# AST 2002 Introduction to Astronomy



### A Few Quick Things...

E-mailing me: Must have AST2002 in the subject

Mary Hinkle, Graduate Teaching Assistant: Office Hours: Mon 1:30-3:00pm. PSB 316

My office hours: Mon 3:00-4:00pm. PSB 308
Tue 3-4 pm. PSB 308

First Mid-term : Will be having more regular homework

Will start going over some of the exam questions...

Next Knights Under the Stars Event – Wed 28th Feb 7-8:30pm

#### Mars Lost its Magnetosphere



- Somehow Mars lost most of its atmosphere.
- Magnetic field may have preserved early Martian atmosphere.
- Solar wind may have stripped atmosphere after field decreased because of interior cooling.

#### **Transition from Wet to Dry Mars**

https://www.youtube.com/watch?v=nFBVBG5nEpw



#### Is Venus geologically active?



#### Why is Venus so hot?



- Venus has reflective sulfuric acid clouds
  - HIGHER ALBEDO
- Receives less heat from sunlight than Earth

- The greenhouse effect on Venus keeps its surface temperature at 470°C.
- But why is the greenhouse effect on Venus so much stronger than on Earth?
- Venus has a very thick carbon dioxide atmosphere with a surface pressure 90 times that of Earth.
- Thick carbon dioxide atmosphere produces an extremely strong greenhouse effect. (Runaway Greenhouse Effect)
- Too hot for liquid water...
- → On Earth, carbon dioxide dissolves in water, and can react to form carbonates, slowly removing it from the atmosphere

#### The Atmospheres of Venus & Mars



# What unique features of Earth are important for life?

- 1. Surface liquid water
- 2. Atmospheric oxygen
- 3. Plate tectonics
- 4. Climate stability

### The Carbon Dioxide Cycle



- Atmospheric CO<sub>2</sub> dissolves in rainwater.
- 2. Rain erodes minerals that flow into the ocean.
- 3. Minerals combine with carbon to make carbonate rocks on ocean floor.
- 4. Subduction carries carbonate rocks down into the mantle.
- 5. Rock melts in mantle and outgases CO<sub>2</sub> back into atmosphere through volcanoes.

Tectonics makes a very slow feedback loop possible...

More heat = More rainfall

## CO<sub>2</sub> Concentration



- Global temperatures have tracked CO<sub>2</sub> concentration for the last 500,000 years.
- Antarctic air bubbles indicate the current CO<sub>2</sub> concentration is at its highest level in at least 500,000 years.

## **Modeling of Climate Change**



- Models of global warming that include human production of greenhouse gases are a better match to the global temperature rise.
- Models don't work without greenhouse gas contributions
- Increased by 0.5°C in the past 50 years.

- The concentration of CO<sub>2</sub> is rising rapidly.
- An unchecked rise in greenhouse gases will eventually lead to global warming.

#### What makes a planet habitable?

#### The Role of Planetary Size



 Must be large enough for geological activity to release and retain water and atmosphere

#### What makes a planet habitable?



 Must be located at an optimal distance from the Sun for liquid water to exist = Habitable Zone (Goldilocks Zone)

# Comparative Surface Ages of Terrestrial Worlds



#### **Planetary Destiny**



Earth is habitable because it is large enough to remain geologically active, and it is at the right distance from the Sun so oceans could form.

#### **Summary of Last Time**

#### **Chapter 7: Earth and the Terrestrial Worlds**

- Earth as a Planet
  - Why is Earth geologically active?
  - What processes shape Earth's surface
  - How does Earth's atmosphere affect the planet?
- The Moon and Mercury: Geologically Dead
  - Was there ever geological activity on the Moon or Mercury?
- Mars: A Victim of Planetary Freeze-Drying
  - What geological features tell us that water once flowed on Mars
  - Why did Mars change?
- Venus: A Hothouse World
  - Is Venus Geologically Active?
  - Why is Venus to Hot?
- Earth as a Living Planet
  - What unique features of Earth are important for life?
  - How is human activity changing our planet?
  - What makes a planet habitable?

Question: What is the source of Earth's magnetic field?

- A. Magnetic rocks
- B. Magnetized iron in Earth's crust
- C. Magnetized iron in Earth's core
- D. Molten metal circulating in Earth's outer core, moving like electrons in a wire

Question: What is the source of Earth's

magnetic field?

