
Introduction to Quantum Computation - PHY 5650

Classes: Mon, Wed, Fri (10:30-11:20am) - MAP 204

Eduardo Mucciolo (MAP 416, 3-1882, mucciolo@physics.ucf.edu)

Textbook: Quantum Computation and Quantum Information,
by Michael A. Nielsen and Isaac L. Chuang (Cambridge University
Press, 2000)

Grading: 50% problem sets + 50% final paper

Course web page: http://www.physics.ucf.edu/~mucciolo/phy5650/

00

CALENDAR −− SPRING 2005

(8)

10 (1) 12 (2)

26 (6) 28 (7)

21 (5)

14 (3)

10 (1) = Regular class day (#1)

= Problem set due

April

18

M

11

W F

01

06 (29)

13

25 (37)

20

15

22

(30)

(27)

(28)

27

04 08
(31)

(34) (35)

(33)

(36)

29

(32)

January

Caption:

February

21

M W

02

F

04

07 (11) 09 (12)

28 (19)

23 (17)

21

25 (18)

11 (13)

(9) (10)

(15)

March

21

M

14

W

02

F

04

07 09 (23)

16

28 (25)

23

21

25

11 (24)

(20) (21)

(22)

(26)30

24

03

M

17

W

05

F

07

17 = Holiday

21 = Spring break 14 = No class

16 (14)14
(16)

19 (4)

31

01

1) Motivation and Overview: history, quantum bits (qubits), quantum circuits, quantum
computation, quantum algorithms.

 2) Classical Computation: Turing machines, computational complexity, complexity classes.

 3) The Basics of Quantum Mechanics: linear algebra, postulates of Quantum Mechanics,
superposition, interference, entanglement, time evolution, phase coherence.

 4) Quantum Circuits: qubit operations and quantum gates, universal quantum gates.

 5) Quantum Computation: quantum computational complexity, quantum algorithms, Shor's
factorization algorithm, search algorithms.

 6) Physical Implementations: optical and atomic, nuclear (NMR), solid state; scalability; the
decoherence problem.

Course Content

Left out: error correction, quantum information

03

1.1 Motivation

What is computation?
The implementation of an algorithm to
perform a certain task (usually to solve
a problem, calculate a function, etc).

The modern definition of a “computer” was born in 1936
with the advent of a model known as the Universal Turing
Machine: a machine that implements an algorithm by
following a set of instructions recorded in some sort of
hardware (tape?), one at a time. It is programable, but
needs to satisfy certain conditions.

Notice: this is a very physical notion!

The catch:

Not all problems can be efficiently
solved by a Universal Turing Machine.

OBS: Not everything is algorithmically
 computable.

Anything that is computable by
some piece of hardware is also
computable by a Universal Turing
Machine (the Church-Turing thesis).

04

Ex: The 2-dimesional Hubbard model (high-Tc superconductivity?)

E = U

E = 0

E = −t

Find all eigenvalues
and eigenfunctions
for a 1000 x 1000
lattice.

A computable problem... but currently impractical (the best we can do is 4 x 4).

Ex: Factorize
9046635314729965676224664254051240722094475168481918599
8005137843414469489753806381722276074208698889835256178
881805832120802638900447213803801057153472546

(Even if you have access to many fast computers, it may still take several days
to do it - it took 8 months and 600 people (1,600 computers) to factorize a
slightly smaller integer in 1994.)

05

Nature is quantum mechanical!

In the 1980’s, people began to search for new paradigms
for computation, beyond the Turing Machine.

Feynman: Simulating a quantum system with a conventional computer
 requires an exponentially large amount of resources! Use
 another quantum system to do the job instead.

Deutsch: Use the laws of physics - quantum mechanics - to define a
 new, more powerful and efficient Turing machine.

Why Quantum Mechanics?

1) Computation deals with information.

2) Information is physical.

3) Quantum Mechanics is the mathematical framework that
 underlies all physical theories.

06

The rules provide by Quantum Mechanics
describe physical phenomena at all length
scales, from the behavior of elementary
particles to the structure of the universe.

Conventional computers may be able to simulate classical problems
(turbulence, diffusion, etc.) efficiently, but it will take a computer based
on quantum mechanics to simulate a quantum system with tangible
resources (time, memory, etc).

Quantum Computation began to take form in the mid 1980’s, but the
“quantum leap” only happened in 1994, with the demonstration of a
“killer application” by Shor: A quantum algorithm that factorizes any
integer efficiently.

