisting globule in the vicinity of the pore (Figs. 3 and 4).
Since our results are independent of different initial conditions
xtrans(t = 0) = 0.25 and xtrans(t = 0) = 0.125 for longer chain
lengths, we believe that in the limit xtrans(t = 0) → 0 these
results will remain valid. The physical picture that emerges
is that the chain makes a single file translocation where
the monomers inside the pore move with constant velocity
proportional to the pulling force produced by the globule. In

that sense, this case bears more similarity to that case where the
polymer is pulled at one end. Various aspects of translocation
of biomolecules through a narrow pore across a membrane
continue to offer interesting and important problems. Currently
we are looking into translocation of a random heteropolymer
driven by asymmetric solvent conditions, which we will report
in a separate publication.
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