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We present a simplified analytic formula that may be used to design gratings intended to couple long-
wave infrared radiation to surface plasmons. It is based on the theory of Hessel and Oliner (1965). The
recipe is semiempirical, in that it requires knowledge of a surface-impedance modulation amplitude,
which is found here as a function of the grating groove depth and the wavelength for silver lamellar
gratings at CO2 laser wavelengths. The optimum groove depth for photon-to-surface-plasmon energy
conversion was found by experiment and calculation to be ∼10%–15% of the wavelength. This value
is about twice what has been reported previously in the visible spectral range for sinusoidal grating
profiles. © 2010 Optical Society of America
OCIS codes: 240.6680, 050.2770, 250.5403, 260.3060.

1. Introduction

Gratings are key in proposed nanophotonic inte-
grated circuits for both the incoupling of free electro-
magnetic waves into bound surface plasmon
polaritons (SPP) and the outcoupling of SPPs into
freely propagating optical fields. Proper grating de-
sign is essential in order to achieve efficient couplers
thatprovide goodbeamprofiles [1]. This paper consid-
ers the effects of wavelength and grating amplitude
for lamellar gratings (rectangular-groove profiles)
on SPP generation. Most SPP studies have been at
visible and near IR frequencies, but long-wave IR
(LWIR) is emphasized here [2,3].

Photon-SPP coupling for Ag sinusoidal gratings of
different amplitudes has been studied experimen-
tally in [4,5] at visible wavelengths. In [4], SPPs were
excited by electron beams, and the angular position
and angular width of outcoupled light at a given
wavelength was recorded. In [5], specular reflection
of monochromatic light from gratings revealed dips
at certain angles of incidence when light energy
was converted to SPPs. Shifts and broadening of

the angular resonances with increasing grating am-
plitudes up to about 10% of λwere reported, but there
was no comparison to theory. Hutley and Bird [6], ob-
serving absorption resonances in diffracted light for
nominally sinusoidal gratings of amplitude in the
range 0:12 λ to 0:7 λ, also reported broadening and
shifts. The present LWIR study is of gratings with
amplitude in the range 0:01 λ to 0:5 λ.

A number of similar experiments, complemented
by numerical simulations, reported effects of grating
amplitude on angle or wavelength of resonances in
reflection from metallic or dielectric gratings of var-
ious morphologies [7–11]. The longest wavelength in
any of these studies was 5 μm [8]. Goals of the pre-
sent paper include the extension of grating couplers
to the LWIR, where the permittivity is significantly
different than at wavelengths ≤5 μm and to demon-
strate a simple analytic formula useful for the design
and optimization of grating couplers.

The most widely cited analytic formulation of the
grating coupler problem is that of Hessel and Oliner
[12]. A review of all 323 citations of [12] indicates that
apparently no application of that formulation to ex-
perimental results or SPP coupler design has been
published. The formulas are, in fact, somewhat
complicated, but this paper demonstrates certain
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simplifications that facilitate relatively simple calcu-
lations of angular resonance spectra. These simplified
calculations agree adequately with experiments on
lamellar gratings in the 6–10 μm wavelength range,
at least for engineering purposes. Though broadening
is adequately represented in the calculations, the the-
ory does not predict the small but definite angular
shift that occurs with increasing grating amplitude,
unless the permittivity is adjusted to account for
the increasing surface porosity. These shifts, however,
amount to only three-tenths of a degree at the maxi-
mum grating amplitude deemed usable for an SPP
coupler and, thus, likely will have little impact on
SPP coupler applications.

An essential parameter in the theory is the sur-
face-impedance modulation index,M, which is an un-
specified function of grating amplitude, wavelength,
permittivity, and geometry of the grating. We present
empirical values for the modulation index deter-
mined by fitting the theory to experimental data for
the wavelengths and grating amplitudes investi-
gated here. M is found to vary linearly with wave-
length. M varies as a second-order polynomial with
grating amplitude up to amplitude values that are
still useful for plasmon couplers.