07

1.2 Qubits

classical bit: c = (0) or (1)

binary representation:

13 = 2 × 6 + 1

= 2 × 2 × 3 + 1

= 2 × 2 × 2 + 2 × 2 + 1

= 2
3

+ 2
2

+ 2
0

= 1 1 0 1

3 2 1 0

0 1

0 1

1 0

+

08

α, β = complex numbers (|α|2 + |β|2 = 1)

q = α × (0) + β × (1)quantum bit:

superposition

Dirac notation: |ψ〉 = α|0〉 + β|1〉

“state vector”

09

Any decent qubit lives in a 2-dimensional Hilbert space!

Physical definition: Two isolated, distinct configurations
 (”states”) of a quantum system.

|0〉

|1〉

}
large gap

small gap

energy

|n > 1〉

Candidates: atomic states, electron and nuclear spins, photon polarizations, ...

0A

The Bloch sphere representation

|0〉 → θ = 0 (“z”)

|1〉 → θ = π (“ − z”)

|1〉

y
φ

x

θ
|ψ〉

|0〉

z

|ψ〉 = eiγ
[
cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉

]

φ = λ − γirrelevant

“x” → θ = π/2, φ = 0

“y” → θ = π/2, φ = π/2

1√
2

(
|0〉 + |1〉

)

1√
2

(
|0〉 + i |1〉

)

|α|2 + |β|2 = 1 { complex amplitudes
α = eiγ cos(θ/2)

β = eiλ sin(θ/2)

0B

Question: How much information can you store in a qubit?

classical bit: discrete (0 or 1)

quantum bit: continuous (and)φ θ infinite?

Answer: It depends!

|ψ〉 = α|0〉 + β|1〉

|α|2

|β|2

Quantum Mechanics:

measuring

|0〉

|1〉

probability

probability

Quantum information is “hidden”

0C

Multiqubits:
q1

q2

q4

q3

|Ψ〉 "= |ψ1〉 ⊗ |ψ2〉

|Ψ〉 =
1√
2

(
|01〉 + |10〉

)
entangled state:

Ex:

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉

|Ψ〉 = |0〉1 ⊗ |0〉2 (= |00〉)

direct product state:

Ex:

|Ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉

General 2-qubit state:

Ex: |00〉 + |01〉 + |10〉 − |11〉 = (|0〉 + |1〉)1(|0〉 + |1〉)2 − 2|11〉

EPR (Einstein-Podolsky-Rosen) pairs or Bell states:

1√
2

(
|01〉± |10〉

)

1√
2

(
|00〉± |11〉

){
correlated!

0D

1.3 Quantum computation

Manipulating bits: Logical gates

input output

Ex: classical AND gate

a b

0

1

1

0

0

1

0

0

0 0

1 1

c

a

b
a bANDc =

Ex: classical NOT gate

0 (1) 1 (0)

a ā

truth table

0E

2-bit classical gates:

AND
0

1

a b c

0

0

0

0

1

1

1 1

0

0

OR
0

1

a b c

0

0

0

0

1

1

1 1

1

1

NAND
0

1

a b c

0

0

0

1

1

1

1

0

1

1

NOR
0

1

a b c

0

0

0

01

1

1

0

0

1

XOR

1

0

1

a b c

0

0

0

01

1

1

0

1

Universal gate for
classical computation

Obs: They are useless for quantum computation: Irreversible!
 However, it is possible to do classical computation reversibily.

0F

What does “universal gate” mean? NAND

NOT

AND

OR

XOR

10

Quantum gates are unitary operations:

U |ψ〉 = |ψ′〉 ||ψ|| = ||ψ′|| UU
†

= Iwith

(check it!)

1-qubit quantum gates are rotations in the Bloch sphere:

X|0〉 = |1〉

|1〉

|0〉 H|0〉 =
1√
2

(|0〉 + |1〉) |0〉

|1〉

(OBS: it is actually more complicated than it looks)

NOT
operation

11

Quantum gates: matrix representation

|0〉 =

(
1

0

)

|1〉 =

(
0

1

) |ψ〉 = α|0〉 + β|1〉 =

(
α
β

)

(
1 0

0 −1

)(
0 −i

i 0

)
1
√

2

(
1 1

1 −1

)
Y = H =Z =

Hadamard (”square root of NOT”)

(
0 1

1 0

)(
α
β

)
=

(
β
α

)
NOT operation

X

{

gate

Linear algebra!