- A. Magnetic rocks
- B. Magnetized iron in Earth's crust
- C. Magnetized iron in Earth's core
- D. Molten metal circulating in Earth's outer core, moving like electrons in a wire

Question: Why are smaller terrestrial bodies such as Mercury or the Moon "geologically dead"?

- A. They don't have volcanoes
- B. They cooled off faster than Earth did
- C. They don't have erosion
- D. They were hit by fewer meteorites
- E. They are made of different materials than Earth

Question: Why are smaller terrestrial bodies such as Mercury or the Moon "geologically dead"?

- A. They don't have volcanoes
- B. They cooled off faster than Earth did
- C. They don't have erosion
- D. They were hit by fewer meteorites
- E. They are made of different materials than Earth

# AST 2002 Introduction to Astronomy



#### **The Jovian Planets**



#### Formed beyond the snow-line where water could condense

- Bigger and more massive
- Lower density, different composition
- All have rings and Numerous Moons

#### **Missions to Outer Planets**

- Jupiter has been visited briefly by several spacecraft passing by, or using a gravitational assist (e.g., New Horizons)
- The Pioneer and Voyager spacecraft visited Saturn
- Uranus and Neptune only had a single flyby from Voyager 2



The Galileo Spacecraft studied Jupiter & it's moons from 1995-2003



The Juno Spacecraft is studying Jupiter 2016-



The Cassini Spacecraft studied Saturn & it's moons from 1997-2017



- The Jovian cores are very similar:
   ~10x Earth masses
- The Jovian differences are in the amount of H/He gas accumulated.

Why did that amount differ?

#### **Differences in Jovian Planet Formation**

- TIMING: The planet that forms earliest captures the most hydrogen and helium gas.
   Capture ceases after the first solar wind blows the leftover gas away.
- LOCATION: The planet that forms in a denser part of the nebula forms its core first.

#### **Planetary Migration?**

- Current models favor the idea that the Jovian planets formed closer to the Sun
- Then migrated outwards. Also possible that Uranus & Neptune switched
  - Predicted by the Nice model Jupiter and Saturn come into 2:1 resonance



#### **Density Differences**



Jupiter Jranus Jupe Sture

- Uranus and Neptune are denser than Saturn because they have less H/He, proportionately.
- Here, the units are such that the density of water is one.
- What about Jupiter?

#### Sizes of Jovian Planets



**b** This graph shows how radius depends on mass for a hydrogen/helium planet. Notice that Jupiter is only slightly larger in radius than Saturn, despite being three times as massive. Gravitational compression of a planet much more massive than Jupiter would actually make its radius smaller.

- As you add more mass, you compress the underlying gas layers
- Greater compression is why Jupiter is not much larger than Saturn, even though it is three times more massive.
- Jovian planets with even more mass can be smaller than Jupiter.

#### **Jupiter's Clouds**



### Models of Jupiter's Interior



- High pressure inside of Jupiter causes the phase of hydrogen to change with depth.
- Hydrogen acts like a metal at great depths because its electrons move freely.
- ~30x the pressure of Earth's core & 4x the temperature

#### **Models of Jovian Interiors**



### **Thought Question**

If Jupiter & Saturn have large amounts of liquid, metallic hydrogen, and are spinning very fast, what does that imply?

They have huge, very powerful magnetospheres









#### **Aurora's on the Jovian Planets**









#### Jupiter's Aurora: A Closer Look



# The Connection Between the Magnetosphere and The Galilean Satellites



## Rings of Jovian Planets









## Rings

- All four Jovian planets have rings
- Jupiter's rings probably made of silicates with sulfur from lo
- Saturn's rings are made from tiny water ice particles
- Uranus and Neptune have dark rings (organics)



## Saturn's Rings are VERY Thin



### **Shepherd Moons & Enceladus**



Some gaps are caused by Shepherd moon's (Here Daphnis)

The diffuse E-ring is formed from plumes coming from Enceladus







- Storm system that has been active over 300 years
- Could fit 2-3 Earth's inside it





#### **Coriolis Forces**



No. not responsible for toilets flushing in different directions



- Caused by the fact that different latitudes of the Earth are traveling at different speeds
- Storms on Earth are due to movement of air from high pressure to low pressure





#### **Jovian Planets: Extreme Wind Speeds**

- These planets all rotate VERY fast
- Winds observed can be over 1600 km/hr



#### **Composition of Jupiter's Bands**



# Compositions of Jovian Atmospheres





The latest images of Jupiter from Juno are stunning!

**End of Todays Lecture**