It is possible to obtain a more accurate description
of experimental observations using numerical meth-
ods [13–16]. However, it may be difficult to obtain
intuitive understanding or interpretation of the ob-
served phenomena without running numerous nu-
merical experiments. Moreover, the codes elaborated
from rigorous scattering theories are generally part
of very expensive commercial software packages, the
learning curve for the use of such packages is steep,
and the physics behind the code is often obscure.
Hence, there is value in having, as an alternative,
simple approximate analytic formulas that optical
engineers may use to design a reasonably effective
grating coupler.

2. Experiment

Gratings were formed by evaporation of Ag through a
photolithographic mask on top of a 200 nm evapo-
rated Ag film supported by a polished silicon sub-
strate. The supporting Ag film is optically thick in the
IR. The period of all gratings was 20 μm and the duty
cycle was 50%, but the grating amplitude was varied
by varying the evaporation time. Measured profiles
(KLA-Tencor) determine the peak-to-peak amplitude
h of the gratings and confirm that the grating lines
have sharp square edges. IR ellipsometry was com-
pleted using a J.A. Woollam IR-VASE on optically
thick Ag films deposited by the same procedure with-
out the use of the mask [17].

The gratings were mounted and aligned on a mo-
torized goniometer. Specular reflection of p-polarized
radiation (electric field E in the plane of incidence)
from a CO2 laser (9.250 and 10:591 μm wavelength)
was collected by a power meter P as a function of the
angle of incidence θ, as indicated schematically in
Fig. 1. Similar measurements were made on the

same gratings using a quantum cascade laser
(6:14 μm wavelength) and a 77 K HgCdTe detector.
Generation of SPPs was indicated by loss of power
in the reflected beam for a narrow range of θ.

To confirm the generation of propagating SPPs at
the resonance angle, some samples were prepared
with a second grating separated by 1 cm from the
first, also indicated schematically in Fig. 1. An IR
camera, C, was set up to image this second grating,
while all rays from the first gratingwere blocked from
reaching the camerabya screen.With thegoniometer,
it was convenient to observe the n ¼ 1 outcoupled
beam, which propagates in a direction parallel to
the specularly reflected beam at an outcoupling angle
of θ. No attempt was made to observe the other ex-
pected outcoupled beams.

3. Theoretical Considerations

Hessel and Oliner [12] describe two types of reso-
nances, the usual Rayleigh type, corresponding to
the emergence or exit of a diffraction order at grazing
incidence, and a type associated with leaky surface
waves supported by the grating. The latter are SPPs.
They are leaky because they propagate across a
modulated surface that leads to outcoupling back
into free photons. For metal gratings of rectangular
profile in the LWIR, both resonance types coincide to
within 0.02% of the incidence angle.

The theory of Hessel and Oliner [12] models the
grating as a modulated surface impedance, ZðxÞ,
where x is the coordinate in the plane of the grating
and perpendicular to the grooves [Fig. 1]. For pur-
poses of obtainingand testing simple design formulas,
only the first Fourier component of thatmodulation is
retained here, as represented by

ZðxÞ ¼ Z0

�
1þM cos

�
2πx
d

��
; ð1Þ

even though the actual gratings have rectangular
ridges containing many higher harmonics. The full
theory of [12] is more general. The effect of neglecting
thehigher harmonics is to eliminate higher order SPP

Fig. 1. Schematic of experiment: p-polarized CO2 laser radiation
is incident on the right grating, and specular reflection is moni-
tored as a function of angle of incidence using power meter P. A
second grating 1 cm to the left outcouples the SPP that has tra-
veled to it, and this event is imaged with an infrared camera C.
The screen S prevents any rays from the first grating from reach-
ing the camera.
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resonances from the calculated angular reflectance
spectra. In Eq. (1), M is the modulation index (some
function of grating permittivity, amplitude, andwave-
length) and the grating period is d. The limit for zero
modulation is given by

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiμ0
ðε0 þ ε″Þε0

r
¼ 377 Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε0 þ ε″
p ; ð2Þ

where μ0, ε0, and 377 Ω are, respectively, the perme-
ability, permittivity, and impedance of free space,
while ε0 and ε″ are the real and imaginary parts of
the relative permittivity for the metal. Equation (1)
suggests that the average permittivity is also Z0,
but we note that bulk permittivity values in Z0
may need to be replaced by effective values for a cor-
rugated surface. For metals in the infrared, we have
ε″ ≪ jε0j and ε0 < 0, giving for the relative surface
impedance