no classical counterpart

12

2-qubit gates: Unitary operations Reversible

Universal gate for
quantum computation

UCNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Ex: CNOT |a〉

|b〉

|a〉

|a ⊕ b〉

control

targetequal number of input
and output lines

0 ⊕ 0 = 0 0 ⊕ 1 = 1x ⊕ y = x + y (mod 2) 1 ⊕ 1 = 0

|00〉 =

1

0

0

0

 |11〉 =

0

0

0

1

|01〉 =

0

1

0

0

 |10〉 =

0

0

1

0

13

Ex: Controlled U gate

control qubit

target qubits

|a1〉

|a3〉

|an〉

|a2〉

U

unitary operation (n-1 qubit space)

|a1〉 ⊗ |a2, a3, . . . , an〉

|a1〉 ⊗
(
U |a2, a3, . . . , an〉

)

|a1〉 ⊗ |a2, a3, . . . , an〉 a1 = 0

a1 = 1

if

if

input: output:

or

Obs: CNOT is a special case ()n = 2, U = X

14

Quantum measurement:

|ψ〉 = α|0〉 + β|1〉

|ψ〉
M

|0〉 or |1〉

} }
qubit classical bit

|0〉, |1〉
measurement carried

out in the basis

|α|2

|β|2

probability

probability

Obs: (1) Measurements can be carried out in any basis.
 (2) The output is still a quantum state.
 (3) Measurements destroys “hidden” information (unless
 it is repeated infinitely over identical states).

15

Quantum circuits: sequences of unitary operations

Ex: “swap” circuit

|a〉

|b〉 |a〉

|b〉

|a, b〉 → |a, a ⊕ b〉 → |a ⊕ a ⊕ b, a ⊕ b〉 = |b, a ⊕ b〉 → |b, a ⊕ b ⊕ b〉 = |b, a〉

≡

Obs: Feedback loops, fan-in and fan-out configurations are not allowed.

16

Ex: creating Bell states H|a〉

|b〉

|Bab〉

|a〉 = α|0〉 + β|1〉 =

(
α
β

)
H =

1
√

2

(
1 1

1 −1

)

UCNOT|c, b〉 = |c, c ⊕ b〉=
1√
2

[(α + β)|0, b〉 + (α − β)|1, 1 ⊕ b〉]

|c〉 = H|a〉 =
1√
2

(
α + β
α − β

)
=

1√
2

[(α + β)|0〉 + (α − β)|1〉]

1 ⊕ b = b

|00〉

|01〉

|10〉

|11〉 (|01〉 − |10〉)/√2 = B11

(|00〉 + |11〉)/√2 = B00

(|00〉 − |11〉)/√2 = B10

(|01〉 + |10〉)/√2 = B01

17

Ex: quantum teleportation

The problem:

(1) Alice and Bob met. They shared an entangled state, .
(2) They were separated. Years went by.
(3) Alice now wants to send a certain qubit to Bob, but:
 (i) she only has a single copy of it;
 (ii) they can only communicate through classical channels;
 (iii) any measurement she makes will destroy the “hidden” information.
(4) What should they do?

|B00〉

|ψ〉

Alice’s lines

Bob’s line classical channel

|ψ〉

2

H

X Z

M

M

1

|B00〉{
|ψ〉

The solution:

18

Step-by-step procedure:

|Ψ0〉 |Ψ1〉 |Ψ2〉

|ψ〉

|B00〉 =
1√
2

(|00〉 + |11〉)
2

H

X Z

M

M

1

{

|ψ〉 = α|0〉 + β|1〉

=
1

2

[
|00〉(α|0〉+β|1〉)+ |01〉(α|1〉+β|0〉)+ |10〉(α|0〉−β|1〉)+ |11〉(α|1〉−β|0〉)

]

|Ψ1〉 =
1√
2

[
α(|0〉|00〉 + |0〉|11〉) + β(|1〉|10〉 + |1〉|01〉)]

|Ψ2〉 =
1√
2

[
α√
2
(|0〉 + |1〉)(|00〉 + |11〉) +

β√
2
(|0〉 − |1〉)(|10〉 + |01〉)

]

|Ψ0〉 = |ψ〉|B00〉 =
1√
2

[
α(|0〉|00〉 + |0〉|11〉) + β(|1〉|00〉 + |1〉|11〉)]

19

Step-by-step procedure:

|Ψ2〉 |Ψ3〉 |Ψ4〉

|ψ〉

|B00〉 =
1√
2

(|00〉 + |11〉)
2

H

X Z

M

M

1

{

|ψ〉 = α|0〉 + β|1〉

|Ψ2〉 =
1

2

[
|00〉(α|0〉+β|1〉)+|01〉(α|1〉+β|0〉)+|10〉(α|0〉−β|1〉)+|11〉(α|1〉−β|0〉)

]

|Ψ3〉 = |00〉(α|0〉 + β|1〉)M1 = 0, M2 = 0 → −→ |Ψ4〉 = |00〉|ψ〉

|Ψ3〉 = |01〉(α|1〉 + β|0〉)M1 = 0, M2 = 1 →

|Ψ3〉 = |10〉(α|0〉 − β|1〉)M1 = 1, M2 = 0 →

|Ψ3〉 = |11〉(α|1〉 − β|0〉)M1 = 1, M2 = 1 →

X
−→

|Ψ4〉 = |01〉|ψ〉
(

0 1

1 0

) (
β
α

)
=

(
α
β

)

Z
−→

|Ψ4〉 = |10〉|ψ〉
(

1 0

0 −1

) (
α
−β

)
=

(
α
β

)

X,Z
−→

|Ψ4〉 = |11〉|ψ〉
(

1 0

0 −1

)(
0 1

1 0

)(
−β
α

)
=

(
α
β

)

1A

1.4 Quantum algorithms

 In order to do interesting things with a computer we need algorithms!

