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ABSTRACT 

High sensitivity uncooled microbolometers are necessary to meet the needs of the next 

generation of infrared detectors, which seek low power consumption and production cost 

without sacrificing performance.  Presented here is the design, fabrication, and 

characterization of a microbolometer with responsivity enhanced by novel highly 

absorptive coatings. The device utilizes a gold-doped vanadium oxide film in a standard 

air bridge design.  Performance estimations are calculated from current theory, and efforts 

to maximize signal to noise ratio are shown and evaluated.  Most notably, presented are 

the experimental results and analysis from the integration of two different absorptive 

coatings: a patterned gold black film and a plasmonic resonant structure.  

Infrared-absorbing gold black was selectively patterned onto the active surfaces of the 

detector.  Patterning by metal lift-off relies on protection of the fragile gold black with an 

evaporated oxide, which preserves gold black’s near unity absorptance.  This patterned 

gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate 

the air-bridge bolometers.  Infrared responsivity is improved 70% for mid-wave IR and 

22% for long-wave IR.  The increase in the thermal time constant caused by the additional 

mass of gold black is a modest 15%.  However, this film is sensitive to thermal processing; 

experimental results indicate a decrease in absorptance upon device heating. 

Sub-wavelength resonant structures designed for long-wave infrared (LWIR) absorption 

have also been investigated.  Dispersion of the dielectric refractive index provides for 

multiple overlapping resonances that span the 8-12 μm LWIR wavelength band, a broader 

range than can be achieved using the usual resonance quarter-wave cavity engineered into 
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the air-bridge structures.  Experimental measurements show an increase in responsivity of 

96% for mid-wave IR and 48% for long-wave IR, while thermal response time only 

increases by 16% due to the increased heat capacity.  The resonant structures are not as 

susceptible to thermal processing as are the gold black films.  This work suggests that 

plasmonic resonant structures can be an ideal method to improve detector performance for 

microbolometers. 
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CHAPTER ONE: INTRODUCTION 

Infrared radiation is the general term for electromagnetic waves whose wavelengths extend 

beyond the visible spectrum, between 0.75 µm to 1000µm.  This type of radiation was 

discovered in 1800 by William Herschel when he measured an increase in radiant power 

(by measuring temperature) through the visible spectrum and extending beyond into the 

“invisible thermometrical spectrum” [1].  Research into this field over the following 

century led to the work of Rayleigh, Wien and Planck, among others, in developing the 

theory of blackbody radiation, which describes the phenomenon of self-radiation.  All 

charged particles, including atoms, will oscillate and emit electromagnetic radiation at a 

specific frequency or wavelength. The amount of radiant energy an object emits, and the 

frequencies at which it emits that energy, depends on its temperature and emissivity.   

A blackbody is defined as an object that both absorbs all incident electromagnetic energy, 

and, by the law of conservation of energy, must perfectly emit this energy as radiation if in 

thermodynamic equilibrium.  While such an object is only theoretically perfect, many 

objects will exhibit a nearly blackbody behavior.  The sun is near perfect blackbody, whose 

peak emission, based upon its temperature, is 0.5 µm (right in the middle of our visible 

spectrum) but also acts as a broadband source of infrared radiation, which we experience 

as heat.  Earth’s atmosphere restricts the transmission of this radiation within certain 

wavelength bandwidths.  A plot of atmospheric transmission with wavelength can be seen 

in Figure 1 [2], which in particular points out absorption bands of the most common 

atmospheric molecules.  Based upon Earth’s transmission windows, infrared radiation is 
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typically divided into three bandwidths: short-wave IR (SWIR, 0.75-2.5 µm), mid-wave 

IR (MWIR, 3-5 µm) and long-wave IR (LWIR, 8-14 µm).   

 

Figure 1. Atmospheric Transmission for NIR-LWIR.  Ref. [2] 

An infrared detector is a device designed to transduce infrared radiation into measurable 

electrical signals.  A two-dimensional detector array, or Focal Plane Array (FPA), allows 

infrared imaging, which is useful for “night vision” based on the infrared radiation that 

objects emit, rather than by the sunlight that they reflect.  Such imagers are also ideal in 

environments such as fog, smoke or dense dust, where Rayleigh scattering obscures the 

transmittance of the shorter optical wavelengths but has little to no effect on infrared 

radiation, especially for the LWIR.  These imagers have a wide range of applications, 

including defense, surveillance, security, and emergency response. 

Infrared detectors are classified as either photon detectors or thermal detectors. Photon 
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detectors function by the excitation of bound electrons by incident photons.  In a 

photoconductor, for instance, this interaction causes an increase in conductivity, which can 

be measured by monitoring the voltage fluctuations across the detector biased with a 

constant current.  Thermal detectors, on the other hand, convert radiant energy to heat.  One 

such device is a microbolometer, in which heat will change the resistance of an active film, 

which can be measured in the same manner as a photoconductor.   

A thermal detector is distinguished from a photon detector in that it must be thermally 

isolated to achieve high sensitivity.  This is generally achieved through an air bridge 

structure, in which the detector is suspended above a substrate by support arms.  These 

devices are slower than photon detectors because they rely on a thermal time constant 

determined by the heat flux through the support arms.  They are also generally less sensitive 

than photon detectors.  However, a thermal detector has the potential to absorb energy on 

a broader bandwidth than photon detectors and can be less expensive to fabricate.  To 

obtain high sensitivity, many photon detectors require cryogenic cooling, which can be 

expensive and use a lot of power; thermal detectors can operate uncooled (at ambient 

temperature).  Thermal detectors are therefore an attractive option over photon detectors in 

terms of cost and power consumption. 

A microbolometer is a Micro-Electromechanical Sensor (MEMS) device fabricated by 

silicon micromachining.  The device consists of a thin dielectric membrane supporting an 

active film suspended above a substrate and connected to that substrate by two or more 

support arms that allow and control thermal and electrical conduction.  This film will 
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change its resistance upon heating and can be either a metal or a semiconductor.   Pure 

metal films typically increase their resistance as they heat up; insulators and 

semiconductors will decrease their resistance with heating.[3] The amount by which films 

change their resistance with heat is defined as the material Temperature Coefficient of 

Resistivity (TCR).  TCR is positive for metals and negative for semiconductors.  High TCR 

is desirable for increased sensitivity.  Films are also characterized by their room 

temperature resistivity, 𝜌𝑅𝑇, which is desired to be low for noise considerations.  Many 

different films have been used and studied in microbolometers [4], such as platinum [5], 

titanium [6], amorphous silicon [7] and amorphous vanadium oxide (VOx) [8]. 

