Electrodynamics II Problems Spring 2020 

Section 1.  
1. Suppose a conductor has a cavity inside it, and there is a point charge q somewhere in the cavity.  Prove that the net charge on the wall of the cavity must be –q.  If the net charge of the conductor is Q0, what is the net charge on its outer surface?  Why must every field line in the cavity begin on q and end on the cavity wall?
2. Consider concentric spherical shells with radii ra < rb, held at potentials a, b.  Find  everywhere.  What are the surface charge densities a and b?

Section 2.  Landau Problems 1-4.
1. Consider two spherical conductors of radii a1 and a2 and centers separated by d>>a1,a2. Estimate the coefficients C-1ab to lowest order in a/d.  Invert C-1ab to find the capacity coefficients and electrostatic induction coefficients.  Find the energy in the field.  Find the mutual capacity C.  Two metal spheres of radius 1 mm are separated by 1 cm.  Find the mutual capacitance in Farads.  How does the value compare to typical values for electronic components?
2. Two conducting plates are arranged in parallel, area A, separation d.  One plate has charge +e and potential ;  the other, -e and 0.  Neglecting edge effects, find the E-field in terms of e, A, d.  Find the mutual capacitance C = e/.  Find the coefficients of capacity {Cab}.  Find the energy U = (1/2) Cabab and compare to the usual expression in terms of  and C.  
3. For the solution to L&L Section 2 Problem 4:  if a = 1 mm and b = 10 cm, what is C in farads?  Note that you must convert the solution to SI units!
4. Given a system of two conducting objects in vacuum.  Conductor 1 is uncharged.  Conductor 2 is grounded.  Drive the potential of conductor 1.

Section 3.  Landau Problems 1-8,10,11
1. Derive the expression for the surface charge induced on a planar conductor by a point charge e (3.2), = -(e/2) a/r3, where r is the distance from e to a point on the surface, and a is the closest distance from the charge to the conductor.  Show that the total charge on the plane is –e.   
2. Show that = e/r – e’/r’ = 0 on the surface of a conducting sphere if (l/l’) = (e/e’)2 and R2 = ll’, where R is the radius of the sphere, l (l’) is the distance of charge e (e’) from the center of the sphere, and r (r’) is the distance from charge e (e’) to the field point.
3. For a charge e outside a grounded spherical conductor, what is the surface charge density?  For a charge e outside a grounded spherical conductor, determine the total induced charge on the sphere.  
4. For the insulated uncharged conducting sphere show that the potential (3.6)  = (e/r) – (e’/r’) + (e’/r0) is constant on the surface and that the induced charge on the sphere is zero.  
5. Show that the potential (3.10) satisfies Laplace’s equation with respect to the variable r’.  
6. Show that inversion transforms the sphere (r-r0)2 = a2 to the sphere (r’ – r0’)2 = a’2, where r0’ and a’ are given by (3.13).  
7. Consider charged conducting plates that intersect at right angles.  Show that the complex potential w(z) = (x,y) – i A(x,y) = (2 b x y + 0) – i b (x2-y2) satisfies the boundary conditions.  Show that real and imaginary parts satisfy Laplace’s equation.  Show that the Cauchy-Riemann relations are satisfied.  Determine and plot the equipotential curves and field lines.  Find the surface charge density.
8. Consider the complex potential w(z) = 0 – i a z1/2.  Express Re & Im parts in terms of x and y (Hint: write z in polar form and use trig identities.)  Show that w(z) gives the solution to the problem of a charged conducting plate that occupies the half plane y = 0, x0, if the plate is at potential 0.  Find the field and equipotential lines near the edge of the plate and sketch them.  
9. For Section 3 Problem 1 in your text, sketch the resulting E-field.  
10. Use the results of Section 3 Problem 7 in the text to find the capacitance per meter of usual radio antenna wire (parallel ~mm thick wire held ~1 cm apart.) 
11. Use the results or Section 3 Problem 7 in the text to find the capacitance in pF per meter of usual coaxial cable (~1 mm inner conductor surrounded by a shield of ~3 mm radius.)  
12. For the solution to Section 3 Problem 11 in the text, suppose a 10 F capacitor is formed by metalizing two sides of 1 m thick mylar.  What is the correction to C (absolute and relative) due to edge effects?
13. Let r be any function that satisfies Laplace’s equation inside a spherical shell of radius r = R.  Show that (r,) = (R/r)(R2/r, ) satisfies Laplace’s equation outside the spherical shell.