Computation can be done by connecting circuit elements.

Q: Can a quantum computer perform all classical operations?

A: Yes!
Q: How?

A: Reversible classical computation: the Toffoli gate.

a

b

c c ⊕ ab

b

a

c ⊕ ab

a

b

c

a

b
b

a

c ⊕ ab ⊕ ab = c

1B

a

0

1

b

0

0

c

0

0

a
′

0

b
′

0

0

c
′

0

0

10 0 0 0

1

1

10 0 0 0 1

1 0 11 1 1

1

01 0 11 1

010 11 1

1 011 1

Truth table for
the Toffoli gate

T
c

a

b b
′

a
′

c
′

NAND implementation:

a a

b b

1 1 ⊕ ab = ab

FANOUT implementation:

a a

1

0 ⊕ a · 1 = a0

1

(Find the unitary operator .)UToffoli

The Toffoli gate is a legitimate quantum gate as well.

looks like cloning,
but it is not!

1C

Quantum computers can perform all classical algorithms... so what?

 Q: Can they do something classical computers cannot?

Quantum “parallelism”: A: Yes!

Suppose we want to compute for (bits).f(x) x = 0, 1, . . . , 2
n−1

n

f : {0, 1, . . . , 2n − 1} −→ {0, 1, . . . , 2n−1}

x −→ f(x)

Ex: 1-bit case. Calculate and .f(0) f(1)

number in binary basis

DO X=0,1
 F(X)=...function call...
END DO

Classical
algorithm 2 steps

 Q: Can they outperform classical?

 A: Yes, at least for certain algorithms (stay tuned!).

1D

Quantum
algorithm

Suppose we have the unitary 2-qubit gate

Uf

x

y

x

y ⊕ f(x)Uf |x, y〉 = |x, y ⊕ f(x)〉

Take and . Then,|x〉 =
|0〉 + |1〉√

2
|y〉 = |0〉

Uf

(|00〉 + |10〉√
2

)
=

1√
2

(|0, 0 ⊕ f(0)〉 + |1, 0 ⊕ f(1)〉)

=
1√
2

(|0, f(0)〉 + |1, f(1)〉)

f(x) computed over the whole domain in 1 step

Quantum parallelism: only 1 circuit doing N computations at once.

Classical parallelism: N circuits doing the same computation simultaneously.

1E

General case:

(i) prepare the initial state (use a Hadamard gate)

|0〉
1√
2

(|0〉 + |1〉)H 1-qubit case

=
1

2

(
|00〉 + |10〉 + |01〉 + |11〉

)

|0〉 H
|0〉 H } 1√

2

(|0〉 + |1〉) 1√
2

(|0〉 + |1〉)⊗

2-qubit case

=
1

2

1∑

x1,x2=0

|x1x2〉

H
H
.

.

.

H

|0〉

|0〉

|0〉

} 1

2n/2

1∑

x1,...,xn=0

|x1x2 . . . xn〉

n-qubit case

=
1

2n/2

2
n
−1∑

X=1

|X〉n

1F

General case:

H
H
.

.

.

H

≡
⊗H n

n
n-dimensional Hadamard gate

(iii) parallel computation

H n⊗

Uf

|0〉⊗n

|0〉

n n n 1

2n/2

2
n
−1∑

X=1

|X〉n

1

2n/2

2
n
−1∑

X=1

|f(X)〉

1

2n/2

2
n
−1∑

X=1

|X, f(X)〉n+1

output

(ii) implementing the unitary transformation f : {0, 1}n −→ {0, 1}

Uf

n n

|y ⊕ f(X)〉|y〉

|X〉n|X〉n

20

Caveat:

1

2n/2

2
n
−1∑

X=1

|X, f(X)〉n+1 |X, f(X)〉n+1 = |X〉n ⊗ |f(X)〉

contains all 2 values of f(X), but any measurement of
the output state will project it into a single basis state...

n

thus, a single measurement can retrieve f(X) for just one value of X.
We would need 2 measurements to map f(X) entirely!n

We need algorithms that can extract the information
“hidden” in the superposition of states.