Vanadium oxide is perhaps one of the most widely used films in modern microbolometers 

[4, 9-11].  VOx has a fairly low resistivity yet a high TCR, making it a desirable material 

for microbolometers.  Single crystal films of unique stoichiometry can exhibit high TCR, 

but will generally have a metal-to-insulator transition around a specific temperature at 

which the resistivity will change by orders of magnitude [12]. For VO2 this occurs around 

68˚C.  Additionally, this transition exhibits a hysteresis effect, in which the temperature to 

transition in one direction will not be the same to transition back.  In contrast, the 

amorphous vanadium oxide film has a much more stable TCR with no hysteresis, which 

makes it a better candidate for thermal imaging applications than a single crystal film. 

An infrared imaging system consists of detectors in an FPA, imaging optics, electronic read 

out, and a hermetically sealed evacuated housing.  An important figure of merit for any 
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infrared imaging system is the Noise Equivalent Temperature Difference (NETD), defined 

as  

 𝑁𝐸𝑇𝐷 =
𝛥𝑇

𝑆𝑁𝑅
 , (1) 

where 𝛥𝑇 is the temperature difference and 𝑆𝑁𝑅 is the signal to noise ratio.  NETD is the 

minimum resolvable temperature contrast achievable for the imager.  Any object to be 

imaged by a detector system will emit radiation with a power representative of its 

temperature.  However, the background scene surrounding the object will also emit 

radiation, often with a similar intensity or spectral behavior.  In a low contrast (high NETD) 

image, the object will be obscured by the background radiation.  An improved detector 

with NETD < 50 mK will result in a more recognizable image [4].  Current state of the art 

imagers still have much lower contrast and resolution than are possible with a visible 

imager. 

As use of infrared detectors has become more widespread, the demand for better-

performing, lower-cost detectors has increased.  Efforts to enhance the performance of a 

vanadium oxide microbolometer without sacrificing fabrication complexity, cost, or power 

consumption are required to meet this need.  This can be achieved through increasing the 

TCR of the vanadium oxide or by increasing the device thermal isolation.  The former has 

limitations of the material properties of vanadium oxide; the latter involves a trade-off with 

response time.  Alternatively, detectors can be more thermally efficient by maximizing 

absorption. 
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Infrared detectors typically are optimized for LWIR or MWIR by Fabry-Perot [4, 13] and 

other resonant structures [14-16], whose peak absorbance and bandwidth depend on 

resonator Q and hence on fabrication tolerances.  Broadband absorbing films, such as metal 

black films, have been investigated as well [17-19].  These films are quite desirable for 

their low heat capacity (due to porosity) and high absorption over a much broader spectral 

range than is possible by any other mechanism.  In principle, such absorbing structures can 

be ideal tools for optimization as they can increase detector responsivity without increasing 

noise or thermal time constant. 

It is the aim of this research to evaluate various methods of increasing detector performance 

for a VOx microbolometer, developed and fabricated by Plasmonics, Inc.[20].  Chapter 2 

provides the theoretical background behind device operation, responsivity, noise, and 

characterization methods.  Chapter 3 describes device fabrication.  Included is a discussion 

of methods to improve mechanical strength and stability of the air bridge structure, as well 

as efforts to decrease the resistivity of the VOx film without affecting TCR.  The next two 

chapters deal with optimizing absorption by two kinds of absorbing films: Chapter 4 

reports integration of a broadband gold black film, while Chapter 5 reports the use of a 

metamaterial with multiple absorption peaks.  Finally, Chapter 6 provides a summary and 

comparative evaluation of methods described, as well as presents possible future 

experiments. 

Gold black has very high absorption over a broad spectral range [21].  Blanket coatings are 

easily achieved using an ordinary thermal evaporator, suggesting the possibility of 
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multiband sensors fabricated using a single material with minimal fabrication tolerances.  

This very low-density material is extremely fragile, which makes it difficult to integrate 

onto a micro-bolometer array, since usual fabrication processes destroy the film. A novel 

approach for patterning of gold black by a standard lift-off technique using evaporated SiO2 

as a protection layer has been demonstrated [22].  Measurements of detector performance 

with and without a gold black coating for comparison are reported. 

One trade-off of using metal black films is that they can be fragile, making them susceptible 

to standard fabrication processes.  While this fragility has been shown to be a solvable 

problem, it is indicative of a more fundamental concern.  Films are thermomechanically 

unstable due to their mixed grain size and porous structure, yet it is this very structure that 

gives gold black its high absorption.  These films can collapse over time, which results in 

a decrease in absorptance. More immediately, the absorptance of gold black will decrease 

at high temperatures, such as those experienced in standard vacuum packaging processes.  

Therefore an alternate absorbing material based upon a metamaterial structure is proposed. 

Metamaterials are much thinner than their resonant wavelengths and comprise resonant 

structures that are laterally sub-wavelength as well.  For LWIR applications, required 

dimensions are still within capability of standard UV photolithography, and dispersion 

within dielectric elements create multiple resonances that span the LWIR with strong 

absorption [23].  Such an absorber has been successfully on an optimized VOx 

microbolometer.  Responsivity and noise measurements are compared between devices 

with and without the absorbers, and a significant improvement is demonstrated.  
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CHAPTER TWO: THEORETICAL CONSIDERATIONS 

2.1 Blackbody Radiation Theory 

Planck’s Law describes the amount of energy emitted from a body in reference to the 

body’s internal temperature over a specific wavelength bandwidth.  This relationship can 

be determined by considering any object as a distribution of harmonic oscillators under 

Bose-Einstein statistics, which will emit photons with energy related to their frequency of 

oscillation.  Planck’s law defines the spectral radiance, 𝐿𝜆, as [24] 

 𝐿𝜆 =
2ℎ𝑐2

𝜆5[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]

  , (2) 

in which ℎ = 6.6 ×  10−34 𝐽 𝑠  is Planck’s constant, 𝑐 = 3 ×  108 𝑚/𝑠  is the speed of 

light in vacuum, 𝑘 = 1.38 × 10−23 𝐽/𝐾  is the Boltzmann constant, T is the internal 

temperature of the body, and  is the specific wavelength at which this energy is emitted.  

𝐿𝜆  typically has units of Watts cm-2 sr-1 µm-1 .  A full derivation of Eq. 2 is given in 

Appendix A. 

