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We study polymer translocation through a narrow pore driven by a bias present inside
the pore with an aim to compare predictions of the existing theoretical results with those
that we obtain using Langevin dynamics simulation in three dimensions(3D). We find that
the translocation exponent α (〈τ 〉 ∼ Nα) decreases from 1.35 to 1.2 as the width of the
pore is decreased from 1.5σ to 1.1σ. The exponent α = 1.2 (extracted from chain lengths
up to N = 256) not only violates the lower limit 1+ν proposed by Kantor and Kardar (Y.
Kantor and M. Kardar, Phys. Rev. E, 69, 021806 (2004)) earlier but also lower than the
more recently proposed lower limit (1+2ν)/(1+ν) by Vocks et al. (H. Vocks, D. Panja, G.
T. Barkema, and R. C. Ball, J. Phys.: Condens. Matter 20, 095224 (2008)). We find that
the average 〈R̄g 〉 calculated during the entire translocation process is dominated by the
equilibrium configurations at the cis side and therefore, relatively insensitive to the pore
width and approximately described by the equilibrium Flory exponent ν. The velocity
of the center of mass of the translocating chain on the contrary exhibits a systematic
variation. Therefore, if we assume (〈τ 〉 ∼ 〈R̄g 〉/〈vCM 〉, the dependence of 〈vCM 〉 on the
pore width appears to be the primary factor that affects the translocation exponent.

1. INTRODUCTION

It has been demonstrated experimentally[1,2] that when a DNA passes through a
nanopore subject to a bias across the pore, the histogram of the mean first passage
times(MFPT) contains characteristics of the translocated DNA that shows prospects to
design a fast and cheap sequence detection device. Since then the study of polymer translo-
cation through a small pore has remained an active field of study[4]-[21]. The prospect of
nano-pore based sequence detection methods has been investigated using computer simu-
lation studies. It has been found that the residence time of the individual building blocks
of a heteropolymer shows novel interference pattern containing detailed information about
the sequence that has translocated through the pore[17].

The mean translocation time and the residence time will be a function of the spe-
cific sequence of an individual chain. However, the scaling and universal aspects of the
translocation process can be conveniently studied using a model homopolymer. Despite
its simplicity, several aspects of the homopolymer translocation are still intriguing with
unresolved issues. While the case of an unbiased translocation is more transparent, sim-
ulation studies for driven translocation do not support theoretical results obtained using
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simple scaling arguments[8,9,12]. For the case of forced translocation Kantor and Kar-
dar[8] assumed

〈τ 〉 ∼ 〈Rg 〉/〈vCM 〉 . (1)

Further, if one assumes Rg ∼ Nν and vCM ∼ 1/N , as originally proposed by Kantor and
Kardar[8], one gets 〈τ 〉 ∼ N 1+ν . Kantor and Kardar argued that that since the chain is
only driven at one point inside the narrow pore, the accompanying change in its shape
due to the bias is insignificant for the rest of the chain and therefore, the chain in this
case is also described by the equilibrium Flory exponent ν. They also assumed (as in
the case of unbiased translocation) that the result vCM ∼ 1/N is still valid in presence
of a wall with a narrow pore. While this estimate is appealing at a first glance, repeated
numerical studies (including their own numerical studies) using several different methods
have failed to verify it. Kantor and Kardar reported α = 1.5 < 1 + ν = 1.75 from Lattice
MC simulation of self-avoiding chains in 2D. They argued that finite size effects are severe
in this case and the relation 〈τ 〉 ∼ N 1+ν should be taken as an lower bound that will be
seen only for the extremely large chains. Vocks et al. on the contrary, using arguments
about memory effects in the monomer dynamics came up with an alternate estimate[12]

〈τ 〉 ∼ N
1+2ν
1+ν in 3D.

Here we provide a brief summary and analysis of how the translocation exponent α is
altered as one decreases the pore diameter wp. We find that the exponent α decreases
systematically as one decreases the pore diameter wp. We further observe that despite
significant shape changes that occur during the translocation, the dynamics is still dom-
inated by the equilibrium configuration at the cis side, and therefore, the chain is still
described by the equilibrium Flory exponent. The velocity of the center of mass does
not scale as 1/N , but the exponent δ (〈vCM 〉 ∼ 1/N δ) decreases monotonically as the
pore diameter is decreased. Our simulation studies further reveal that the chain is out of
equilibrium as evident from very different chain conformations and their evolution at the
cis and the trans side during the translocation process.

2. THE MODEL

We have used the “Kremer-Grest” bead spring model to mimic a strand of DNA [22].
Excluded volume interaction between monomers is modeled by a short range repulsive LJ
potential

ULJ (r) = 4ε[(
σ

r
)
12

− (
σ

r
)
6

] + ε for r ≤ 21/6σ

= 0 for r > 21/6σ .