21

The Deutsch’s algorithm: it combines quantum parallelism and
interference to compute two values of
a given function, outperforming any
classical algorithm.

Let us assume f : {0, 1} −→ {0, 1}

Consider the circuit

Uf

H|0〉

H|1〉

H

|Ψ0〉 |Ψ1〉

|Ψ0〉 = |01〉

function f(x) evaluated
only once

|Ψ1〉 =
|0〉 + |1〉√

2
⊗ |0〉 − |1〉√

2
=

1

2

(|00〉 − |01〉 + |10〉 − |11〉)

22

Uf

H|0〉

H|1〉

H

|Ψ2〉 |Ψ3〉

1 ⊕ x = x̄

0 ⊕ x = x
|Ψ2〉 =

1

2

(
|0, f(0)〉 −

∣∣0, f(0)
〉

+ |1, f(1)〉 −
∣∣1, f(1)

〉)
.

|Ψ3〉 =
1

2

(
|0, f(0)〉 + |1, f(0)〉√

2
−

∣∣0, f(0)
〉

+
∣∣1, f(0)

〉
√

2

+
|0, f(1)〉 − |1, f(1)〉√

2
−

∣∣0, f(1)
〉 − ∣∣1, f(1)

〉
√

2

)

.

=
1√
8

[
|0〉 ⊗

(
|f(0)〉 + |f(1)〉 − ∣∣f(0)

〉 − ∣∣f(1)
〉)

+ |1〉 ⊗
(
|f(0)〉 − |f(1)〉 −

∣∣f(0)
〉

+
∣∣f(1)

〉)]

23

Notice the following:
+ |1〉 ⊗

(
|f(0)〉 − |f(1)〉 −

∣∣f(0)
〉

+
∣∣f(1)

〉)]
|Ψ3〉 =

1√
8

[
|0〉 ⊗

(
|f(0)〉 + |f(1)〉 − ∣∣f(0)

〉 − ∣∣f(1)
〉)

|Ψ3〉 =
1√
2
|1〉 ⊗ (|f(0)〉 − |f(1)〉)

f(0) != f(1)

if f(0) + f(1) = 1{

if f(0) + f(1) = 0
f(0) = f(1)

|Ψ3〉 =
1√
2
|0〉 ⊗

(
|f(0)〉 − ∣∣f(0)

〉){
will measure “0”

will measure “1”

We can evaluate the sum f(0)+f(1) without evaluating both f(0) and f(1).
We gained a factor of 2 in efficiency with respect to a classical algorithm.

24

The Deutsch - Jozsa algorithm: (the n-qubit extension of Deutsch’s algorithm)

Deutsch’s problem:
- Alice can send one number X (between 0 and 2 -1) to Bob each time.
- Bob uses x to evaluate f(X), .
- The function f(X) is either constant or balanced.
- How many times does Alice need to communicate with Bob to find out
 the nature of f(X)?

f : {0, 1}n → {0, 1}

n

Classically, Alice would need to send 2 /2+1 numbers to Bob to determine
f(X) (worst case scenario - all first 2 /2 evaluations gave the same result).
In the best case she would need to send at least 2.

n

n

Using qubits and unitary operations, Alice would need to send just 1 number
to Bob to determine f(X), thanks to quantum parallelism and interference!

the circuit

|0〉

|1〉
Uf

H

H⊗n H⊗nregister

} } }

Alice AliceBob

25

|Ψ0〉 |Ψ1〉

|1〉
Uf

H

H⊗n H⊗n|0〉⊗n

|Ψ0〉 = |0〉⊗n ⊗ |1〉

|Ψ1〉 =
1

2(n+1)/2

∑

x1,x2,...,xn

|x1x2 · · ·xn〉 ⊗
(
|0〉 − |1〉

)

H
⊗n|0〉⊗n = (H |0〉)⊗n =

1

2n/2

∑

x1,x2,...,xn

|x1x2 · · ·xn〉{
H

⊗n|1〉⊗n =
1

2n/2

∑

x1,x2,...,xn

(−1)x1⊕x2⊕···⊕xb |x1x2 · · ·xn〉

notice that: H
⊗n|X〉⊗n =

1

2n/2

∑

z1,z2,...,zn

(−1)z1x1⊕z2x2⊕···⊕znxb |z1z2 · · · zn〉

exercise: show it!