Section 5. Landau problems 1,2,3,4a.  
1. Find the pressure exerted on the surface of a charged conductor in zero external field, and of an uncharged conductor in an external field.
2. Two large metal plates (each of area A) are held a distance d apart.  Suppose each has a charge +e.  What is the electrostatic force per unit area on the surfaces of the plates?
3. Use the results of problem 3 in the text, estimate the electrostatic force tending to split 238U, assuming the nucleus is a conductor, and compare to your weight.
4. Using the results of problem 1 in the text, find a numerical value for the maximum force if a = 10 cm, c = 1 mm, and  = 10 V and compare to your weight. 
5. Use the results of problem 3 in the text.  If the spherical conductor has radius 10 cm and the external field strength is 1 MV/m, what is the value of the force?  Could you feel it?
6. Use the results of problem 4 in the text.  The bulk modulus of steel is 140 x 109 N/m2.  What is the relative volume change for steel in a field of 1 MV/m?  By how much would a 1 m3 steel cube expand?  Could you measure the change with an ordinary tape measure?
7. Calculate the force (magnitude and sign) between conductors in the parallel plate capacitor for (a) fixed charges on each conductor; and (b) fixed potential difference between the conductors.
8. A set of three parallel conducting plates is arranged and biased as shown. The relative position of the two lower plates is fixed.  The upper plate can move vertically.  What is the sign of the force on the upper plate?  (a)First give your answer based on intuition and explain your reasoning. (b) Then see "Micro electro mechanical cantilever with electrostatically controlled tip contact," Imen Rezadad, Javaneh Boroumand, Evan M. Smith, and Robert E. Peale, Appl. Phys. Lett. 105, 033514 (2014) and describe the presented analysis of this problem.
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Section 6.
1. A cylinder of height h along the symmetry axis and radius 10 h is formed from a material with uniform permanent electric polarization.  Calculate the E-field at the center of the cylinder.  Sketch the E-field lines both inside and outside.
2. A thin dielectric rod of cross section A extends along the x-axis from x=0 to x=L.  The polarization of the rod is along its length given by Px = a x2 + b.  Find the volume density of polarization charge and the surface polarization charge on each end.  Show explicitly that the total polarization charge vanishes.  
3. A dielectric cube of side L has a radial polarization P = A r, A = constant.  The origin is at the cube center.  There is no extraneous charge. Find the volume charge density and the surface charge density on each surface.   Show that the total charge is zero.
4. A dielectric rod in the shape of a right circular cylinder of length L and radius R is polarized in the direction of its length, P = P ez, P = constant.  Find the electric field at points on the symmetry axis both inside and outside the rod as a function of z.
5. Show that the macroscopic electric field caused by a uniform polarization is equal to the electric field in vacuum of a fictitious surface charge density  = n.P on the surface of the body.
6. Suppose a homogeneous isotropic dielectric slab is placed into a uniform external electric field E and develops a polarization P.  What is the macroscopic electric field E inside the dielectric in terms of E and P?  Must E and E be in the same direction?
7. What are the S.I. units for polarization?
8. An external electric field E is applied to a crystal with cubic lattice structure.  A polarization P is induced, and this can be attributed to the appearance of a dipole moment at the position of every atom in the lattice.  A macroscopic electric field appears inside the crystal, which for thin slab geometry is E = E – 4P, generally non-zero.  What is the microscopic field e at the position of one of the atoms due to all the other dipoles?  Would e have a different value at an arbitrary point not on a lattice site?

Section 7.  Landau problems 1-3,5
1. Two concentric conducting spherical shells, radii a and 2a, have charge +Q and   –Q, respectively.  The space between them is filled with a linear dielectric with permittivity (r) = 2a/(3 a – r).  Determine the electric induction between the shells.  Determine the bound charge density between the shells.
2. Two dielectric media with permittivities 1 and 2 are separated by a plane interface.  There is no extraneous charge on the interface.  Find the relationship between the angles 1 and 2, where these are the angles that an arbitrary line of electric induction makes with the normal to the interface:  1 in medium 1, 2 in medium 2.
3. A long cylindrical conductor of radius a, bearing the charge  per unit length, is immersed in a dielectric medium of constant permittivity .  Find the electric field at distance r>a from the axis of the cylinder.
4. A coaxial cable of circular cross section has a compound dielectric between the conductors.  The inner conductor has an outside radius a; this is surrounded by a dielectric sheath of permittivity 1 and of outer radius b.  Next comes another dielectric sheath of permittivity 2 and outer radius c.  The inner conductor is held at potential 0.  The outer conductor is grounded.  Calculate the polarization at each point in the two dielectric media.
5. Ferroelectrics such as BaTiO3 can have very large permittivity, more than 100000.  The space between the plates of a capacitor is filled with such a dielectric.  For a given extraneous charge stored on the capacitor, what is the electric field inside the dielectric in the limit that the permittivity becomes very large?  How is the extraneous charge density related to the polarization charge density?  

Section 10.  Landau problem
1. Two parallel conducting plates in air are held at a potential difference 0 by a battery.  The mutual capacitance in air is C0.  Then the battery is disconnected and a dielectric () sheet that just fits the gap is inserted between the plates.  What is the final potential difference ?  What is the stored energy?  Again the two plates in air are connected to the battery 0.  While the battery is still connected, the dielectric sheet is inserted between the plates.  What is the stored energy now?
2. Two coaxial thin-walled conducting tubes with radii a and b are dipped vertically into a dielectric liquid of susceptibility  and mass density .  If a voltage difference 0 is applied to the tubes, the liquid rises to a height h in the space between the tube walls.  What is h in terms of , 0, , g, b, and a?  Temperature is held constant. 
3. Consider a spherical linear dielectric shell (inner radius a, outer radius b, dielectric constant ) and a point charge e infinitely separated.  Now bring the point charge to the center of the dielectric, allowing the dielectric to cool back to ambient temperature.  Determine the change in energy of the system.   

Section 11.  Landau problem
1. For a space in which an electric field exists due to charges on some conductors, with dielectric bodies also in the space, the change in the free energy F due to changes in the field is F =  (F-E2/8) dV, where F is the free energy density with respect to charges on the conductors, and E is the electric field that would exist in the space (for the same charges) if the dielectric bodies were absent.  The integral is over all space except the part occupied by the conductors.  Show that F = -PE dV, where P is the polarization vector in the dielectrics and the integral is now only over their volume. 

Section 21.  Landau Problems 1-3
1. Consider two coaxial conducting cylinders with radii a and 3a and length L.  The region a<r<2a is filled with a material with conductivity 1, and the region 2a<r<3a has conductivity .  Assume 1 = 2 = 1 (*Can’t be if there is conductivity and if it is different in the two media*).  The inner cylinder is held at potential 0 by a battery while the outer cylinder is grounded, so there is radial current I.  Determine the resistance in terms of 1, 2, and L.  Determine the surface charge density on the boundary at r = 2a.
2. A capacitor, filled with material of permittivity  and conductivity , is charged to Q0.  (a) Find how the charge leaks off the plates with time.  (b) Determine how much of the initial stored energy is converted to heat.  (c) What is the characteristic time for discharge if the material is SiO2 ( = 4.3,  = 1013 -m)?  (d)What is the implication for computer memory chips?
3. The leakage resistance of cable insulation is measured by immersing a length of insulated cable in salt water, applying a voltage between central conductor and solution, and measuring the current.  If length = 3 m, voltage = 200 V, the insulation thickness is twice the central conductor radius, and a current of 2 nA is measured, what is the resistivity of the insulation?