Here, σ is the diameter of a monomer, and ε is the strength of the potential. The connec-
tivity between neighboring monomers is modeled as a Finite Extension Nonlinear Elastic
(FENE) spring with UFENE(r) = − 1

2
kR2

0 ln(1 − r2/R2
0) , where r is the distance between

consecutive monomers, k is the spring constant and R0 is the maximum allowed separa-
tion between connected monomers. We use the Langevin dynamics with the equation of
motion �̈ri = − �∇Ui − Γ�̇ri + �Wi(t). Here Γ is the monomer friction coefficient and �Wi(t), is
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Figure 1. Histogram P (τ) of flight times for pore diameters 1.1σ (black) and 1.5σ (red)
for chain length N = 64. The inset shows the corresponding data collapse for N=64 and
N=128 where the τ -axis has been scaled by 1/Nα and the y-axis has been scaled by the
maximum value of the histogram.

a Gaussian white noise with zero mean at a temperature T, and satisfies the fluctuation-
dissipation relation: < �Wi(t) · �Wj(t

′) >= 6kBTΓ δij δ(t − t′). The purely repulsive wall
consists of one monolayer of LJ particles on a triangular lattice at the xy plane at z = 0.
The pore is created by removing the particle at the center. In this article to address the
effects arising due to the finite width of the pore, we have considered wall particles with
Lennard-Jones diameter form 1.1σ - 1.5σ. Inside the pore, the polymer beads experience
a constant force F and a repulsive potential from the inside wall of the pore. The reduced
units of length, time and temperature are chosen to be σ, σ

√
m
ε
, and ε/kB respectively.

For the spring potential we have chosen k = 30 and Rij = 1.5σ, the friction co-efficient
Γ = 1.0, and the temperature is kept at 1.5/kB throughout the simulation.

We carried out simulations for chain lengths N from 16 − 256 for with a biasing force
F = 6. Initially the first monomer of the chain is placed at the entry of the pore. Keeping
the first monomer in its original position the rest of the chain is then equilibrating for
times at least an amount proportional to the N 1+2ν . The chain is then allowed to move
through the pore driven by the field present inside the pore. When the last monomer
exits the pore we stop the simulation and note the translocation time and then repeat the
same for 5000 such trials.

3. RESULTS

Fig. 1 shows the histogram of for the mean first passage times (MFPT) for two different
values of the pore width (wp = 1.1σ and 1.5σ). For smaller pore diameters the local
barriers increase the average translocation time. Therefore, one would like to know how
this affects the chain length dependence of the translocation process. This is clearly
manifested at the inset of Fig. 1 where the normalized histograms for MFPT are shown
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Figure 2. Scaling of the mean translocation time 〈τ 〉 (logarithmic scale) as a function
of chain length N (logarithmic scale) for three different values of the pore diameter wp.
The inset shows corresponding scaling plots for the vCM . The black circles, red squares,
and green diamonds correspond to wp = 1.1σ, 1.3σ, 1.5σ respectively. Lines through the
points correspond to linear regression fits using last three points in each case.

for N=64 and N=128 for pore width 1.1σ and 1.5σ respectively. To demonstrate the pore
width dependence of the τ -exponent (N ∼ τα), we scale the time axis is by Nα. We find
that two different values of α are needed (α = 1.21 for and wp = 1.1σ and α = 1.35
for and wp = 1.5σ) for the scaled histograms. This is consistent with Fig. 2 where we
extract the translocation exponent α from the slope of the average translocation time as
a function of chain length for several values of the pore diameter wp. We find that the
exponent α systematically decreases as a function of the pore width from 1.36 to 1.21
for the chain lengths considered here. The inset shows the corresponding variation of the
velocity of the center of mass of the chain and we find that exponent δ (vCM ∼ 1/N δ)
decreases from 0.81 to 0.69.

During the translocation process we have monitored several aspects of the shape varia-
tion of the chain. Fig. 3 shows the variation of R̄g (we use the notation R̄g for the radius
of gyration of the translocating chain) as a function of N for different pore diameters. On
the same plot we have shown the variation of the equilibrium radius of gyration Rg for
a chain clamped at the center of the pore. We notice that the translocating chain is ap-
proximately described by the equilibrium Flory exponent 〈R̄g 〉 ∼ N0.6 despite the fact the
chain undergoes significant shape changes (top inset). We notice that the chain extension
is maximum when it is almost half way through the pore. We have further extended the
analysis by looking at the gyration radii both on the trans side (Rtrans

g (m)) and the cis
side (Rcis

g (N − m)) separately as a function of the translocated segments m (Fig. 3(lower
inset)). One immediately notices that the dependence of Rtrans

g (m) and Rcis
g (m) as a
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Figure 3. Scaling of radius of gyration of the translocating chain 〈R̄g 〉 as well as equilib-
rium radius of gyration Rg of a clamped chain ((logarithmic scale) as a function of chain
length N (logarithmic scale) for three different values of pore width. Purple triangles
refer to the clamped chain and other symbols have the same meaning as in Fig. 2

function of the chain segment m reveal very different characteristics. Theoretical models
need to take into account this basic asymmetry in cis and trans conformations of the
translocating chain.

