

Implementing PER-based Tutorials in the Second-semester Algebra-based Lecture-supported Mini-studio

Jarrad W.T. Pond, Archana Dubey, Jacquelyn Chini, Talat Rahman

Department of Physics, University of Central Florida

Talk Outline

- Briefly describe Lecture-supported Mini-studio
- Highlight success of Mini-studio in first-semester physics.
 - Use Jackie's plot from her PERC poster to show this.
- Describe the worksheet materials used for second-semester classes.
- Discuss how we faced major pushback and were very surprised.
 - Faculty claims of treating students like guinea pigs, worksheet giving misconceptions, etc.
- We were thus limited to one section with Mini-studio set-up.
 - But we have 4 sections to compare with constant lecture instructor.
- Further surprised by CSEM results.
 - Highlight incentive and class attitude effects.
- For later implementations, we are moving to a TA-run mini-studio.
 - More cohesion between worksheet and lab time.
 - Expose future faculty to more research based curricula.

The Lecture-supported Mini-studio

- Review of Lecture-Supported Mini-Studio Format:
 - ▶ Restructure existing ~3 classroom hours for recitation + lab.
 - ➤ ~32 students work in 8 groups of ~4 people.

75 minutes:
Conceptual /
math skills
worksheet &
problem-solving;
Instructor led.

15 minutes: Quiz 75 minutes: Laboratory Experiment; GTA led.

Mini-studio/Full-studio vs. Traditional **UCF** Lecture: First-semester Physics

- Previous implementation of Lecture-Supported Mini-Studio¹:
 - Mini-studio courses resulted in higher FCI post-test scores compared to both the Small and Large Traditional lecture courses.
 - Mini- and Full-studio produced similar post-test scores.

Chini and Rahman (2013).

Mini-studio/Full-studio vs. Traditional **UCF** Lecture: First-semester Physics

- Previous implementation of Lecture-Supported Mini-Studio:

 - ▶ Generally higher gain (G), lower loss (L) in Mini-Studio compared to Traditional, and even Studio.²

Lasry, Guillemette, Mazur (2014), ²Chini and Pond (2014).

Mini-studio in Second-semester, Algebra-based Physics

- Goal: Integrate the Mini-studio into lab portions of second-semester physics lecture courses.
- We constructed conceptual / math skills worksheets from PER-based materials:
 - Maryland Tutorials in Physics Sense-Making¹ and Minnesota Context Rich Problems²
- Covering the topics of Electricity, Magnetism, and Optics.
- Hands-on group activities often incorporated into worksheets.

^{▶ &}lt;sup>1</sup>Scherr and Elby (2007), ²Heller, Keith, & Anderson (1992).

Initial Implementation

- Spring 2014: planned to implement Mini-studio format in <u>all</u> 13 second-semester physics lab sections.
- Surprised to face massive pushback by faculty.
- Some typical reactions:
 - Majority unwillingness to deviate from traditional recitation / problem solving.
 - ▶ There is more material to cover than what the worksheets do.²
 - Persuaded by student reception of worksheets and student perception of how recitation time is best spent.³
- Less typical reactions:
 - Notion of treating students like "guinea pigs".
 - Idea that worksheets invent misconceptions in students, rather than dissolve them.

[▶] Henderson and Dancy (2007), Dancy and Henderson (2010), Koening et al. (2007).

Initial Implementation – Limitations

Thus, out of the 13 second-semester lab sections:

4 Sections: Approving Lecture 9 Sections: Instructor (AI) Disapproving Lecture **Traditional** Instructor (DI) Mini-Studio: Recitation: ΑI D2 No Mini-studios Non PER-based Non PER-based Worksheet: Worksheet:

Initial Implementation – Limitations

- Only able to implement the Mini-studio in one section.
- Have 4 lab sections to compare
 - ▶ All sections have same lecture instructor, Al.
 - Compare CSEM assessment performance across sections.

Section	N Pre	N Post	N Matched
AI	23	21	20
D2	22	20	17
D3 - I	24	23	20
D3 - 2	25	24	19

Average CSEM Results [%]

Section	Pre-score (SE)	Post-score (SE)	Raw Gain (SE)	Norm. Gain (SE)
AI	27.5 (2.0)	27.3 (2.8)	-0.16 (3.6)	-1.84 (4.9)
D2	24.1 (1.7)	39.9 (3.7)	15.8 (3.4)	20.9 (4.5)
D3 - I	21.7 (1.3)	33.1 (3.0)	11.4 (3.3)	14.1 (4.2)
D3 - 2	22.5 (1.6)	48.8 (2.5)	26.3 (2.5)	33.8 (2.9)

Incentive Effects

Section	Pre-score (SE)	Post-score (SE)	Raw Gain (SE)	Norm. Gain (SE)
AI		27.3 (2.8) Post-test not count o take test serious		
D2		39.9 (3.7) Post-test not countencouraged to take		20.9 (4.5) dents
D3 - I		33.1 (3.0) Post-test not countencouraged to take		14.1 (4.2)
D3 - 2	22.5 (1.6)	48.8 (2.5) Post-test counted a	26.3 (2.5) as final quiz score.	33.8 (2.9)

Incentive Effects

Section	Pre-score (SE)	Post-score (SE)	Raw Gain (SE)	Norm. Gain (SE)
AI	27.5 (2.0)	27.3 (2.8)	-0.16 (3.6)	-1.84 (4.9)
D2	24.1 (1.7)	39.9 (3.7)	15.8 (3.4)	20.9 (4.5)
D3 - I	21.7 (1.3)	33.1 (3.0)	11.4 (3.3)	14.1 (4.2)
D3 - 2 "Flo	22.5 (1.6) or Effect" in Pre-	48.8 (2.5) test ^{1,2} seen in A1	26.3 (2.5) Post-test.	33.8 (2.9)

[▶] ¹Madsen, McKagen, and Sayre (2013), Kost-Smith, Pollock, and Finkelstein (2010) .

Estimates of Apathy

- We see evidence of students not taking the CSEM seriously, especially in the Mini-studio section (A1).
- Inspecting responses for student apathy, such as:
 - Instance of ABCDE or EDCBA patterns, or
 - The same letter choice more than 6 times in a row.
- At right, we give the lower limit on the number of students exhibiting this apathetic behavior.

Post-test Apathy

^{► &}lt;sup>1</sup>Henderson (2002).

Discussion

- We see the Mini-studio format as an effective reformed classroom.
 - We want to extend beyond first-semester physics.
- Face several challenges and difficulties:
 - Faculty resistance to change.
 - Believing sufficient material not covered; favor traditional problem solving.
 - Students not taking CSEM seriously.
 - Incentive and apathy effects prevalent in this dataset
 - ▶ Makes assessment of initial implementation difficult.

Plans for Future Implementations

- Move toward TA-led Mini-studios.
 - ▶ Have Teaching Assistants administer PER-based worksheets and supervise labs.
 - Improve consistency of instruction between worksheet portion and lab portion of the Mini-studio.
 - Expose more of our future faculty to research-based instructional strategies.
- Incorporate inquiry activities into our laboratory sessions.
 - Adapting Investigative Science Learning Environment (ISLE) materials for use in our labs.
- Create a student-centered environment fostering critical thinking:
 - Improving students' conceptual knowledge
 - Increase aptitude in experimental design and investigating phenomena.