ζ ≡ Z0

377 Ω ≈
−iffiffiffiffiffiffijε0jp : ð3Þ

If the imaginary part cannot be neglected, and with
ε0 ¼ −jε0j, we have

ζ ¼ −ið jε0j2 þ ε″2Þ−1=4
�
cos

�ϕ
2

�
þ i sin

�ϕ
2

��
; ð4Þ

where ϕ ¼ tan−1ðε″=jε0jÞ. The experimentally deter-
mined permittivity values for our silver films are
given in Table 1, together with relative surface-
impedance values from Eqs. (3) and (4).

Themagnetic field of the incident p-polarized wave
is H exp½iðksx − κ0zÞ�, where the in-plane wavevector
ks is related to the incidence angle by ks ¼ k sinðθÞ,
and k ¼ 2π=λ. The field of the scattered wave is

Hsðx; zÞ ¼
X∞
n¼−∞

In exp
�
i

�
ks þ

2πn
d

�
xþ iκnz

�
; ð5Þ

where In is the complex amplitude of the nth spectral
order (propagating or not) and

κn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

�
ks þ

2πn
d

�
2

s
: ð6Þ

Note that n is an integer taking both positive and ne-
gative values. For sufficiently large n, kn is purely
imaginary, the nth Fourier component is exponen-
tially damped in the direction normal to the surface,
and no diffracted spectral order is present. Other-
wise, κn is purely real, giving the usual propagating
spectral orders of the grating. The vanishing of κn, or

identically, the condition for the nth diffracted beam
to occur at �90°, is known as the Rayleigh condition
[18] and is the cause of one type of the so-called
Wood’s anomalies [19]. Here, propagating spectral
orders either emerge or disappear. The diffraction
equation, dðsin θn − sin θÞ ¼ nλ (θn and θ are both po-
sitive when on the opposite sides of the normal),
gives the Rayleigh condition as sinð�π=2Þ − sinðθÞ ¼
nλ=d, which, when satisfied, results in a redistribu-
tion of energy among the various orders, including
the zeroth (specular) order I0. The second form of
the so-called Woods’s anomalies is a resonance phe-
nomenon, which will now be discussed in terms of the
work of Hessel and Oliner [12]. For the geometry pre-
viously discussed, the reflectivity, R, is given by

R ¼
����I0H

����2¼
���� 2D0 − 4=M
D0 þ A1 þ B−1

− 1

����2; ð7Þ

with

Dn ¼ 2
M

�
1þ κn

ζ k

�
; ð8Þ

A1 ¼ −fD1 − ½D2 − ðD3 − :::Þ−1�−1g−1; ð9Þ

B−1 ¼ −fD−1 − ½D−2 − ðD−3 − :::Þ−1�−1g−1: ð10Þ

Equations (9) and (10) are continued fractions. If, at a
certain angle, D1 or D−1 becomes small, the other Dn
remain large, so that the approximation A1 ≈ −1=D1
and B−1 ≈ −1=D−1 can be made in Eqs. (9) and (10).
This leads to the following approximation for specu-
lar reflection

R ≈

���� 2D0 − 4=M

D0 −
1
D1

−
1

D−1

− 1

����2; ð11Þ

which is valid for the conditions of our experiment.
When D1 reaches a minimum, a dip in specular re-
flection will occur. The behavior of D1 is determined
by two complex values, namely, the relative surface
impedance ζ and κ1. We have

Re½D1� ¼
2
M

�
1þ ζ0 κ1

jζj2k
�
; ð12Þ

and (with ζ″ ¼ −jζ″j for metals)

Im½D1� ¼
2jζ″jκ1
Mjζj2k : ð13Þ

Table 1. Optical Parameters of Ag

λðμmÞ −ε0 ε″ ζ [Eq. (3)] ζ [Eq. (4)]