Section 22.  Landau Problem
1. A Hall probe is used to measure magnetic fields.  A current I flows in a ribbon of n-type semiconductor in the B-field.  In steady state, there is a voltage difference VH between the edges of the ribbon, such that the net transverse force on an electron eE + e (v x B) is zero (SI units).  From VH, one determines B.  If B = 0.1 T, what is VH for the following conditions?:  Si:As with n = 2 x 1015 electrons-cm-3, resistivity = 1.6 Ohm-cm, L=1.0 cm, w = 0.2 cm, h = 0.005 cm, Vbattery = 3 V, and geometry as shown.
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2. Read von Klitzing’s 1980 Nobel Prize winning paper on the quantum Hall effect.  To fully understand this paper, you must know the relationships between the components of the conductivity tensor ik and the resistivity tensor (-1)ik.  Be careful about differences in notation between Landau and von Klitzing, who uses ik to denote the resistivity tensor, while Landau uses that to mean just the symmetric part of the resistivity tensor.  The sample is a 2D electron gas, so ik is a 2D tensor.  (a) Find the components of (-1)ik in terms of the components of ik for a general 2D conductor.  (b) Find the symmetric and anti-symmetric parts, ik and bik of (-1)ik.  (c) For the case (as in the paper) of an isotropic 2D conductor, find the expressions given on the second page of the paper for the Hall resistivity (-1)xy, and in the last full paragraph on that page for (-1)xx. (d)  If EH |Ey| and jx = j, show that EH/j  (xy)-1 if xy >> xx.  (e) What are a and b, as defined in Landau, in terms of ik?  (f) If j is the 2D current density along the channel, show EH/j = UH/I  RH.  Is there a typo in the paper? (g) Using Eq. 3 and the definition of the fine structure constant, show RH = c0/2i = const/i.  Is there an error in the numerical value of the const given in the paper? (h) What does the resistivity tensor become when xx = 0? (i) Show that (-1)xx = 0 when xx = 0.  (j)  von Klitzing discusses “Hall angle” on pages 495 and 497.  What is that?  Show that his statements about it make sense.
3. Derive the expression RH = ±1/ne for a semiconductor wafer or film with only one carrier type.  The upper sign holds for holes and the lower for electrons.  The n is concentration.  Hints:  write the equation of motion in terms of drift velocity ±eEt/m, where t is the carrier relaxation time. Include a “friction” force -v/ t in addition to the Lorentz force, with B||z perpendicular to the sample plane.
4. Derive the expression (wc = cyclotron frequency, t = carrier relaxation time)
[image: ]
5. [bookmark: _GoBack]An intrinsic semiconductor has similar concentrations of electrons n and holes p, so current density is (nem(e) + pem(h))E.  Mobilities are m(e)=et(e)/m(e), etc, where each carrier type has its own relaxation time and effective mass.  Let b= m(e)/ m(h).  In the low field limit wct <<1, derive RH = (1/e) (p-nb2)/(p+nb)2.  What does this become in the limit p>>n and vice versa?

Section 23.
1. What is the maximum contact potential, magnitude and sign, for a penny and a nickel?  For a silver dollar and a nickel?  I press a nickel and a penny together and measure 0V with my voltmeter.  Why?
2. You stack 10 dry coins, alternating between nickels and pennies.  What is the electrostatic potential difference between the bottom and the top of the stack in terms of the work potentials of copper and nickel.   

Section 24.  
1. Two wires of the same metal connect a voltmeter to the two terminals of a battery.  The two terminals are of metals A and B, and these are both dipped into an electrolyte solution with ions A+, B+, and X-.  Show by considering work functions and contact potentials that the measured emf is non-zero if and only if A is not the same metal as B.  
2. Identify the conductors A and B in a) lead-acid battery b) alkaline battery, and c)Li-ion battery.  What ions pass into or out of solution in each case.  
3. For three different metal electrodes (A,B,C) immersed in an electrolyte solution containing molecules AX, BX, CX, where X is any negative ion, show that the emfs between pairs of electrodes are related by AB + BC = AC.

Section 29
1. Find the internal and external magnetic induction of a sphere with uniform magnetization and radius a.  Use the magnetic scalar potential method and analogy with the uniformly polarized dielectric sphere.  
2. Find the internal and external magnetic induction of a uniformly magnetized cylinder (radius a, length L) on the cylinder (z) axis.  Use the magnetic scalar potential method and analogy with the uniformly polarized dielectric cylinder.   Find B at the ends of the cylinder.  Sketch B(z) vs. z.  
3. In a large piece of material there is a uniform magnetic induction B1 and a parallel uniform magnetization M1.  Find the induction B2 in the middle of cavities in the material of the following shapes:  a thin disk, a long needle, a sphere.  The symmetry axis of the cavity is parallel to B1 in each case. 
4. Show that rdV = rdfwhere the right integral is over the closed boundary surface of the integration volume.  Show that (Mr = -2 MShow that r(Mdf) = (rdf)M-(rM)df.  Show that [ri iririShow that -ri dV = - [r(Mdf)]i - rdfi, where the right integrals are over the closed boundary surface of the integration volume.  Finally show  rdV = -r(Mdf) - (Mr dV, where the first integral on the right is over the closed boundary surface of the integration volume.
5. A right circular cylinder of length L has a uniform axial magnetization M and no net current.  Find the mean value of the microscopic current density <v>r inside the cylinder.  Find also the surface current density g.  Compare with a solenoid.
6. A sphere of radius R centered at the origin has magnetization M = (a x2 +b) x^, where a & b are constants.  The net current density is zero.  Find the mean value of the microscopic current density <v>r inside the sphere and the surface current density g on the sphere.  Try to make a sketch of the distribution of g on the sphere surface.
7. Given a spherical shell, inside radius R1 and outside radius R2, which is uniformly magnetized in the direction of the z-axis.  The magnetization in the shell is M0 = M0 z^.  Find the magneto-static potential  for points on the z-axis, both inside and outside the shell.