Spectral radiance is the power per unit source area emitted into a unit solid angle per unit 

wavelength interval.  The total radiance L in W cm-2 sr-1 within a finite bandwidth 𝜆1 − 𝜆2 

at a given temperature is found by integrating Eq. 2 with the substitution 𝑥 =
ℎ𝑐

𝜆𝑘𝑇
, giving 
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 𝐿 = +
2𝑘4𝑇4

ℎ3𝑐2 ∫
𝑥3

𝑒𝑥−1
𝑑𝑥

𝑥1

𝑥2
 , (3) 

which can be solved numerically.  Integration over all wavelengths gives 

 𝐿 =
𝜎

𝜋
𝑇4 , (4) 

which is the power per unit source area per unit solid angle, where σ is the Stefan-

Boltzmann constant 𝜎 =
2𝜋5𝑘4

15ℎ3𝑐2  (5.67 x 10-8 W m-2 K-4).  This assumes a Lambertian 

emitter where the radiance is proportional to cos (), where  is the angle with respect to 

the surface normal.  Integrating over a hemisphere gives 

 𝑀 = 𝜎𝑇4, (5) 

where M is the radiant exitance. Eq. 5 is the Stefan-Boltzmann Law.  The exitance contrast 

is found by differentiating Eq. 5 with respect to temperature, which is useful for thermal 

mapping of an image.  The exitance contrast is  

 𝜕𝑀

𝜕𝑇
= 4𝜎𝑇3 𝑊𝑎𝑡𝑡𝑠

𝑐𝑚2  𝐾
 . (6) 

Multiplying Eq. 6 by the area of the body, Ad, and by the emissivity of the object 𝜖 (𝜖 = 1 

for a blackbody) gives the total power leaving the object per degree, which is the defined 

as the thermal conductance by radiation, 

 𝐺𝑟𝑎𝑑 ≡ 4𝜎𝜖𝐴𝑑𝑇3 𝑊𝑎𝑡𝑡𝑠

𝐾
 . (7) 
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2.2 Responsivity 

2.2.1 Temperature Coefficient of Resistivity 

The resistance of a material is a function of temperature, given by [24] 

 𝑅(𝑇) = 𝑅0(1 + 𝛼𝛥𝑇) , (8) 

where R0 is the resistance at temperature T0, 𝛥𝑇 = 𝑇 − 𝑇0 , and 𝛼  is the TCR of the 

material, defined as  

 𝑇𝐶𝑅 ≡ 𝛼 =
1

𝑅

𝑑𝑅

𝑑𝑇
 . (9) 

In a metal, an increase in temperature will cause a decrease in the mobility of free carriers, 

which will cause the resistance to rise.  In a semiconductor, an increase in temperature will 

increase carrier mobility and density of mobile carriers.  For a semiconductor, the 

resistance can be modeled based on the thermal excitation of carrier density across a 

bandgap [25] 

 
𝑅(𝑇) = 𝑅0𝑒(

𝐸𝐴
𝑘𝑇

)
 , 

(10) 

where EA is the activation energy, equal to half of the bandgap energy Eg.  By the definition 

of TCR in Eq. 9 the TCR of a semiconductor can be expressed as  

 𝛼 = −
𝐸𝐴

𝑘𝑇
 . (11) 
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The bandgap energy for VOx is heavily dependent upon stoichiometry, but measurements 

on VO2 films have shown 𝐸𝐴 ≈ 0.7 𝑒𝑉 at room temperature [26]. By Eq. 11 the TCR for 

VO2 turns out to be roughly -4.5 %/K.  It is stressed that the bandgap energy and TCR of 

vanadium oxide films are heavily dependent upon stoichiometry and crystallography of the 

film, and that this calculation is a simplification of the TCR of VOx films.  In fact, TCR of 

VOx films typically are in the range of -2% to -3% [4].  A detailed discussion of TCR in 

VOx will be given in Chapter 3. 

2.2.2 Thermal Considerations 

The change in temperature as a function of incident power must be derived for analysis.  

The first law of thermodynamics is the law of the conservation of energy.  The internal 

energy E of a body is a function of both the work W done on the system and the heat Q 

transferred to or from other bodies in contact with it.  The change in energy per unit time 

of the body is written as [27] 

 𝑑𝐸

𝑑𝑡
=

𝑑𝑊

𝑑𝑡
+

𝑑𝑄

𝑑𝑡
 . (12) 

The heat is positive if it flows into the body; it is negative if it flows out of the body.  If no 

work is done on the system, then the change in energy is simply 

 𝑑𝐸

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
 . (13) 
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The specific heat, or heat capacity C, is defined by Ref. [27] as “the quantity of heat which 

must be gained in order to raise the temperature of the body by one unit”, and can be written 

as 

 𝐶 =
𝑑𝑄

𝑑𝛥𝑇
=

𝑑𝑄

𝑑𝑡

𝑑𝑡

𝑑𝛥𝑇
  , 

𝐶
𝑑𝛥𝑇

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
 . (14) 

A microbolometer is mostly thermally isolated from any heat sink, only connected by two 

support arms, as shown in Figure 2.  In this design, the positive heat in to the detector is 

the incident radiant energy, Pi, and the heat out of the detector is the conduction loss 

through the arms and by radiation.  The conduction loss is governed by the thermal 

conductance G, measured in W/K, which is a function of material properties and geometry.  

For this system, the heat 
𝑑𝑄

𝑑𝑡
 is 

 𝑑𝑄

𝑑𝑡
= 𝜂𝑃𝑖 − 𝐺𝛥𝑇 , (15) 

where 0 < 𝜂 < 1 is the absorbtance of the detector film describing the amount of incident 

power that is absorbed by the film, and 𝛥𝑇 represents the change in temperature between 

the VOx detector and the heat sink. 
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Figure 2. Thermal schematic for a bolometer.  Energy comes in to the detector by 

radiation from the source, energy leaves by conduction through the two arms and by 

radiation.  

Combining Eqs. 14 and 15 gives 

 𝐶
𝜕(𝛥𝑇)

𝜕𝑡
+ 𝐺𝛥𝑇 = 𝜂𝑃𝑖 . 

(16) 

Eq. 16 is called the heat-balance equation.  The assumption is made that the incident power 

is modulated such that 𝑃𝑖 = 𝑃𝑖𝑒𝑖𝜔𝑡, where 𝜔 = 2𝜋𝑓 is the frequency of modulation.  In 

practice, this is achieved by using an optical chopper in front of the detector. 