Ag 6.14 2707� 270 469� 80 −i0:0192 −ið0:0190þ i0:0016Þ
9.250 5397� 330 1463� 120 −i0:0136 −ið0:0133þ i0:0018Þ
10.591 6774� 450 1971� 300 −i0:0121 −ið0:0118þ i0:0017Þ
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As the incidence angle θ increases from 0, the Ray-
leigh condition κ1 ¼ 0 is eventually reached, where
the n ¼ 1 diffracted order goes off at grazing angle.
Before this occurs, κ1 is real, both parts of D1 are po-
sitive and slowly varying, and no resonance behavior
occurs in this angular regime. When the incidence
angle passes the Rayleigh condition for n ¼ 1, κ1 is
pure imaginary and can be written as κ1 ¼ ijκ1j. Then

Im½D1� ¼
2ζ0jκ1j
Mjζj2k ; ð14Þ

which is always positive, and

Re½D1� ¼
2
M

�
1 −

jζ″j jκ1j
jζj2k

�
: ð15Þ

Equation (15) will go to zero, and the specular
reflection will reach a minimum, when jζ″j jκ1j ¼
jζj2k. This immediately leads to the condition for
resonance-type anomalies in terms of the relative
surface impedance as

sinðθÞ þ λ
d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jζj4

jζ″j2

s
: ð16Þ

A feature of the observed reflection anomalies is
their asymmetry. To clarify the origin of asymmetry
in the resonance line shapes, Eq. (7) is rewritten in
terms of the real and imaginary parts of each of the
complex factors as

R ¼
ðD0

0 þ A1
0 þ B−1

0Þ2 þ
�

4 cosðθÞ
Mjζj −D0″ − A1″ − B−1″

�
2

ðD0
0 þ A1

0 þ B−1
0Þ2 þ ðD0″þ A1″þ B−1″Þ2

:

ð17Þ

In Eq. (17), ζ is taken to be purely imaginary as in Eq.
(3). The vanishing of D1 causes a derivative-like re-
sonance line shape in A1

0 and an asymmetric peak in
A1″, while all other factors in Eq. (17) vary slowly
with θ.

When more terms are kept in the continued frac-
tions of Eqs. (9) and (10), progressively weaker reso-
nances can be observed whenever Dn ¼ 0. The
weakening of the resonances with increasing order
results from the neglect of higher harmonics in the
Fourier expansion of the grating [Eq. (1)], but includ-
ing these harmonics results in a much more compli-
cated formula for R. Consequently, we limit our
calculations to the n ¼ 1 resonance, although our ex-
periments reveal also the n ¼ −3 resonance. This
should still permit adequate SPP coupler design.

According to the discussion above, minima in R
[Eq. (11)] occur when D1

0 [Eq. (15)] becomes small.
The vanishing of D1

0 with the approximation Eq.
(3) gives the condition for “guided surface wave” gen-
eration, namely

sinðθÞ þ λ
d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jε0j − 1
jε0j

s
: ð18Þ

This “guided surface wave” must be identified with
the SPP of modern literature, because their wave-
functions are the same [12,20]. The usual expression
[20] for the launching of an SPP by a grating is

sinðθÞ þ nλ
d

¼ �Re
� ffiffiffiffiffiffiffiffiffiffiffi

ε
εþ 1

r �
¼ � c

ωRe½kspp�; ð19Þ

where kspp is the complex SPPwavevector and n is an
integer of either sign. Our experiment considers only
positive angles of incidence θ.

Equations (18) and (19) give resonance angles that
differ by an insignificant 0.001% for Ag gratings.
Figure 2 presents a graphical representation of the
SPP resonance condition of Eq. (19) as it pertains to
our experiment. The horizontal axis is the real part
of the SPP wavevector, or the component of the inci-
dent photon wavevector in the plane of the grating.
The vertical axis is the SPP photon energy. The solid
lines are SPP dispersion curves, which are close to,
but fall below the grazing-incidence light line with
slope ℏc. The dashed curves are light lines with slope
ℏc sinðθÞ. All incident angles in our experiment are
on the same side of the surface normal and are thus
positive, giving positive slopes. The origins of the
dashed curves are shifted by integer multiples of
the grating momentum kg ¼ 2π=d. The shifted light
lines intersect the SPP dispersion curves at energies
corresponding to the two CO2 laser wavelengths used
in this work, as indicated. The angles of incidence ne-
cessary for an intersection at the proper CO2 photon
energy determine the positions of the resonance ab-
sorptions, where SPPs are generated. These angles θ,
determined from Eq. (19) for curves a, b, a0, b0, are
32:5°, 22:8°, 28:1°, and 36:1°, respectively. Note that,