26

|Ψ2〉 |Ψ3〉

|1〉
Uf

H

H⊗n H⊗n|0〉⊗n

Uf

[
|X〉n ⊗

(
|0〉 − |1〉

)]
= |X〉n ⊗ |0 ⊕ f(X)〉 − |X〉n ⊗ |1 ⊕ f(X)〉

= |X〉n ⊗ |f(X)〉 − |X〉n ⊗
∣∣f(X)

〉

= (−1)f(X) |X〉n ⊗
(
|0〉 − |1〉

)

|Ψ2〉 =
1

2(n+1)/2

2n
−1∑

X=0

(−1)f(X) |X〉n ⊗
(
|0〉 − |1〉

)

|Ψ3〉 = H
⊗n|Ψ2〉

(Z · X = z1x1 + z2x2 + · · · znxn)
=

1

2n+1/2

2n
−1∑

X,Z=0

(−1)f(X)⊕X·Z |Z〉n ⊗
(
|0〉 − |1〉

)

27

{

|Ψ3〉 =
2n

−1∑

X,Z=0

(−1)f(X)⊕X·Z

2n
|Z〉n ⊗ |0〉 − |1〉√

2

A(X, Z)

|Ψ3| = 1But |Ψ3〉 = |0〉⊗n ⊗ |0〉 − |1〉√
2

|0〉⊗nThe state has zero amplitude at least one qubit will be |1〉

If Alice measures at least one qubit in the state “1”,
the function is balanced; otherwise it is constant.

constant f(X):
2n

−1∑

X=0

A(X, 0) =
2n

−1∑

X=0

(−1)f(X)

2n
= ±1

(Z = 0)

balanced f(X):
2n

−1∑

X=0

A(X, 0) =
2n

−1∑

X=0

(−1)f(X)

2n
=

(−1)0 + (−1)1

2
= 0

(Z = 0)

28

Are there quantum algorithms that are superior
to classical ones and useful at the same time?

Q:

 Yes!A:

- Algorithms based on Fourier transform (e.g. Shor’s factorization algorithm).

- Search algorithms (e.g. Grove’s).

- Simulation of quantum systems.

Three classes are known:

We will see how they work in this course.

29

2.1 Classical Computation

Ex: input: a,b output: a x b = c a,b,c represented by
integers (base 2, 10, ...)

computation:
(abstract)

input
(symbols)

output
(symbols)

algorithm

you learn the algorithm
in elementary school

computation:
(physical)

input
(objects,states)

output
(objects,states)

physical process

Ex:
input, output: resistors, capacitors, and transistors (voltages, currents)
algorithm: sequence of current and voltage pulses

2A

Q: When is a function computable?
A: When an algorithm for its evaluation exists!

Q: Are all functions computable?
A: No!

..
Q: How do we know that?
A: Godel, Turing, ...

Church-Turing thesis: Any function that is computable by any
 means is computable by a “Turing machine”.

There are conjectures
that cannot be proved.

There are functions that cannot
be computed algorithmically.

Turing machines are model computers (not necessarily efficient ones...).

2B

Is there an algorithm that
can solve all mathematical
problems? (Hilbert)

Turing machines
2C

tape (infinite)1> 0 1 1 0 0

R/W head

system with finite
number of internal

states

symbols of some alphabet (including “blank”)

Q = {q0, q1, . . . , qn; qh}Finite set of machine states:

“halt”

Symbols of the alphabet: S = { , >, 0, 1, ...}

Direction of head movement: d ∈ {L, O, R}

quintupleThe machine operates in steps: (q, s) −→ (q′, s′, d)

2D

The finite-state system contains the “code”.

The tape contains the “input” and “output” data.

The machine halts when it encounters the “halt” state.

(q, s, q′, s′, d) q q
′

s
′

s

d

Ex: infinite loop (qn, 0, qn+1, 0, R) (qn+1, 0, qn, 0, L) qn+1qn

0 0

0 0

R

L

(qh, s, qh, s, O)Ex: halting state qh

2E

Ex: a parity counter machine

EVEN ODD

HALT

> R
R

R

O O

E E
0 1

1 0

0 1

0 0 0 0

R R

> 0 0 1 1 10 EEVEN

> 0 0 1 1 10 EEVEN

> 0 0 1 1 10 EEVEN

> 0 0 1 1 10 EEVEN

> 0 0 0 1 10 EODD

> 0 0 0 0 00 EODD

> 0 0 0 0 10 EEVEN

> 0 0 0 0 10 EEVEN

> 0 0 0 0 00 1HALT

result of the computation

2F

Universal Turing Machines and the Halting Problem

It is possible to label or tag a Turing machine uniquely? Yes!

Q × S −→ Q × S × D

(q, s) −→ (q′, s′, d)
TM: function that takes a discrete

set into another (countable)

f : {1, 2, . . . , N} −→ N

x −→ f(x)
can be labeled by the integer number

nf =

N∏

i=1

p
fi

i

pi is the ith prime

The universal Turing machine
(UTM) simulates any TM

Input in tape: Turing number + “blank” + data

xm

m

30

A Universal Turing Machine
simulates any Turing Machine

TM (x) = UTM (m // // x)

UTM: a “programmable” computer!