One additional source of heating in the device is bias heating, also known as Joule heating, 

or i2R heating.  To understand this, a brief description of the measurement technique is 

necessary.  To measure a change in resistance of the microbolometer, the detector is DC-
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biased with a constant current source.  The resistance deviation is determined from the 

deviation in potential across the detector, 𝛥𝑅 ∝ 𝛥𝑉.  The simplest and most direct way to 

do this is to use a voltage divider circuit, shown in Figure 3.  A low-noise DC voltage 

source applies a constant current.  The detector is in series with an impedance-matched 

resistor RL, such that the voltage across the resistor is  

 𝑉𝑜𝑢𝑡 = 𝑉𝐵
𝑅

𝑅𝐿+𝑅
 . (17) 

Differentiating Eq. 17 with respect to a change in resistance yields  

 𝑑𝑉𝑜𝑢𝑡 = 𝑉𝐵
𝑅𝐿

(𝑅𝐿+𝑅)2 𝑑𝑅 ≈
𝑉𝐵

4

𝑑𝑅

𝑅
 , (18) 

where the approximation 
𝑅𝐿

(𝑅𝐿+𝑅)2 ≈
1

4𝑅
 is appropriate for 𝑅 ≈ 𝑅𝐿 , as is designed in the 

circuit. 

 

Figure 3. Schematic for a voltage divider circuit used to measure 𝛥𝑉 across the detector, 

and by extension, measure 𝛥𝑅. 
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The heat balance equation can now be adjusted to include the Joule heating term as 

 𝐶
𝜕(𝛥𝑇)

𝜕𝑡
+ 𝐺𝛥𝑇 = 𝜂𝑃𝑖 + 𝑖2𝑅 = 𝜂𝑃𝑖𝑒𝑖𝜔𝑡 +

𝑉𝐵
2𝑅

(𝑅𝐿+𝑅)2 . 
(19) 

In the absence of external heating (𝑃𝑖 = 0) the steady-state solution to Eq. 19 is 

 𝐺0𝛥𝑇 = 𝑖2𝑅 =
𝑉𝐵

2𝑅

(𝑅𝐿+𝑅)2 . 
(20) 

G0 is the average thermal conductance of the material at temperature T.  The Joule heating 

term depends upon resistance, which of course is a function of temperature.  Therefore, in 

the dynamic heat balance equation with external heating the Joule heating term is 
𝑑(𝑖2𝑅)

𝑑𝑇
, 

which is solved as 

 𝑑

𝑑𝑇
(𝑖2𝑅) =

𝑑

𝑑𝑅
(𝑖2𝑅)

𝑑𝑅

𝑑𝑇
=

𝑑

𝑑𝑅
(

𝑉𝐵
2𝑅

(𝑅𝐿+𝑅)2) 𝑅𝛼 = 𝛼
𝑉𝐵

2𝑅

𝑅𝐿+𝑅

𝑅𝐿−𝑅

(𝑅𝐿+𝑅)2 . 
(21) 

The heat balance equation with Joule heating becomes  

 𝐶
𝜕(𝛥𝑇)

𝜕𝑡
+ 𝐺𝛥𝑇 = 𝜂𝑃𝑖𝑒𝑖𝜔𝑡 +

𝑉𝐵
2𝑅

(𝑅𝐿+𝑅)2

𝑅𝐿−𝑅

𝑅𝐿+𝑅
𝛼𝛥𝑇 , 

(22) 

Using the steady state solution in Eq. 20, Eq. 22 can be written as 

 𝐶
𝜕(𝛥𝑇)

𝜕𝑡
+ {𝐺 − 𝐺0𝛥𝑇𝛼

𝑅𝐿−𝑅

𝑅𝐿+𝑅
} 𝛥𝑇 = 𝜂𝑃𝑖 . 

(23) 

The term in the brackets is defined as the effective thermal conductance Geff.  The heat 

balance can finally be written as 
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 𝐶
𝜕(𝛥𝑇)

𝜕𝑡
+ 𝐺𝑒𝑓𝑓𝛥𝑇 = 𝜂𝑃𝑖𝑒

𝑖𝜔𝑡 . (24) 

Eq. 24 is an inhomogeneous first-order differential equation, which seeks a solution of the 

form 𝛥𝑇 = 𝐴𝑒𝑖𝜔𝑡.  Solving this equation yields  

 
𝛥𝑇 = 𝑇0𝑒−

𝐺𝑒𝑓𝑓

𝐶
𝑡 +

𝜂𝑃

𝐺+𝑖𝜔𝐶
. 

(25) 

The first term in Eq. 25 is a transient term, which, provided Geff  > 0, will tend towards 

zero.  The latter term is the periodic dependence that is related to the modulation frequency 

of the incident power, that is, it is the desired signal to observe.  The magnitude of the 

change in temperature is found from the real part of Eq. 25, and is  

 |𝛥𝑇𝑑| =
𝜂𝑃𝑖

𝐺√1+𝜔2𝜏𝑡ℎ
2

 ,  (26) 

where the ratio of heat capacity C to the thermal conductance is defined as the thermal time 

constant, as 

 𝜏𝑡ℎ =
𝐶

𝐺𝑒𝑓𝑓
. (27) 

2.2.3 Responsivity of a Microbolometer 

The responsivity of a microbolometer is defined as the ratio of the measured response to 

incident power.  Specifically, voltage responsivity ℛ𝑣 is the measured change in voltage 

divided by the incident power, 
𝑑𝑉𝑜𝑢𝑡

𝑃𝑖
.  The measurable signal voltage is given in Eq. 18.  
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The definition of TCR in Eq. 9 can be rewritten as 
𝑑𝑅

𝑅
= 𝛼𝑑𝑇 ≈ 𝛼𝛥𝑇.  This is combined 

with Eq. 26 and substituted into Eq. 18 to give 

 𝑑𝑉𝑜𝑢𝑡 =
𝑉𝐵𝛼𝜂𝑃𝑖

4𝐺𝑒𝑓𝑓

1

√1+𝜔2𝜏𝑡ℎ
2

. (28) 

The voltage responsivity ℛ𝑣 is  

 ℛ𝑣 =
𝑉𝐵𝛼𝜂

4𝐺𝑒𝑓𝑓

1

√1+𝜔2𝜏𝑡ℎ
2

 . (29) 

According to Eq. 29, the voltage responsivity of a detector is dependent upon 6 parameters: 

(1) applied bias voltage, (2) the TCR of VOx, (3) device absorption, (4) effective thermal 

conductance, (5) modulation frequency, and (6) heat capacity.  The applied bias and the 

modulation frequency are independent upon device design.  The heat capacity effects 

performance only if the thermal time constant 𝜏 =
𝐶

𝐺𝑒𝑓𝑓
 is long compared to the modulation 

frequency; for 𝜏 ≪ 𝜔 the effect of heat capacity on responsivity is negligible (this will be 

discussed later in relation to measurements of thermal time constants in fabricated devices).  