Fig. 2. Graphical representation of the SPP resonance conditions
of this experiment. Solid curves are silver SPP dispersion curves.
Light curves (dashed) for different angles of incidence and shifted
by different integer multiples of grating momentum are shown.
The points of intersection establish the conditions for SPP genera-
tion at the wavelengths indicated. Angles of incidence for a, b, a0,
and b0 are 32:5°, 22:8°, 28:1°, and 36:1°, respectively.
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for the intersections with curves b and b0, the SPP
momentum is negative while the in-plane component
of the incident photon is always positive.

4. Results

The experiment represented by the Fig. 1 schematic
was performed, and outcoupled light was imaged
with the IR camera as coming from the second grat-
ing when incoming p-polarized light is incident on
the first grating at the resonance angle determined
by Eq. (19) for n ¼ 1. This confirms the generation of
a propagating SPP. The light outcoupled at the sec-
ond grating was confirmed to be highly directional. It
was not a diffuse scattering and could only be ob-
served when the IR camera was precisely positioned
at the expected outcoupling angle. With the goni-
ometer at the n ¼ 1 incoupling resonance, it was
inconvenient to observe outcoupled beams for n ≠ 1,
and these were not looked for. The calculated charac-
teristic propagation length for SPPs on noble metals
at the CO2 laser is ∼1 cm [3], which is the same as
the distance between the two gratings. In samples for
which the separation was 2 cm, no outcoupled light
from the second grating was detected.

For the n ¼ −3 incoupling resonance, the gener-
ated SPP propagates opposite to the direction of
the in-plane component of the incident wavevector
[Fig. 2]. It was experimentally inconvenient to ob-
serve outcoupled radiation at a second grating placed
to the right of the first [according to Fig. 1]. Conse-
quently, generation and propagation of an n ¼ −3
SPP was not directly confirmed by observations. This
higher order SPP generation was inferred from the
observed dip in reflection from the first grating.

Figure 3 (inset) presents a measured Ag-grating
profile before (thin curve) and after (thick curve) it
was annealed for 30 s at 850 °C. Before annealing,
the profile is rectangular. After annealing, the profile
has become more sinusoidal, except for small bumps
on the edges of each line. Figure 3 presents the Four-
ier transform of the grating profiles in the inset
(including additional periods), with labeled peaks
corresponding to the multiples of the fundamental

spatial frequency. The as-deposited profile (thin
curve) has clear Fourier components up to six times
the fundamental. The annealed profile (thick curve)
has mainly the fundamental, with a small contribu-
tion at five times the fundamental to account for the
bumps on the edges. Notable for the experiments re-
ported here is that the peak corresponding to three
times the fundamental is strongly attenuated by
annealing. As will be shown, the effect is to strongly
reduce the SPP coupling for n ¼ −3. Note that the
strength of the fundamental is also reduced by an-
nealing, which has the effect of reducing the n ¼ 1
SPP coupling.

Figure 4 presents the reflected intensity as a func-
tion of angle of incidence for the Ag grating with 1 μm
amplitude, before (thin curve) and after (thick curve)
annealing, for two different CO2 laser wavelengths.
Two resonances are observed at each wavelength,
corresponding to different amounts of grating mo-
mentum added to allow generation of a surface
plasmon. A third resonance predicted near normal
incidence is inaccessible to the experiment. Calcu-
lated resonance angles θ from Eq. (19) with permit-
tivity values from Table 1 are indicated by symbols.
The observed resonances are labeled by the corre-
sponding n value from Eq. (19). These resonances
are approximately symmetrical about the Littrow
angle sin θL ¼ −mλ=2d for m ¼ −2, similar to [6].
The n ¼ −3 resonance corresponds to an SPP mo-
mentum that is opposite the in-plane component of
the incident photon momentum [Fig. 2].