Section 30.  Landau Problems 1, 3,4
1. Show curl(j/R) = j x R/R3, where R = r-r’, curl acts on coordinates r, and j = j(r’).
2. Left blank.
3. The energy flux in a conductor is S = (c/4) E x H.  Show that in steady state divS = -j.E
4. Show  A = A x z^, for the two dimensional problem in which A is a function only of x and y and is oriented in the z^ direction, where z^ is the unit vector in the z direction.
5. Show  ((1/)  A) = - z^  ((A)/), for the 2D problem in which  also depends only on x and y. 
6. For the two dimensional problem of a medium infinite and piecewise homogeneous in the z^-direction, with current density j = j(x,y) z^, show that continuity of the tangential components of A and ((1/)  A) imply boundary conditions that A and (1/) A/n be continuous at an interface, where n is the normal unit vector to the interface. 
7. From the resulting general formula of text problem 1, determine the magnetic field on the axis of a circular current loop of radius a at a distance z from its center.
8. For the results of text problem 3, if J = 100 A, b = 5 cm, a = 1 cm, and h = 4 cm, what is the magnetic field in Tesla in the hole?  How does this compare to the Earth’s magnetic field?
9. Consider an infinite magnetic slab, susceptibility x, parallel to the xy plane, between z = -a and a, free conduction current density j(z) = j0 (z/a) x^.  What are H, M, and B everywhere?

Section 31
1. Show that –EH =   (ExH) – HE.
2. Show that (F ~)T = -(1/c)  A j dV.
3. What is the magnetic energy per unit length for a long cylindrical solenoid, radius a, tightly wound with n turns per unit length of wire carrying current J?  Consider both an empty solenoid and one filled with a linear magnetic medium of permeability .
4. The magnetic induction in the gap between the poles of an electromagnet is maintained at B0.  A paramagnetic slab of susceptibility  and cross section A experiences a force that draws it into the gap.  Find the force.

Section 32
1. For a space in which exists a magnetic field due to currents in some conductors, with other conductors also in the space, the change in the free energy F~ due to changes in the field is F~=   (F~ + H2/8) dV, where F~ is the free energy density with respect to the currents in the conductors, and H is the magnetic field that would exist (for the same currents) in the absence of any conducting medium. The integral is over all space including the interior of all conductors, current carrying or not.  Show that  F~ =  -MH dV, where M is the magnetization vector in the conductors, and the integral need only be extended over their volume.

Section 33.  
1. For a system of two conductors carrying total currents Ja and Jb, prove that L11L22 L122.
2. Show that in Gaussian units, inductance has units of length.
3. Two small circular loops of wire (of radii a and b) lie in the same plane a distance R0 apart.  What is the mutual inductance between the loops if the distance R0 is sufficiently large that the dipole approximation may be used?  Find the force between them if the current in each is held constant.
4. Two isolated superconducting circuits carry certain currents when they are positioned so that the mutual inductance is zero.  Now they are moved so that their mutual inductance is M.  If the circuits are identical and had the same initial currents J0, find the final currents J.  (Hint: Is the magnetic energy unchanged, or is the flux through a superconducting circuit unchanged by the reconfiguration of the circuits?)
5. Find the mutual inductance between circuits c1 and c2 shown.
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Section 34.  Landau problems 1 and 5.
1. Derive the boundary condition (34.2) n x (H2-H1) = 4  g / c.
2. A toroidal coil of N turns is wound on a non-magnetic form.  If the mean radius of the coil is b and the cross sectional radius of the form is a, show that the self-inductance of the coil is L = 4N2[b-(b2-a2)].  If N = 150, b = 4 cm, a = 1.5 cm, what is L in Henries?
3. A circuit consists of two coaxial cylindrical shells of radii R1 and R2>R1, with common length l, connected by flat end plates.  Current flows down one shell and back up the other.  Find the self-inductance.
4. What is the self-inductance of the pictured rectangular solenoid? [image: ]

Section 53
1. The discovery of superconductivity was based on a resistance measurement.  Show that infinite conductivity implies only that B = constant inside the superconductor, not that B = 0.  In other words, show that Maxwell’s equations don’t predict the Meisner effect.
2. Describe how infinite conductivity was first measured.  Kamerlingh Onnes Akad. Van Wetenschappen (Amsterdam) 14 (113), 818 (1911). 
3. Describe the measurement of persistent current in J. File & R. G. Mills, Phys. Rev. Lett. 10, 93 - 96 (1963).  
4. For decades, no one thought to measure the B-field inside a superconductor, assuming that B remains constant inside when the external field is changed, as for a perfect conductor.  Obtain a copy of W. Meissner and R. Ochsenfeld, Naturewissenschaften 21 (44), 787-788 (Nov 1933) and describe the experiment that showed that in fact B = 0 inside.  Translated in Allister M Forrest, “Meissner and Ochsenfeld revisited,” Eur. J. Phys. 4, 117 (1983).
5. Suppose that an electric field momentarily arises within a superconductor.  Use the equation of motion to find a differential equation for the current density in terms of the electric field E and the density of superconducting electrons n.  Substitute this equation into Faraday’s law to obtain a differential equation for j and B.  Integrate the differential equation and restrict the possible solutions to those for which the integration constant is zero.   This result is the London Equation, which leads to the Meissner effect.  Show from these results (and  = 1) that 2 B = B, where 2 = (m c2/4  n e2).  Consider the semi-infinite superconductor occupying the half space x>0, and show that B(x) = B(0) exp(-x/.  Evaluate  for n = 1022 cm-3.  

Section 54.  
1. Try to imagine a magnetic field in 3D with no r or  component and satisfying H = constant.  Can you show whether such a field can exist?  Think about lines of longitude on a sphere and comment.