Hence, the three parameters that can optimize the responsivity are TCR, absorption and 

thermal conductance. 

2.3 Noise Considerations 

Noise is inherent in any detection system, and is a result of random fluctuations in various 

components of the system.  Noise in an infrared detector can be found in each of three 
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components of the system: photon flux, detector, and amplifier/electronic read-out.  The 

scope of this work will focus on detector noise, which in general will have the largest 

contribution to total system noise, and is the limiting factor in the total noise of the system. 

Many noise sources are independent of the electronic frequency; these are called white 

noise.  Common types of white noise are Johnson Noise, Thermal Fluctuation Noise 

(phonon noise), and Background Fluctuation Noise (photon noise).  Some sources of noise 

depend upon frequency.  An example of so-called pink noise is 1/f noise, named simply by 

the relationship between noise voltage and frequency domain.  There is often a noise peak 

at 60 Hz and harmonics of this value, which comes from cross-talk effects from supplied 

AC electrical power.  Other common types of detector noise include shot noise and 

generation-recombination noise; these only relate to photon detectors however.  The four 

main types of noise for a microbolometer are Johnson noise, thermal fluctuation noise, 

background fluctuation noise, and 1/f noise. 

2.3.1 Johnson Noise 

Johnson noise (sometimes referred to as Johnson-Nyquist noise) is essentially a thermal 

effect; it is derived from the fluctuations in thermal motion of charge carriers in a resistor.  

These fluctuations give rise to a variation in the total resistance of the material, and thus to 

the potential across this resistor.  Johnson noise is only present for detectors that need an 

external bias, which of course includes the microbolometers under investigation.  The mean 

RMS voltage fluctuation for Johnson noise is given by [24] 
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 𝛿𝑉𝑗 = √4𝑘𝐵𝑇𝑅𝛥𝑓,  (30) 

where 𝛥𝑓 is the electronic measurement bandwidth, which is related to the measurement 

integration time 𝜏𝑒 as  

 𝛥𝑓 =
1

2𝜏𝑒
. (31) 

To reduce Johnson noise, the detector can be cooled using a Peltier device, or even 

cryogenically, but would no longer be an uncooled detector, which is desired for low cost 

and low power consumption.  As the detector heats up (from the scene or Joule heating) 

this noise will increase, however the temperature change, given by Eq. 26, will be 𝛥𝑇~
𝑃

𝐺
, 

where P here is generalized to the absorbed power by any method.  As incident power is 

typically in the nanowatt range, and thermal conductance is typically ~10-7-10-6 W/K, the 

temperature change will generally be limited to ~1 K or less, an increase of 0.3% from 

ambient temperature.  The increase in noise therefore would be ~0.17%, which would 

likely be below the noise floor of other noise sources, and can be considered negligible. 

It can be concluded that for an uncooled detector with a specific bandwidth, the only way 

to reduce the Johnson noise is to reduce the resistance of the detector, and the noise reduces 

by √𝑅. 
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2.3.2 Thermal Fluctuation Noise and Background Fluctuation Noise 

Thermal fluctuations arise from the exchange of heat between different bodies.  This effect 

is not necessarily dependent upon a difference in temperature; small heat exchanges will 

occur between thermally connected bodies even if they are at the same temperature, 

provided the net exchange of heat is zero [10].  This arises from random fluctuations and 

collisions of particles, modeled as harmonic oscillators, through thermal conduction paths.  

Specifically, any heat exchange by means of conduction or convection is called thermal 

fluctuation noise, while heat exchange by means of radiation only is called background 

fluctuation noise.  The latter is considered to be the ultimate limit of performance for a 

thermal detector, and is not a possible noise floor as some thermal conduction must be 

present for the device to function. 

The thermal fluctuation noise can be derived from the solution to a general case of the heat 

balance equation (Eq. 16) in which the power will be considered to be from any source.  

The solution will look similar to Eq. 26, but written in terms of the mean square fluctuation 

of temperature, such that 

 𝛥𝑇2̅̅ ̅̅ ̅ =
𝛥𝑃2̅̅ ̅̅ ̅̅

𝐺2+𝜔2𝐶2 . 
(32) 

Thermal fluctuations are white noise.  To account for this Eq. 32 is integrated over all 

electronic frequencies f.  Considering =2πf and ∫
𝑑𝑥

𝑎2+𝑏2𝑥2

∞

0
=

1

𝑎𝑏
tan−1 [

𝑏𝑥

𝑎
]|

0

∞

this integral 

solves as 
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 𝛥𝑇2̅̅ ̅̅ ̅ =
𝑃2̅̅ ̅̅

4𝐺𝐶
. 

(33) 

The mean square temperature fluctuations can also be solved for considering the mean 

square energy fluctuations of a canonical system possessing many degrees of freedom [10, 

28] 

 𝛥𝑇2̅̅ ̅̅ ̅ =
𝑘𝑇2

𝐶
. (34) 

Eq. 34 is equated to Eq. 33 to solve for the mean square fluctuations in power.  This is then 

substituted into Eq. 32 to obtain the RMS temperature fluctuation for the detector[24], 

 √𝛥𝑇2̅̅ ̅̅ ̅ =
√4𝑘𝐺𝑇2𝛥𝑓

𝐺√1+𝜔2𝜏𝑡ℎ
2

. 
(35) 

Combining the voltage differential (Eq. 18) with the definition of TCR (Eq. 9) gives  

 𝑑𝑉𝑜𝑢𝑡 =
𝑉𝐵

4
𝛼𝑑𝑇. (36) 

This equation was utilized to describe the voltage responsivity as a function of the change 

in temperature due to incident power; however it can also be used to describe the noise 

voltage for the temperature fluctuations.  A substitution of the temperature fluctuation for 

dT gives the RMS voltage fluctuations for thermal fluctuation noise 
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𝛿𝑉𝑇𝐹 =

𝑉𝐵

4
 𝛼

√4𝑘𝐺𝑇2𝛥𝑓

𝐺√1+𝜔2𝜏𝑡ℎ
2

= √
4𝑘𝐺𝑇2𝛥𝑓ℛ2

𝜂2  , 
(37) 

where the term on the right utilized the defined voltage responsivity from Eq. 29.   