The unrepeatable sloping baselines in Fig. 4, due
to laser power drift, can be ignored. Otherwise, the
baseline at the Littrow angle is higher (lower) for
λ=d greater than (less than) the value 1=2, as was
noted in [6]. If λ=d ¼ 1=2, we would have the n ¼
þ3 and −1 diffraction orders passing simultaneously
off the grating horizon for θ ¼ 30°. We have chosen
λ=d valves on either side of the value 1=2. As θ sweeps
through the range of observation for λ=d > 1=2, the
number of allowed diffracted orders (not including
spectral reflection), changes from 3 to 2 and back

Fig. 3. Fourier transform of a measured profile (inset) for as-
deposited (thin curve) and annealed (thick curve) Ag gratings with
amplitude of 1 μm.

Fig. 4. Angular reflectance spectrum for as-deposited (thin curve)
and annealed (thick curve) Ag grating with amplitude of 1 μm at
two different CO2 wavelengths.
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to 3. This explains why the power in the specular
beam is higher in the central region, where the total
outcoupled power is shared only among two spectral
orders as opposed to three. When λ=d < 1=2, the
number of diffracted orders follows the sequences
3 → 4 → 3, so that the opposite situation holds for the
specular intensity when compared to the previous
case.

From Fig. 4 it is clear that, first, the n ¼ −3 reso-
nance nearly disappears for the annealed sample.
Second, the n ¼ 1 resonance is reduced in amplitude.
Third, the resonance angle undergoes a small shift,
with the positions for the annealed sample being clo-
ser to the calculated positions. Fourth, the n ¼ −3 re-
sonance angle exceeds the n ¼ 1 resonance angle at
the 10:591 μm excitation wavelength, while the op-
posite is true for the 9:250 μm excitation wavelength.

Figure 5 presents the experimental reflected in-
tensity at the two different CO2 laser wavelengths
for gratings of different amplitude h. For h ¼ 100 nm,
absorption resonances were observed to be at the
same level as the background noise. Discernible re-
sonances first appear weakly at h ¼ 200 nm, where
the n ¼ 1 resonances occur at 32:58° and 28:14° for
λ ¼ 9:250 and 10:591 μm, respectively. These values
are in good agreement with those calculated from Eq.
(19) of 32:52° and 28:07°, with the discrepancy pos-
sibly due to systematic error from the estimate of
the origin of the angle scale. The resonances are dee-
pest at h ¼ 1 μm, but by 2 μm they are strongly de-
formed and broadened. As in Fig. 4, the n ¼ 1 and
n ¼ −3 resonances switch places when the wave-
length is changed from one extreme value of the
CO2 laser range to the other. The n ¼ 1 resonance
is always sharpest on the side of low angles, and
the baseline of the reflection is lower on that side.
For n ¼ −3, the opposite holds.

Figure 6 presents calculated resonance spectra, ac-
cording to Eq. (11). Because a sinusoidal surface-
impedance variation is assumed with no higher
harmonics [Eq. (1)], we see only the n ¼ 1 resonance,

as in Fig. 4, for the annealed grating. The observed
resonance peaks for the smallest h value are 32:52°
and 28:07°, in exact agreement with the values cal-
culated from Eq. (19). In this figure the surface-
impedance modulation amplitude M was the only
fitting parameter, and its value was adjusted until
the calculated curves had the best qualitative agree-
ment with the observed curves. For h ≤ 1 μm, the
depth of the resonance was themain factor in judging
the goodness of the fit. For h > 1 μm, the lines are
distorted, so that other considerations, such as the
amplitude of the baseline on either side of the reso-
nance, came into play. Notable differences between
theory and experiment are in the upward spikes
and the absence of any shift in the theoretical reso-
nance positions with increasing h. For grating depths
up to ∼10% of the LWIR wavelengths, the angle at
which the reflectance minimum occurs is described
by the surface plasmon resonance condition to within
a few tenths of a degree.

The Hessel and Oliner [12] theory predicts very
sharp features with widths less than 0:05° that we
do not observe experimentally. Thus, for our calcula-
tion, we have chosen a step size of 0:05°, which seems
reasonable as a bound on the angular resolution of
our experiments. The sharpest features observed
have widths of about 0:2°. The sharp calculated fea-
tures broaden at grating amplitudes ≥2 μm such that
an angular resolution of 0:5° was required to elimi-
nate them. This suggests that these sharp structures
may be theoretical artifacts.