Section 58.  
1. For what characteristic conductor dimensions would the quasistatic approximation be applicable for the following regions of the electromagnetic spectrum: VHF, UHF, microwaves, mm-waves, THz, thermal IR, near-IR, visible.  (Note: An additional condition determined in extra problem 2 limits the approximation to THz (far-IR) frequencies and below.)
2. For gold, what is the highest frequency of the field for which we are justified in using the DC value of the conductivity in the field equations.  What wavelengths?
3. Why must Et be continuous at boundary between conductors with different conductivities, or between a conductor and vacuum, even though we can’t ignore the time derivatives of the magnetic field inside the conductor?
4. Derive the differential equation for the B-field in a homogeneous medium with uniform conductivity  and constant magnetic permeability  in SI units, starting from the microscopic Maxwell equations, in the quasistatic approximation.


Section 59.  
1. For the condition of locality to hold, the electron mean free path to be less than the penetration depth. What limit does this place on the frequency (in Hz) of the field variation for a metal such as gold if the quasistatic approximation is to be valid?  What is the shortest wavelength?
2. Show that <S>t = Re[(c/4) (1/2) E x H*] for periodically varying fields.
3. Show that for fields (59.3) and 59.5) entering a conductor in the high frequency limit that <S>t = (c/16) (/2) |H0|2.  Do not assume that H0 is real.
4. What is the characteristic penetration depth in aluminum for 60 Hz electromagnetic noise?  Could use aluminum foil to make an effective Faraday cage to screen an experiment from this kind of interference?
5. For a quasistatic electromagnetic field, sketch the penetration depth  as a function of frequency  and indicate the mathematical relation between them.  At a given depth inside a conductor, how does the electric field magnitude E depend on frequency, considering both limits <<L and >>L, where L is the size of the conductor.  Sketch E vs.  from DC up to the limits of validity for the quasistatic approximation.
6. A conducting cavity is driven as an electromagnetic resonator.  If perfect conductivity is assumed, which of the following transverse and normal field components must vanish at the inner cavity walls: En, Et, Bn, Bt?  No credit without explanation for your answer. 
7. What is the ratio of the skin depth in copper at 1 kHz to that at 100 MHz?


Section 60.

1. Derive the differential equation for the electric field inside a conductor in the quasistatic approximation, namely E = (4/c2) E/t. 
2. Look up the series expressions for Bessel functions and verify the eqns. (60.5) for the fields in a long, thin, straight circular wire that carries a non-zero periodic current in the low frequency limit.
3. Low frequency limit of skin effect.  Starting from the complex fields (60.5) for a long, thin, straight, circular wire with periodically varying total current, find the amplitudes E and H as a function of r, keeping just the two terms of lowest order in (r/).  Plot E and H vs. (r/a) for 0<r/a<1, where a is the radius of the wire for a/ = 0.1.
4. Find Eq. (60.7) for the electric field in a wire of circular cross section in the limiting case of high frequencies such that (a/ >> 1).
5. High frequency limit of skin effect.  Plot the amplitudes of the electric and magnetic fields in a long, thin, straight, circular wire that carries a periodically varying current in the high frequency limit for a/ = 10. 
6. Why is the high frequency inductance of circuit elements somewhat smaller than the low frequency value?
7. What is the penetration depth for copper at frequencies of 60 cps and 100 Mcps?
8. Derive a simple desing formula for the frequency f(MHz) at which the skin depth becomes comparable to the diameter d (mil) of a copperwire.  (1 mil = 0.001 inch, welcome to America).  Give a formula where the effect on wire resistance becomes important.  See ARRL Handbook where these design formulas are given for the amateur radio community.

Section 61.
1. Derive the expression (61.11a) for the real part of the impedance of a straight circular wire when the skin effect is weak.
2. Derive expressions (61.12) for the real and imaginary parts of the impedance for a circular straight wire when the skin effect is strong.  Hint:  See Section 34 Problem 1.
3. A small circular wire loop of radius a is located at the center of a much larger circular wire loop of radius b.  The larger loop carries an alternating current J = J0 Cos[t], where J0 and  are constants.  Find the emf induced in the small loop by the magnetic field generated from the current in the large loop.  Hint:  Use the Biot-Savart law.
4. The graph from the ARRL Handbook shows cable attenuation vs. frequency.  From this graph, what is their functional relationship and why does it behave this way?
[image: ]

5. Show that (61.20) and (58.12) are roughly the same, in both Gaussian and SI units.
6. [bookmark: _Hlk9763219]The superconducting ceramic Bi2Sr2Ca2Cu3O10+x has a transition temperature 107 K.  A ~1-cm-diameter ring of this material has a bar magnet inside it.  The ring is cooled to liquid nitrogen temperature, and then the bar magnet is pulled out.  An electrical current starts to flow in the ring to preserve the original magnetic flux.  The current is inferred from the magnetic field of the ring, measured with a Hall probe.  The figure (from Teachspin newsletter vol. V No. 7 April 2019) presents characteristic data.  From these data, calculate the upper bound on the resistivity of the ring.  If the ring were pure Cu ( = 4 x 10-8 -m at 100 K), what would be the time constant for the current decay?  Solve this problem in two ways, by the methods of section 58 and by those of section 61.  You will need to make and justify some assumptions.
[image: ]

Section 62.  Landau problems 1 and 2.
1. An LCR circuit consists of resistance R, inductance L, and capacitance C in series, and there is an emf in the circuit equal to o Cos[t].  Determine the real part of the current J and its phase (62.3).  Draw a phasor diagram including both J and emf for positive phase angle.  What are the conditions on , L and C for which the phase is positive?  Sketch |J| vs  for L = C = c = 1 and describe the behavior. At what angular frequency  (in terms of R, C, L, and/or c) does the current have its maximum amplitude.
2. Consider a circuit with L and C in parallel.  Plot the current J and the impedance Z as a function of .  What happens when  = c/Sqrt[LC]?  What happens at  = See ARRL Handbook for answer and application (band-blocking filter).
3. What is the relation between R, L, and C for critical damping in a series LRC circuit?
4. Look at the 1853 paper by William Thomson, where free electric oscillations of an LCR circuit was first derived.  Describe and sketch the general problem he was trying to understand.  What naturally occurring phenomena with oscillatory behavior had he “frequently observed” and did he suggest could be explained by this theory?  Make estimates of L and C from the geometry of that natural phenomenon.  Estimate R from the overall decay time, and then calculate the oscillation period.  How does this period compare to typically observed values?  Do you agree that the free electric oscillation theory explains the observations?  This problem requires you to seek data and information online regarding the phenomena.  Cite your sources and justify your assumptions.  This problem is probably most conveniently done in Gaussian units.  