The most straightforward analysis of temperature fluctuation noise is from Eq. 35, in which 

it is clear that the only way to minimize thermal fluctuation noise is through thermal 

isolation. 

Background fluctuation noise can be derived by replacing the thermal conductance G in 

Eq. 35 or 37 with the thermal conductance by radiation, Eq. 7, 

 
𝛿𝑉𝐵𝐹 = √

16𝑘𝜎𝐴𝑑𝑇5𝛥𝑓ℛ2

𝜂
 , 

(38) 

where Kirchhoff’s Law (𝜂 = 𝜖) is utilized [24].  It should be noted that ℛ𝑣
2 ∝ 𝜂2, so there 

is no dependence on absorbtance for thermal fluctuation noise, but 𝛿𝑉𝐵𝐹 ∝ 𝜂
1

2. 

2.3.3 1/f Noise 

A noise source present in microbolometers but that is poorly understood is 1/f noise, so 

called due to its experimentally-determined dependence upon frequency.  This type of 

noise is related to slow fluctuations in the resistance of a material, and is therefore 

proportional to the bias current or bias voltage applied across the resistor. This noise is 

material dependent; differences in material, deposition technique, dimensions, and the 
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quality of electrical contacts can affect 1/f noise by orders of magnitude [25].  In particular, 

1/f noise is affected by film imperfections and non-ohmic contacts [24].   

1/f noise is present at any and low electrical frequencies, regardless of the modulation 

frequency of the detector.  It is advantageous, therefore, to operate a detector at a frequency 

above the 1/f noise floor; further reduction of 1/f noise can be achieved by using an 

amplifier circuit with a high-pass filter to as a DC-block.  There is no complete analytical 

derivation or description of 1/f noise, but experimental observations indicate that the mean 

square voltage magnitude in a 1 Hz electrical bandwidth is approximately [10] 

 

𝑉1/𝑓 = √(
𝑉𝐵𝑅

𝑅𝐿+𝑅
)

~2

𝑘𝑓

𝑓~1  , 

(39) 

where kf is the 1/f parameter, related to the Hooge parameter 𝛼𝐻 by 

 𝑘𝑓 =
𝛼𝐻

𝑛𝑉
 , (40) 

where n is the mobile charge carrier density and V is the volume of the film [25].  For VOx 

microbolometers (TCR ~-2.0%) developed at Honeywell, R.A. Wood reports a typical 

value of 𝑘𝑓 ≈ 1 ×  10−13 [25].   

Basantani et al. [29] report measurements for the normalized Hooge parameter 𝛼𝐻/𝑛 in 

cm3 for microbolometers using a variety of thin films, including hydrogenated amorphous 

silicon, mixed phase hydrogenated amorphous germanium and amorphous VOx, both 

doped and undoped.  For high resistivity films (>104 Ω-cm) they find 
𝛼𝐻

𝑛
≈ 10−20 −
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10−17 𝑐𝑚3, while films with resistivity between 0.1-1 Ω-cm have 
𝛼

𝑛
≈ 10−22 𝑐𝑚3.  They 

find that the Hooge parameter is related to fluctuations in carrier mobility, which is in itself 

dependent upon material and specifically imperfections in that material. 

It should be stressed that the magnitude of 1/f noise is unique to each device and is 

dependent upon the quality of the electrical path in the detector.  This analysis really only 

investigates the 1/f noise in the VOx film, however 1/f noise will be present in all of the 

electrical contacts from the detector to the voltmeter, the most significant of which 

probably would be the isolation arms that connect the pixel to the substrate heat sink.  This 

can increase the measured value of 1/f noise by orders of magnitude above approximated 

calculations. 

2.3.4 Total System Noise 

Noise voltages add in quadrature, so that the total system noise is given by 

 
𝑉𝑁,𝑇𝑜𝑡𝑎𝑙 = √𝑉𝑗

2 + 𝑉𝑇𝐹
2 + 𝑉𝐵𝐹

2 + 𝑉1/𝑓
2  . 

(41) 

Figure 4 presents the calculated noise voltage per unit root bandwidth for each of the four 

main types of detector noise in a microbolometer based off of typical parameters.  In these 

calculations, T=300K, Δf=30 Hz, the TCR α=-2.0%, thermal conductance G=5.0 × 10-7 

W/K, thermal time constant τth = 5 ms, absorbtance η=0.9, and the detector has an area Ad= 

35  × 35 µm2 with a thickness of t=100 nm.  The applied bias voltage VB = 1V.  The 
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normalized Hooge parameter 
𝛼𝐻

𝑛
 = 1.225 × 10-23 cm3 is chosen based upon earlier analysis, 

but uncertainty in this number could shift the 1/f curve vertically by as much as an order 

of magnitude.  By this chosen approximation the 1/f noise dominates at low frequencies, 

while Johnson noise dominates above 10 Hz for a 200kΩ detector; this point is sometimes 

referred to the knee [10].  If the resistance of the detector were to drop to 50 kΩ, the 1/f 

knee extends to 30 Hz, which is typically the video frame rate.  Background fluctuation 

noise is quite small, and thermal fluctuation noise has some slight dependence in frequency 

from the thermal response term in Eq. 37.  Such a device (both 50 kΩ and 200 kΩ detectors) 

would be said to be Johnson noise limited, as this is the dominant noise source for standard 

operating frequencies. 

 

Figure 4. Noise voltage per unit root bandwidth for each of the four main types of 

detector noise as a function of modulation frequency at 1V applied bias. 
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The applied bias does not affect Johnson noise but it has an impact on the other noise 

sources.  The RMS temperature fluctuation in a device is independent of bias voltage, but 

a greater applied bias will result in a greater voltage response to temperature.  This affects 

the desired voltage responsivity in a positive way, however the noise voltage due to 

background fluctuations and thermal fluctuations increases as well. Figure 5 presents the 

noise voltage per unit root bandwidth as a function of applied bias voltage at a 30 Hz 

modulation frequency.  For a 200 kΩ resistor, the detector is Johnson-noise limited up to 

2.0V, however beyond this point the 1/f noise begins to dominate.  For a detector with 

lower resistance, 1/f noise dominates at only ~1V, as was shown in Figure 4.  Temperature 

fluctuation noise dominates beyond Johnson noise above ~4V applied bias at a 30 Hz 

modulation frequency. 