Figure 7 (inset) compares, in detail, the calculated
and observed resonances for h ¼ 0:5 μm and
λ ¼ 10:591 μm. Curve shape and depth were the pri-
mary considerations in judging the fit. Because the
theory fails to account for the shift that occurs with
increasing h, the calculation is shifted horizontally
by ∼0:1° to match the data. Because the experiment
does not give absolute reflectance, the calculation is
also shifted vertically.

Fig. 5. Measured angular reflectance for two different p-
polarized CO2 laser wavelengths and Ag gratings with different
amplitudes.

Fig. 6. Calculated angular reflectance for Ag gratings of different
amplitudes.
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Figure 7 presents the fit values of the surface-
impedance modulation parameter M as a function
of the grating amplitude. Uncertainty in M values
is smaller than the symbol size, except for the
1 μm gratings, where the uncertainty is ∼10%. M
values for the 6:14 μm wavelength are also included.
For h > 1 μm, the distortion of the observed reso-
nances and increasing disagreement between calcu-
lated and observed line shapes leads to larger
uncertainty, so these data are left out of the Fig. 7
fits. Two effects are clear in Fig. 7. The surface-
impedance modulation depends nonlinearly on grat-
ing amplitude, and it depends on the IR wavelength.
The curves in Fig. 7 are fits of the function

Mðh; λÞ ¼ αðλÞh þ βðλÞh2: ð20Þ

Fit values of α and β are given in Table 2.
Figure 8 shows that the coefficients α and β are

nearly linear functions of λ. Curves in Fig. 8 are fits
to the functions

αðλÞ ¼ a0 þ a1λ βðλÞ ¼ b0 þ b1λ; ð21Þ

where a0, a1, b0, and b1 have values of −20:0 μm−1,
3:69 μm−2, 46:6 μm−2, and −4:71 μm−3 respectively.

Substituting Eq. (21) into Eq. (22) gives a function
for the modulation parameter:

Mðh; λÞ ¼ ða0 þ a1λÞ hþ ðb0 þ b1λÞ h2: ð22Þ

Thus, an empirical formula for the surface-
impedance modulation parameter Mðh; λÞ has been
found for silver lamellar gratings in the mid-IR to
LWIR. Figure 9 presents a contour plot of empirical
M values. At short wavelengths, M increases more
rapidly with h than at larger wavelengths. This sim-
ple form for the modulation index appears useful for
grating heights up to ∼15% of the IR wavelength.

Fig. 7. Surface-impedance modulation parameter M (symbols)
determined from fit of theory to observed resonances for grating
amplitudes up to 1 μm. Solid curves are quadratic fits. (inset) Mea-
sured (thick curve) angular reflectance spectra for Ag grating of
0:5 μm amplitude at 10:591 μm wavelength compared with a best
fit calculated spectrum (thin curve).

Fig. 8. Coefficients α and β plotted as a function of wavelength
(symbols). Linear fitting of these values of the form of Eq. (21)
are plotted (solid lines).

Table 2. Fitting Parameters for M Versus h,
according to Eq. (20)a

λðμmÞ αðλÞðμm−1Þ βðλÞðμm−2Þ
6.14 2.76 17.2
9.250 13.6 4.38

10.591 19.3 −4:26

aThe largest grating amplitude data point used in the linear fits
was 1 μm.

Fig. 9. Contour plot of M calculated for Ag gratings as a function
of wavelength and grating amplitude.
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5. Discussion

Measured resonance angles deviate from the calcu-
lated onesas thegratingamplitude is increased.How-
ever, this shift amounts to only a few tenths of adegree
at the maximum grating height that still gives a deep
well-defined resonance. The shift may, therefore, be
considered a secondary effect in the design and
optimization of an SPP coupler, where the primary
consideration is photon-to-SPP energy conversion.

The observed shift in Fig. 4 toward the calculated
angles for the annealed 1 μm grating is likely due to
the 30% reduction in its amplitude to a value that
should give an angular deviation of only ∼0:1°. An
effect on the angles due to the change in profile from
rectangular to sinusoidal need not be invoked. The
higher harmonics involved in a rectangular profile
lead mainly to higher order SPP resonances.