4. SUMMARY & DISCUSSION

To summarize, we have used Langevin dynamics in 3D to study how the pore geometry
affects the translocation exponent of a driven translocating chain through a nanopore.
We find that a smaller pore reduces the value of the translocation exponent. We further
notice that the chain undergoes a significant shape change during the fast translocation
process, contrary to what assumed by Kantor and Kardar formulating the theory of forced
translocation. However, despite significant distortion, a careful observation reveals that
the average 〈Rg 〉 is still dominated by its equilibrium value at the beginning of the translo-
cation process and hence the chain is still described by the equilibrium Flory exponent.
We further observe that the chain conformations at the cis and trans sides are very dif-
ferent and clearly reveal out of equilibrium characteristics. Therefore, in the theoretical
description of the forced translocation problem one needs to introduce additional slow
variables (such as gyration radii at the cis and trans compartment) along with the s-
coordinate to accommodate these features. A more detailed account of these studies will
be reported elsewhere[23].

A. Bhattacharyaa / Physics Procedia 3 (2010) 1411–1416 1415



6 Aniket Bhattacharya

5. ACKNOWLEDGEMENT

I am indebted to Prof. Tapio Ala-Nissila and Prof. Kurt Binder for many valuable
discussions on various aspects of the translocation problem.

REFERENCES

1. J. J. Kasianowitch, E. Brandin, D. Branton, and D. Deamer, Proc. Natl. Acad. Sci.
U.S.A. 93, 13770 (1996); A. Meller, L. Nivon, E. Brandin, J. Golovchenko, and D.
Branton, ibid 97, 1097 (2000).

2. J. L. Li, M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko, Nat. Mater. 2,
611 (2003); A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker,
ibid 2, 537 (2003).

3. B. Alberts et al., Molecular Biology of the Cell (Garland Publishing, New York,
1994).

4. W. Sung and P. J. Park, Phys. Rev. Lett. 77, 783 (1996).
5. M. Muthukumar, J. Chem. Phys. 111, 10371 (1999).
6. D. K. Lubensky and D. Nelson, Biophys. J. 77, 1824 (1999).
7. J. Chuang, Y. Kantor, and M. Kardar, Phys. Rev. E, 65, 011802 (2001).
8. Y. Kantor and M. Kardar, Phys. Rev. E, 69, 021806 (2004).
9. J. L. A. Dubbledam, A. Milchev, V. G. Rostiashvili, and T. Vilgis, Phys. Rev. E 76,

010801(R) (2007); J. L. A. Dubbledam, A. Milchev, V. G. Rostiashvili, and T. Vilgis,
Europhysics Letters 79 18002 (2007).

10. J. K. Wolterink, G. T. Barkema, and D. Panja, Phys. Rev. Lett. 96, 208301 (2006).
11. D. Panja, G. T. Barkema, and R. C. Ball, J. Phys.: Condens. Matter 19, 432202

(2007); ibid20, 075101 (2008).
12. H. Vocks, D. Panja, G. T. Barkema, and R. C. Ball, J. Phys.: Condens. Matter20,

095224 (2008).
13. A. Milchev, K. Binder, and A. Bhattacharya, J. Chem. Phys. 121, 6042 (2004).
14. K. Luo, T. Ala-Nissila, and S-C. Ying, J. Chem. Phys. 124, 034714 (2006). ibid124,

114704 (2006);
15. I. Huopaniemi, K. Luo, T. Ala-Nissila, S-C. Ying, J. Chem. Phys. 125, 124901 (2006).
16. D. Wei, W. Yang, X. Jin, and Q. Liao, J. Chem. Phys. 126, 204901 (2007)
17. K. Luo, T. Ala-Nissila, and S-C. Ying, and Aniket Bhattacharya J. Chem. Phys. 126

145101 (2006); Phys. Rev. Lett. 99 148102 (2007); ibid 100 058101 (2008).
18. S. Matysiak, A. Montesi, M. Pasquali, A. . Kolomeisky, C. Clementi, Phys. Rev. Lett.

96 118103 (2006).
19. M. G. Gauthier and G. W. Slater, Eur. Phys. J. E 25, 17 (2008).
20. K. Luo, S. Ollila, I. Huopaniemi, T. Ala-Nissila, P. Pomorski, M. Karttunen, S-C.

Ying, and A. Bhattacharya, Phys. Rev. E. 78 050901(R) (2008); ibid 78, 061911
(2008); ibid 78, 061918 (2008).

21. A. Bhattacharya, W. Morrison, K. Luo, T. Ala-Nissila, S. C. Ying, A. Milchev, and
K. Binder, Eur. Phys. J. E 29 423 (2009).

22. G. S. Grest & K. Kremer, Phys. Rev. A 33, 3628 (1986).
23. Aniket Bhattacharya and Kurt Binder (to be published).

1416 A. Bhattacharyaa / Physics Procedia 3 (2010) 1411–1416