Section 63.  Landau problem 2,3
1. Derive Equation (63.8).
2. Derive the “substantial” derivative for the rate of change of B at point moving with velocity v. 
3. A conductor rotates in a uniform constant magnetic field B with angular velocity .  A volume element of that conductor has a linear velocity v. Show how (B)v can be expressed in terms of the vectors and B only.  Show that (B)v = x B. 
4. Find an experimental example of unipolar induction and explain in terms of material in section 63.
5. Design an experiment to demonstrated unipolar induction.
6. Find the expression for the emf of unipolar induction from Landau Problem 2 in SI units.  Hints:  The effective electric field is different.  So are the fields of the polarized sphere and the relation between B, H, and M.
7. [bookmark: _Hlk36040372]By a sequence of diagrams, incrementally transform Fig. 39 to a “Faraday disk” to show that a Faraday disks emf appears by unipolar induction.  (Wiki it!)
8. In Fig. 39, what is the time rate of change of magnetic flux through the circuit?  Is Faraday’s law of induction the only way that an emf can be generated from a magnetic field?  

Section 75.  
1. Determine whether intrinsic semiconducting Ge (relative permittivity=16, resistivity = 40 ohm-cm) behaves like a metal or a dielectric for photon energies below its band gap (g=2 m).   This problem requires you to determine the appropriate Maxwell equation in SI units.  
2. Determine whether the semiconductor Si (relative permittivity = 11.7), which is sufficiently heavily doped to give it a resistivity of 0.01 ohm-cm, behaves like a metal or a dielectric for mm-waves. What about for 1 ohm-cm at cm wavelength?  Would this material make a good window for a microwave transceiver?
3. See  “Scanning Fabry-Perot filter for terahertz spectroscopy based on silicon dielectric mirrors,”  J. W. Cleary, et al. in Terahertz and Gigahertz Electronics and Photonics VI, edited by K. J. Linden, L. P. Sadwick, Proc. SPIE 6472 (2007).  How was the present section in your text used in this paper? 

Section 77.
1. Suppose that the time-varying monochromatic fields in a dielectric are small.  For slowly varying fields we assumed D = (0)E with the static value of permittivity (0), but more generally we should use () = 1 +  f() ei d, where  is the interval of time from the present to some moment in the past.  In order for () to equal (0), what must we take for the function f()?  What is the physical significance of this choice?
2. Determine the frequency-dependent permittivity of a metal for the low-frequency limit in SI units.
3. Which curve is a probable permittivity for a metal and why?
[image: ]

Section 78
1. Determine the limiting form of the high frequency dielectric constant in SI units.  Plot this function vs. frequency for a metal with electron concentration 1022 cm-3 over a physically meaningful range of frequencies.  Determine the “plasma frequency” and find a numerical value for the corresponding wavelength.  What part of the electromagnetic spectrum does this correspond to?  Is ()>1?  See Sections 6 and 14 and discuss your answer.
2. At high frequencies, the permittivity approaches unity according to () = 1 – p2/2, where p is the plasma frequency.  Generally, we also have () = 1 +  f() ei das in the previous problem.  For times  from the present out to at least a few periods of oscillation for the monochromatic fields into the past, determine and sketch a possible function f() that gives correct form for the high frequency permittivity.
3. Glass (SiO2) is transparent up to near-UV frequencies, where electronic absorption of electromagnetic radiation begins.  Make a theoretical estimate of the wavelength (numerical value in nm) at which glass begins to be transparent again as frequency is increased beyond the near-UV. What part of the electromagnetic spectrum does this wavelength fall within (near-UV, far-UV, soft x-ray, hard x-ray, -ray)?  Assume that there are 1022 atoms/cm3, determine and use the average number of electrons per atom (ZO = 8, ZSi = 14), me = 9.1 x 10-31 kg, 0 = 8.85 x 10-12 C2/N-m2, e = 1.6 x 10-19 C.
4. Using the Drude Model for the permittivity of free-electron metals,  = 1 – p2/2(1+i/)], the plasma frequency p and relaxation frequency 1/ from Ordal et al. Applied Optics 24, 4493 (1985), determine the range of wavelengths for which (77.9) is valid.  Use and plot | ’| and ” for gold as a concrete example. 
5. The plot presents real and imaginary parts of the permittivity for heavily-doped p-type silicon of different carrier concentration, as indicated in the legend.  From both the curves and the concentration values, determine the plasma frequency in each case.  Do the Re[] curves follow the relation (78.1)?  Are the Im[] curves doing what you expect in terms of sign and limits (explain)? Data from “Infrared surface plasmons on heavily doped silicon,” Monas Shahzad et al., J. Appl. Phys. 110, 123105 (2011).
[image: ]
6. The plots present real and imaginary parts of permittivity for the semimetal Sb. What is the plasma frequency?  What is the carrier concentration?  Do the curves follow the relation (78.1)?  Is the Im[] data doing what you expect a long wavelength?  What does the bump at around 2 microns suggest? Data from “Infrared surface polaritons on antimony,” J. W. Cleary et al., Optics Express 20 (3), 2693-2705 (2012).

[image: ]

7. Permittivity spectrum of the semimetal Bi from “Infrared surface polaritons on bismuth,” by Farnood Khalilzadeh-Rezaie, et al., J. Nanophotonics 093792-1 (2015).  From the data, estimate the plasma frequency of bismuth.  Then look at the paper and discuss the subtleties of that estimate.  
[image: ]

8. A wave packet propagates with frequency  that exceeds the plasma frequency p of the medium.  Energy is carried at the group velocity vg = d/dk of the wave packet.  What happens to vg as the frequency approaches p from above?  The medium is not transparent below p.
9. Suppose the electromagnetic wave frequency is near the plasma frequency of a medium.  Calculate and plot the normal-incidence reflectance vs p for the range 0.2 to 2.5.  Also plot  vs p over the same range.  State in words what the material behaves like based on its reflectance spectrum when  is positive or negative.  For plotting, use Origin on UCF apps (preferred), excel, or any other computer program that can plot data.