Though the theory [12] predicts no shift in reso-
nance angle with grating amplitude, in contrast to
the clear observations reported here and by others
[4,5], and though we have concluded that such shifts
are of secondary importance, there is at least a semi-
empirical way to account for them. The theory de-
pends on the complex permittivity, which may be
replaced by an effective permittivity for structured
metals. Forn ¼ 1, we take the positive sign inEq. (19),
and an increase in kspp causes an increase in the re-
sonance angle θ, as observed for the n ¼ 1 resonances
in Fig. 5 when the grating amplitude is increased. If
n ¼ −3, we take the negative sign in Eq. (19), and an
increase in kspp leads to a decrease in θ as is observed
in Fig. 5 for n ¼ −3 with increasing h. Thus, observed
angular shifts can be adequately explained by shifts
in the SPP dispersion curve toward higher wavevec-
tor values with increasing grating amplitude, as re-
ported in [4] for e-beam excited SPPs at visible
frequencies on sinusoidal Ag gratings. According to
Eq. (19), if ε is reduced, then kspp moves to larger va-
lues further from the light line (k ¼ c=ω). Thus, the
observed shift in resonance angles can be explained
by a reduction in the permittivity as the surface be-
comesmore andmore structured andporous. A reduc-
tion in effective permittivity for a structured metal
makes intuitive sense and has precedent [21], though
it is possible to explain the shifts without such reduc-
tions by numerical methods [13–16].

There appears to be no clear theoretical relation-
ship between the surface-impedance modulation
parameter M and the experimental parameters h
and λ. Neviere and Vincent [22] give a relation for
the grating surface impedance that is proportional
to ðh=λÞ cos2ðθÞ if h ≪ λ=π. This fails to account for
the observed curvature [Fig. 7]. Moreover, the linear
dependence on wavelength that we find is not in
agreement with a λ−1 dependence.

Wirgin and Maradudin [23] give a surface-
impedance function Z that depends on λ, h, d, grating
duty, and θ. However, their modulation parameter M
is not a function of h, but instead the grating duty
cycle and d. Depine and Brudny [24] give a simple
relation M ¼ h=d for the modulation parameter in

the Hessel and Oliner [12] surface-impedance model.
This lacks curvature with h, and it has no λ depen-
dence, in contrast to what is expected [12] or ob-
served. References [12,22,23] indicate that SPP
resonances are observable in reflection gratings only
when the grating amplitude h < λ=½4 cosðθÞ�. For our
CO2 laser wavelengths (9.250, 10:591 μm) and the
angle of resonance for the first order, the limiting am-
plitude is about 3 μm, which is in reasonable agree-
ment with the value h ¼ 2 μm, where the observed
resonances become strongly deformed.

At the LWIR wavelengths studied, we found, both
experimentally and theoretically, that the optimum
grating amplitude that gave the deepest well-defined
resonance was about 10%–15% of the wavelength.
The resonances were much weaker at a 5% grating
amplitude. This contrasts with [13], which reported
that in the visible on sinusoidal gold gratings, the op-
timum h=λ was in the range of 3%–6% and decreased
as the wavelength increased. We doubt that there is a
fundamental difference in the behavior of sinusoidal
and lamellar gratings, as each of the Fourier compo-
nents for the latter appears to be acting indepen-
dently, and the resonances due to each are well
separated in the spectrum. It appears instead that
in transitioning an SPP coupler to the LWIR, it is
insufficient to merely scale all grating dimensions ac-
cording to wavelength.

In conclusion, we have presented an approximate
analytic formula for use in the design of SPP grating
couplers. This approach relies on an impedance mod-
ulationparameter,whichwehavedetermined empiri-
cally by fitting the measured coupling of photons to
SPPs for silver lamellar gratings at 6–11 μm wave-
lengths. The dependence of the surface-impedance
modulation amplitude on wavelength and grating
amplitude agrees poorly with the published expres-
sions. Therefore, without an accurate theory for the
dependence of the impedance modulation parameter
on wavelength, material, and grating amplitude, a
phenomenological dependence must be established
so that the approach may be applied widely to the op-
timization of grating couplers.
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07C-0036, FA8718-06-C-0076, FA95500810428, and
FA95501010030 (Gernot Pomrenke).
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