It is possible to build an UTM with 8 symbols and 23 states (Minsky, 1967).

can be reduced to 6 (Feynman)

There are ways to build an UTM with 2 states and lots of symbols, or vice-versa!

Generalizations of TM
31

- Two or more tapes (not necessary, but useful):

M : (q, s1, s2) −→ (q′, s′1, s
′

2, d1, d2)

- Probabilistic TM:

(q, s)

(q′1, s
′

1, d1)

(q′
n
, s′

n
, dn)

.

.

.

p1

pn

n∑

i=1

pi = 1

with probability

`` ``

It allows for randomized algorithms (sometimes very powerful ones).

Revised Church-Turing thesis: Any algorithmic process can be simulated
 efficiently using a probabilistic Turing machine.

32

Let Z be another UTM such that:

F- if T (x) halts, i.e., D(t,x) = 1, Z(d) does not halt (infinite loop);
- if T (x) does not halt, i.e., D(t,x) = 0, Z(d) halts and yields 0.F

Substitute T by Z: D(z,x); arrive at a contradiction!F

Z halts if and only if Z does not halt.

Q: Can we predict if a machine will halt for a given input?

A: Not in general!

Let T (x) be a TM that outputs f(x) when fed with x.F

Let D(t,x) be a UTM that takes T and x as input.F

If T halts with x, D yields 1; otherwise, it yields 0.F

assumption: D always halts.

D cannot exist.

Halting problem

Q: How many other uncomputable functions are out there?

A: Many! Certainly more than computable ones...

Each computable function can be related to a Turing Machine.

Turing Machines are countable (each one represented by an integer number).

Computable functions are countable, but uncomputable functions are not.

(It is a bit like the difference between real and integer or rational numbers.)

But even if the function is computable, it may not mean much:

Algorithms need not just be effective, but also efficient to be practical.

The emphasis is not so much on whether a function is computable
or not, but on whether an efficient algorithm exists for it.

What is an efficient algorithm?

33

2.2 Computation Complexity
34

How much time and memory does it take to solve a computational problem?

Computational complexity: look for lower bounds (best possible algorithm).

Two main classes of problems: for an input consisting of a n-bit number,

(i) resources ~ O(n) Polynomial problems (easy, fast, tractable);a

(ii) resources ~ O(e) Exponential problems (hard, slow, intractable).n

Ex: compute the sum of two binary numbers, and .x1x2 . . . xm1
y1y2 . . . ym2

number of elementary operations ~ O(n), .n = m1 + m2

Ex: find the prime factors of an binary integer . x1x2 . . . xn

believed to be an intractable (exponential) problem!

Why? Take for instance the “dumb” method:

35
given , take N

√
N

i = 2 [
√

N]for to
check if N/i ∈ N

{
√

Nnumber of elementary steps ~

n bit number, N ∼ 2
n

2
n/2

∼ e
(ln 2

2
) nnumber of steps ~ exponential in n

Is there a O(n) algorithm? Nobody knows for sure.a

Word of cautious: n
1000

e
nvs. exponential is “better” if n < 9500

Q: Is the definition of complexity class computer dependent?

A: No.

Church-Turing (strong) thesis: A probabilistic TM can simulate any model of
 computation with an overhead at most of
 polynomial order.

2.3 Complexity Classes
35

Best way to study complexity classes is through decision problems.

(“yes” or “no” answer)

Technical approach: Formal languages

Σ alphabet set

Σ
∗ set of finite strings of symbols in Σ

L subset of Σ∗

Ex: Σ = {0, 1, . . . , 9} Σ
∗

= {0, 1, . . . , 9 10, 11, . . . , 99, 100, . . .}

L1 = {0, 2, 4, 6, . . .} L2 = {1, 2, 3, 5, 7, 11, . . .}

even numbers prime numbers

Or, use binary representation: Σ = {0, 1} Σ
∗

= {0, 1, 10, 11, 100, 101, . . .}

Q: Are there problems not in P ?

A: Yes! But hard to prove... Conjectures abound.

problems with O(n) solutionacomplexity class P

The problem: Given an , is ?x ∈ Σ
∗

x ∈ L

The solution: input in a TM and wait for a “yes” or a “no”. x

A problem is in P if the TM can decide if in a time
that scales as a power of the length of .

x ∈ L

x

“Given a composite integer m and another integer l,
l<m, does m have a non-trivial factor less than l? ”

(believed to be outside P)

36

complexity class NP

Q1: Does 347 have a factor smaller than 17?

Q2: Is 7 a factor of 347?

hard

easy

‘yes’ or ‘no’ instances are decided in polynomial
time for a given attempted witness.