Section 80.  
1. Derive the formula for the energy dissipation in a non-monochromatic field which tends sufficiently rapidly to zero as t  in SI units.
2. Show that d()/d = (1+dln/dln).  If () varies slowly with , argue from this that d/d is approximately equal to .  In this case, the Brillioun correction to the field energy is small.
3. In the high frequency limit of the permittivity, above the plasma frequency, show that the medium is transparent, so that the EM fields freely penetrate the medium.  Show that by the (incorrect) static form of the energy density, there would be no electric contribution near the plasma frequency.  What is the correct contribution according to the Brillouin formula?
4. Find and summarize the paper by L. Brillouin (1921) that presents formula (80.12).

Section 82
1. The spectrum shows real data for the semiconductor CdS.  The peak corresponds to loss due to absorption by optical phonons in the material.  Assuming this is the only loss in the media, i.e. ignoring the fundamental optical absorption at the band gap, estimate the static dielectric constant.  Why might your value differ from the accepted value of CdS = 8.9?  
[image: Sec82fig]
2. For a monochromatic electric field in a dispersive medium, write the general expression for the frequency dependent electric susceptibility ().  What is the limit of () as   infinity?  What is the high frequency limit of the dielectric polarization P?
3. Write Newton’s equation for the motion of the ith electron bound in a molecule with resonant frequency i and with a damping force –mi(dr/dt), driven by a monochromatic electric field.  Find the amplitude of motion in terms of m, , i, i, and the driving force.    What is the molecular polarizability?  If there are N molecules in the substance per unit volume, Z electrons per molecule, what is the total electric moment?  What is the polarization?  What is the electric susceptibility ()?  What is the frequency dependent permittivity?  What are ’ and ’’?  What is the oscillator strength in the frequency range d?
4. Suppose a generalized susceptibility, or response function,  has the following properties.  The poles of () are all below the real axis; the integral of ()/ vanishes when taken around an infinite semicircle in the upper half of the complex -plane. (It suffices the () -> 0 uniformly as || goes to infinity; The function ’() is even and ”() is odd with respect to real .  Show that () = (1/i) P Integrate[(x)/(x-), {x,-Infinity, Infinity}].  Find the Kramers-Kronig relations by equating Re and Im parts.   
5. The response of any linear passive system can be represented as the superposition of the responses of a collection of damped harmonic oscillators.  Let the response function () = ’() + i ”() of the collection of oscillators be defined by x = ()F, where applied force F is Re[Fe-iwt] and the total displacement x = Re[xe-it].  From the equation of motion with damping coefficient  show that the complex response function is () =(1/m)/[02 – 2 - i].
6. Consider a gas of free electrons in the limit as the collision frequency goes to zero.  Show that the response function is () = (-1/m)[1/ – i ()] and that this satisfies the Kramer’s Kronig relation for ’. Hint:  Start from section 82 extra problem 5, take the appropriate limit, and use the Dirac Identity Lim->0[1/(+i)] = [1/ – i()].  
7. Show why the generalized susceptibility, or response function, of a linear passive system is (apart from a constant factor) -1 and not , where  is the complex permittivity. 
8. Show how (82.7) may be written as an integral over positive frequencies only. 
9. In section 86 extra problem, we’ll show that  can be determined from knowledge of normally reflected power R and phase  for an E-M wave.  Reflectivity is easy to measure, but phase is not.  Show how () can be detemined from an integral over R().  Hint: Consider the natural log of r = E1/E0 = Sqrt[R()] ei() to be a generalized susceptibility, use (82.7), extra problem 82.8, and integration by parts.
10. Use (82.12) and the ”() curve for doped silicon to determine the number of electrons per unit volumn N.  (Data:  Monas Shahzad, PhD UCF 2011.)
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11. Summarize original papers by H.A.Kramers and by R. de L. Kronig 1927.
12. Refer to the complex frequency plane below.  In each numbered region, answer the following.  1) Discuss possible singularities for ’ here. 2) What happens here to  for metals? 3) Discuss validity of Eq. 82.1 in this half plane. 4) What is  (-*)? 5) Is  real, imaginary, or complex on this axis? 6) What is sign of ” here? 7) What is sign of ” here? 8) What is ” for dielectric and metal near the origin? 9) What is the limit for  as ’ goes to infinity?  10) What is the limit for  as ” goes to infinitiy?  11) What is ” here, and does it have this value anywhere else? 12) Discuss zeros of  in this half plane.

[image: ]
13. The figure presents the permittivity spectrum of SiO2.  From the imaginary part calculate the static dielectric constant.  The best way is to downloade the data from refractiveindex.info as an xls file and do a numerical integration there.  Compare with accepted values and discuss its relation to the ’ spectrum.  
[image: ] [image: ]
14. Derive (82.8) from (82.6).

Section 83
1. In a non-absorbing homogeneous medium show that complex fields of an electromagnetic plane wave satisfy E.E* = H.H* .
2. Derive equations (83.9).  
3. Derive (83.4) from (83.3).
4. Derive (83.6) from (83.3), (83.4), and (83.5). 
5. Derive the expressions for the real and imaginary parts of the complex wavevector for a plane monochromatic wave propagating in a semiconducting or electrolyte solution at a frequency where conduction and displacement currents are comparable, in SI units.  Hint: see (75.10).  
6. A transmittance spectrum is the ratio of the electromagnetic power spectrum with and without the sample in the beam.  The transmittance spectrum of a sample of glass doped with Nd3+ ions for laser amplifier applications is found to have a sharp absorption line at a wavelength of 1 m.  The optical beam travels a distance of d = 10 cm in passing through the sample from source to detector.  At the peak of the line, the transmittance has the value 0.37.  Beer’s law, T=e-d gives the relation between T and the absorption coefficient .  The refractive index in wavelength regions far from the line has the value 1.5.  Assume that this value holds at line center also.  Find the imaginary part of the permittivity at line center.  Is the assumption regarding the refractive index justified?
7. An example of an inhomogeneous EM plane wave is a surface plasmon polariton.  Discuss the nature of its wavefunction given in section 88 Problem.