The optimal applied bias is hence the maximum bias that still keeps the detector Johnson 

noise limited; based upon these calculation this is approximately 2V for the 30 Hz 

frequency.  Another approach would be to measure the detector at higher frequencies.  An 

80 Hz modulation frequency would allow for higher applied bias while remaining Johnson-

noise-limited, and is sufficiently above the common noise feature 60 Hz. 
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Figure 5. Noise voltage per unit root bandwidth for each of the four main types of 

detector noise as a function of applied bias voltage. 

2.4 Optimization Techniques 

The previous two sections have described the factors that influence detector performance.  

Microbolometers can be characterized and compared based upon the signal to noise ratio 

(SNR) for a given incident power. Higher SNR for a given incident power indicates a better 

device.  Hence, improving device performance means increasing responsivity and/or 

decreasing noise.  Parameters to optimize are the TCR and resistivity of the VOx film, the 

thermal conductance G of the detector, and the absorbtance 𝜂 of the detector. 
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2.4.1 TCR and Resistivity 

The resistance of a vanadium oxide film is heavily dependent upon temperature and 

stoichiometry.  Crystalline VO2 has a sharp metal-to-insulator transition (MIT) at 68˚C that 

can be utilized for a number of devices [30]. Different stoichiometric configurations of 

vanadium oxide show this transition occurs at different temperatures [31].  However, these 

phase transitions are hysteretic [32], and such a non-linear effect is not desirable for 

infrared imaging systems.   

Amorphous VOx films for microbolometers were developed by Honeywell [25].  These 

films show a linear TCR over a broad range of temperatures.  The value of the TCR is 

closely related to the resistivity; this relationship is given by 𝑇𝐶𝑅 ∝ 𝐿𝑜𝑔(𝜌) (see Figure 

6).  To maximize responsivity, TCR must be increased; unfortunately increasing TCR also 

increases resistivity, which increases Johnson noise.  For microbolometers, VOx films 

generally have a TCR between -2.0% and -3.0%, with a resistivity between  0.1-1 Ω-cm 

[4].   
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Figure 6. TCR as a function of resistivity for VOx films [25]. Reprinted from Uncooled 

Infrared Imaging Arrays and Systems, Semiconductors and Semimetals Vol. 47, Wood, 

R.A., Monolithic Silicon Microbolometer Arrays, page 55, Copyright 1997, with 

permission from Elsevier and Academic Press. 

In part, VOx can be characterized by the value of x, that is, by the ratio of vanadium to 

oxygen in the film [33].  Typically, these films have 1.5 < x < 2 [4, 8, 10, 34, 35].  As x 

increases, the film becomes more insulating, and the TCR goes up.  As x gets smaller, the 

film is more metallic, and the TCR is low.  This content is heavily dependent upon 

deposition parameters. 

2.4.2 Thermal Conductance 

Detector performance is heavily dependent upon how well thermally isolated it is.  The 

higher the thermal isolation, the more the detector will change in temperature.  If a detector 
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is not well isolated, then any incident power will flow out of the detector too quickly and 

will not allow the detector to increase its temperature for a sufficient resistance change.  

Low thermal conductance is thus desirable. 

Thermal conductance also effects responsivity by way of the thermal time constant in the 

1

√1+𝜔2𝜏2
 term found in Eq. 29.  In this case, it is not simply the thermal conductance, but 

the ratio of heat capacity to thermal conductance that is important.   To mitigate this term 

and give high performance, one may suggest choosing a low operating frequency such that 

1 + 𝜔2𝜏2~1, which is possible even for high thermal time constants.  Indeed, some kinds 

of sensors, such as pyroelectric-based motion detectors, are designed to operate at 

frequencies of 1 Hz or even less [36].  However, this constraint is not suitable for an IR 

imaging system if the desire is to operate at video frame rates, as is typical.  For a 30 Hz 

frame rate 𝜔 = 2𝜋𝑓 = 188.5 𝑠−1 .  For a thermal time constant of 1 ms, the term  

1

√1+𝜔2𝜏2
= 0.98 .  At 10 ms, this term drops to 0.47.  For the fastest frame rate, it is desirable 

to decrease heat capacity instead of increasing thermal conductance if possible. 

The device considered consists of the VOx film encapsulated between two identical 

dielectric layers and connected to the substrate by two metal arms.  The thermal 

conductance and heat capacity can be determined by device geometry and material 

properties as [37] 

 𝐶 = 𝑐𝑖𝜌𝑖𝑡𝑖𝐴𝑑  , (42) 
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where C is the heat capacity determined by specific heat 𝑐𝑖, density 𝜌𝑖, thickness ti and area 

Ad of the VOx and dielectric layers, and [38] 

 𝐺 =
2𝑔𝑡𝑤

𝑙
 , (43) 

where G is the thermal conductance through the two arms of the microbolometer, which is 

determined by arm geometry (t, w, and l) and the thermal conductivity g of the metal.  

Total thermal conductance is, of course, not just limited to heat transfer through the arm, 

but also by radiation (Eq. 7) and by conduction through the air.  The latter can be the 

greatest source of heat loss in a detector.  Devices in air at atmospheric pressure will have 

a conductance given by [37] 

 𝐺𝑎𝑖𝑟 =
𝑔𝑎𝑖𝑟𝐴𝑑

𝑑
, (44) 

where gair=0.0257 W/mK and d is the air gap between the detector and the substrate.  To 

remove this thermal path detectors are usually operated in vacuum.  It has been shown that 

at pressures under 100mTorr the thermal conductance of air will be negligible compared 

to the thermal conductance through the arms [39, 40]. 

Thermal Conductance through the arms of a microbolometer as a function of arm length is 

presented in Figure 7.  For this calculation, arms are set to be 4µm wide and 100 nm thick 

80/20 nichrome (NiCr), chosen for its low thermal conductivity of 11.3 W/mK [41].  By 

increasing the arm length from 1µm to 20 µm, thermal conductance is reduced by a factor 

of ~15, increasing arm length from 20 µm to 100 µm further reduces the arm length a factor 
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of 5.  Beyond this concerns about mechanical stability outweigh the benefits of a marginal 

decrease in thermal conductance.  

 

Figure 7.  Thermal Conductance through microbolometer support arms as a function of 

arm length, compared with the limits of radiation and conduction of air at atmospheric 

pressure. 