37

problems that can be checked easily (polynomial time)
if a guess (“witness”) is provided:

NP problem

7 is the attempted witness.

The most famous
problem of

Computer Science
Is P = NP ? The answer is believed to be ‘yes’...

Ex: Given H, does H have an eigenvalue E<E*? Who could play the role of a witness?

38
Two important concepts:

(i) Reducibility

P : ?1

P : ?2

x ∈ L

x ∈ L
′

 is reducible to if there is function
computable in polynomial time such that
 .

L
′

L

x ∈ L
′
↔ R(x) ∈ L

R(x)

Ex:
1

6

5
4

3
2

1) Does a graph have a Hamiltonian cycle (HC)?
(A Hamilton cycle passes through all vertices once.)

2) Given a city distance matrix ,
 is there a way to tour all cities with distance
 less than (TSP)?

dij

d

i, j = 1, . . . , n

HC TSPProve
If an algorithm exists for solving
HC, it can also be used to solve
TSP (with little additional work).

HC and TSP
are in the
same class.

39

(ii) Complete problem in a class:
If we can decide about ,
we can decide for all other
in the same class.

x ∈ L

L
′

Any problem in P is complete.
(all problems in P
are equally hard)

NP-complete problems:

If NP-complete P = , then NP=P. ∩ ∅theorem

(prove it!)

If we solve one problem in NP-complete,
we could solve any problem in NP (with at
most a polynomial overhead). P

NP

NP−complete

3A

2.4 Energy and Dissipation in Computation

Q: What is the minimum energy required to do computation?

A: In principle, it can be zero!

Energy consumption is related to reversibility of computation.

Landauer principle (1961): The entropy of the environment increases by at
least k ln 2 when a single bit of information is
erased.

B

Recall Boltzmann definition of entropy: S = kB lnΓ

Boltzmann constant (1.38 x 10 J/K)-23

number of accessible states

Each bit: S = kB ln 2

Erase a bit: ∆S = kB ln 2
entropy lost to the
environment

(Ideal operation, “isolated” bit.)

3B

Free energy variation: ∆F = T ∆S ∆F = kBT ln 2

minimum energy required to erase
binary information irreversibly

In some (non rigorous) sense: Loss of information loss of entropy dissipation ≈ ≈

Ex: NAND gate

0

1

a b c

0

0

0

1

1

1

1

0

1

1

00
01
10
11

0
1

if the output is 0, we cannot
reverse the operation

2 bits 1 bit

1 bit is lost (erased) information is lost

irreversible operation, energy cost ∆E ≥ kBT ln 2

3C

Q: How can we carry out logical operations without spending energy?

A: Use reversible gates!

The Fredkin gate (1982)

F
a
b
c

a · c ⊕ b · c

b · c ⊕ a · c

c

swap

≡

if , do nothingc = 0

if , swap c = 1 a, b{

a
b
c

F F
x
y
c

bc ⊕ ac

ac ⊕ bc

c

Reversible

x = (ac ⊕ bc) c ⊕ (bc ⊕ ac) c

x = ac ⊕ ac

x = a

(somewhat obvious result... but check for y)

cc = 0

c ⊕ c = 1

(a ⊕ b)c = ac ⊕ bc

c
2

= c

3D

c

x

c x

c

c x

Reversible gates can
be implemented with
billiard balls:

c

c

x

x

c

a swap gate

≡

No surprise: Classical Mechanics is reversible!

(In fact, all laws of Physics are time-reversal invariant.)

The Toffoli gate (1982)

a

b

c c ⊕ ab

b

a

d ⊕ d = 0 mod 2

x = (c ⊕ ab) ⊕ ab

x = c ⊕ (ab ⊕ ab)
x = c

It is its own
inverse

3E

Both Fredkin and Toffoli gates are universal:

F
0
x
y y

xy

xy F
1
0
x x

x

x

F
x
y
1

x

1

y

AND NOT,FANOUT CROSSOVER,SWAP

ancilla bits

garbage bits } price to pay for doing
reversible computation

F
a
b
c

a · c ⊕ b · c

b · c ⊕ a · c

c

Fredkin

a

b

c c ⊕ ab

b

a

Toffoli

a

b b

a

1 1 ⊕ ab = ab

NAND FANOUT

ancilla bits

garbage bits

OBS: It turns out that the Toffoli gate is also useful for Quantum Computation.

a a

1

a

1

0

Caveats of reversible computation:

1) Large susceptibility to noise Requires error correction

usually requires erasing bits
at the end (to save memory)...

2) Additional overhead cost
extra bits;
preparation of ancilla bits;
dealing with garbage.

serious problem to Quantum Computation

(can be fixed by a proper use of NOT and C-NOT gates)