Section 84
1. Consider a dielectric.  On the graphs like those below, indicate values of the real and imaginary parts of the permittivity for static fields.  Indicate the behavior in the high frequency limit.  Sketch possible frequency dependences for the two permittivity functions at intermediate frequencies and explain.  What can you say about the sign of ” and why?’

’’




  



2. (a) Plug a plane wave into the wave equation for a non-magnetic medium to find a relation between (), , and k that holds regardless of the form of ().  (b) Assume the permittivity has the form (84.5), with a =  representing the permittivity due to the positive ions and N1 the concentration of free elections, so () =  (1-p’2/2), where p’ is the “dressed” plasma frequency.  For this case find the dispersion relation  vs. k for transverse electromagnetic waves in a plasma.  Plot it and compare to the curve for vacuum.  (c) What kind of behavior does the k = 0 value of  correspond to?  What about at large k?
3. From the reflectance spectrum of InSb shown, determine the refractive index n, , the dressed plasma frequency in Hz and wavenumbers, the corresponding plasma wavelength, and the free electron concentration.  Effective masses for electrons and holes are me* = 0.0133, mh* = 0.18 in units of free electron mass. 
[image: ]
4. What kind of waves are allowed in a plasma when the frequency exactly equals the dressed plasma frequency? See previous problems in this section.
5. Look up the definition of “dielectric loss tangent”, Tan.  If the dielectric is nearly transparent and non-conducting, show that the optical power absorption coefficient is approximately Sqrt[’] (/c) , where  approximately equals ”/’.
6. Calculate the refractive index spectrum on either side of the absorption feature in the experimental permittivity spectrum shown below.  Plot points from your calculation on the plot with the experimental index spectrum.  Hint:  Don’t drop the “1” in the approximate formula (84.7).  Is (84.7) quantitatively accurate? Try to explain any observed differences between experiment and theory.
[image: ][image: ]
7. The figure presents the far-infrared reflectivity spectrum of the semimetal bismuth.  For simplicity, assume that there is no loss, that the permittivity is given by a – b/2, and that the electron mass is the same as for free electrons.  From the data, estimate the constant a =  and the concentration of free “dispersion” electrons.  Compare with the values published in "Infrared surface polaritons on bismuth," Farnood Khalilzadeh-Rezaie et al., J. Nanophotonics 9, 093792 (2015). Discuss the reasons for any differences.
[image: ]
Section 86.  Laudau problem 1.
1. For reflection at the boundary between two transparent media, show that E1 = E0 Sin[2-0]/Sin[2+0] and E2 = E02Cos0Sin2/Sin[2+0], when the polarization is perpendicular to the plane of incidence. 
2. Derive the Fresnel Equations when E lies in the plane of incidence (Eqs. 86.6).
3. When the media on both sides of an interface are transparent, and the E-field lies in the plane of incidence, find the Fresnel equations (86.7) for the H-field of the reflected and transmitted beams.
4. For normal incidence of a plane EM wave on the interface between two media, find the expression for the reflectivity in terms of the permittivity.  If 1 = 1 and Sqrt[2]=n2+i2, find R.  What is R for Si 10 -cm, r=11.7,  = 10 m?  Hint: Can conduction losses be neglected?
5. For general angles of incidence for a monochromatic wave at the interface between two transparent media, show that the phase change for the transmitted beam is always zero, and find the conditions for when the reflected wave has a phase change of zero or Pi.
6. Use a sheet polarizer (polarized sunglasses or a polarizer borrowed from the lab) to experimentally determine the index of refraction of some dielectric (e.g. glass, cement, formica, asphalt).  High accuracty is less important than original data taken by you with a clear description of method. 
7. Derive (86.12).
8. Calculate the reflectivity of Ag using (86.8) and data from the figure at  = 1, 10, and 100 m.   From J. Cleary et al. J. Opt. Soc. Am. B 27, 730 (2010). [image: ][image: ]
9. Show how to determine the complex permittivity from knowledge of the reflectivity and the phase () of the wave reflected at normal incidence from a medium.  
10. Using the permittivity spectra for gold plotted above [from Ordal et al. APPLIED OPTICS 22, 1099 (1983)] determine the complex index of refraction and the normal incidence reflectivity at wavelengths of 1 micron and 100 micron.  


Section 87.  Landau problem.
1. What is the conduction electron mean free path in Cu at 300 K?  Around what wavelength is Eq. 87.2 not valid for the surface impedance?
2. Show that for non-magnetic metals, the imaginary part of the surface impedance is negative.  
3. Derive the expression for the reflection coefficient from metal for light polarized perpendicular to the plane of incidence (i.e. Eq. 87.13) in SI units.
4. What is the normal-incidence reflectivity of a superconductor and how does it depend on wavelength?
5. Find the minimum value of R|| (87.16) and the angle 0 where this minimum occurs.
6. Show how the complex surface impedance for a metal can be found from a measurement of the normal incidence reflectance and the minimum reflectance angle for R||.
7. Show how the complex permittivity in the optical range can be determined from an experimental determination of the complex surface impedance.
8. Use the permittivity spectra for gold (see sec 86 problems) to determine its complex surface impedance and the normal incidence reflectivity at wavelengths of 1 and 100 microns. Hint:  Express complex values in polar form.  You should get for solutions due to the square roots.  Only one of these has the right signs.
9. For gold a 1 micron wavelength, at what angle of incidence is the reflectivity a minimum.  Consider both polarizations.  Use complex surface impedance values from Problem 8.  
10. Find the original paper by M. A. Leontovich (1948) and summarize.

Section 88. Landau problem.
1. Derive (88.2). 
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