2.4.3 Absorptance 

All light incident upon the detector will either be reflected, transmitted or absorbed.  These 

quantities can be defined as the reflectance, transmittance and absorbtance, such that the 

sum of these quantities at any given wavelength will be one.  To improve the efficiency of 

the detector it is desired to maximize the amount of light absorbed by the detector in the 

desired bandwidth of operation.   Thus device performance can be improved by increasing 

the magnitude of the absorbtance and/or increasing the bandwidth in which absorbtance is 
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high.  LWIR is generally the desired bandwidth for uncooled microbolometers, as 

microbolometers will likely never reach the performance of an uncooled photoconductor 

(such as lead selenide) in the MWIR [24].  However, a microbolometer that performs well 

in both LWIR and MWIR would be desirable.  Common techniques to increase absorbtance 

include the use of a: (1) Fabry-Perot quarter wave cavity, (2) thick dielectric layer, (3) 

metal black layer, and (4) plasmonic resonant structure. 

2.4.3.1 Fabry-Perot Quarter Wave Cavity 

A quarter wave cavity is a common method of achieving high absorption in an infrared 

detector [4, 42-44].  The basic principle is quite simple: light that is transmitted through a 

detector exits the bottom plane of the detector and enters the resonant cavity.  The light 

travels a distance 
𝜆

4
 through the cavity.  At the other end of the cavity is a near perfect 

reflector, generally a thick metal.  Upon reflection off of this metal the light has an 180˚ 

phase shift, and then travels a distance 
𝜆

4
.  The result is a standing wave with a maximum 

at the bottom surface of the detector.  In practice, the material in the detector affects the 

optical path length of the light, so that the given explanation is adjusted so that the standing 

wave maximum, and hence the maximum absorption, occurs at wavelengths of 
𝜆𝑥

4
, where 

𝜆𝑥 is the index-dependent wavelength of light in the material [4].  Detectors using this 

method can achieve high absorption at a particular designed wavelength.  This approach 

does not necessarily give a narrow band of absorption, but the bandwidth is limited based 

upon design parameters. 
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A plot of the simulated reflectance spectrum for a quarter wave cavity design is shown in 

Figure 8.  This simulation was done using GD-Calc [45], a Mat-Lab based electromagnetic 

simulation software package that utilizes Rigorous Coupled-Wave Analysis (RCWA).  The 

simulated stack consists of a 100 nm Au reflector, a 2 µm air gap, and the SiO2/VOx/SiO2 

device with thicknesses of 300 nm/100nm/300nm.  Index values for VOx are based off of 

ellipsometry measurements from a witness sample of VOx.  The transmittance in this 

simulation is ~0; the absorptance can be assumed to be unity less the reflectance. 

The calculated spectrum shows little or no absorption occurring in the MWIR.  The peak 

of the absorptance of 93% is at 9.3 µm, which is due to the absorption band of SiO2.  The 

secondary peak at 12.9 µm of 82% is the Fabry-Perot resonance from the cavity.  The 

average absorption in the LWIR is 71%.  

 

Figure 8. Simulated reflectance spectrum of quarter wave cavity. 
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2.4.3.2 Thick Dielectric Layer 

Dielectrics, such as silicon dioxide and silicon nitride, can have absorption peaks in the 

infrared.  Silicon dioxide has a peak around 8.3 µm [46] and silicon nitride has a peak at 

11.7 µm [47].  It is possible to deposit a mixture of these two dielectrics (silicon oxynitride) 

which can have different absorption spectra altogether, achieving desired absorption peaks.  

To achieve high absorption, however, the thickness of the layers must be quite thick, 

resulting in a high heat capacity C of the detector, and a high thermal time constant by 

extension. 

2.4.3.3 Metal Black Layer 

Metal blacks have been investigated as mechanisms for achieving high absorption [18, 21, 

36, 48, 49].  These films are pure elemental metals, but are arranged in porous, web-like 

structures with large voids.  These voids cause scattering within the material, as light is 

internally reflected multiple times in random and varied geometric planes.  Pfund first 

discovered metal blacks by depositing bismuth films at ~250 mTorr pressure in an inert 

gas [50].  At this high pressure, he concluded that deposited particles did not easily align 

to existent lattice structures in a film, and therefore were loosely bound to each other.  

Marshall et al. used platinum black for high emissivity surfaces in pyroelectric detectors 

fabricated for Honeywell [51].  They achieved this by electroplating platinum at a rapid 

deposition rate.  They noted that when the rate is too low, the Pt atoms adhere to the 

structure of the substrate and form a smooth, reflecting film, but at higher rates the atoms 
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are deposited in a disordered fashion.  Becker et al. evaluated gold black films for 

absorption between 15-700 µm [21], and observed that the absorption decreases at higher 

frequencies.  This can be explained both in terms of the size of the voids and in terms of 

the conductivity of the film. 

Gold black is a good absorber for infrared because it has a high absorption over a broad 

spectral range and it has a low heat capacity due to its porosity [17].  Coatings are easily 

achieved using an ordinary thermal evaporator, which suggests the possibility for 

multiband sensors fabricated using a single material with minimum fabrication tolerances.  

On the other hand, this material is extremely fragile, which makes it difficult to integrate 

on a microbolometer array as typical fabrication processes destroy the film.  Recently, a 

process to pattern gold black using standard photolithography and lift-off techniques has 

been demonstrated [22], which has influenced the choice of this material in this work to 

optimize the absorbtance of the microbolometer. 

2.4.3.4 Plasmonic Resonant Structures 

The field of plasmonics is the study of the interaction between light and structured 

subwavelength elements, defined by their complex electrical permittivity 𝜖(𝜔)  and 

magnetic permeability 𝜇(𝜔).  Plasmonic structures, sometimes referred to as resonant 

structures or metamaterials, are good candidates for electromagnetic wave absorbers 

because they depend on the geometry of the structure [15].  As such, these structures can 

be tailored to achieve absorption at almost any frequency, considering fabrication 
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constraints, and have been shown to function from mm-waves through the visible 

spectrum.  Structures are structured from highly conducting metals, and are typically 

arranged into periodic structures. As light interacts with the metallic structure, it creates a 

resonating dipole, which will then interact with adjacent dipoles and cause them to 

resonate.  This results in the propagation of electron oscillations, commonly referred to as 

surface plasmons. 

A ‘metamaterial perfect absorber’ (MPA) consists of a metal ground plane and dielectric 

layer, with a periodic, metallic metamaterial above a metal ground plane and separated by 

a dielectric layer [15].  For a metal such as gold, the dielectric function (relative 

permittivity) is given by [52] 

 𝜖(𝜔) = 𝜖∞ −
𝜔𝑝

2

𝜔2+𝑖𝛾𝜔
 , (45) 

where the plasma frequency is  𝜔𝑝 =
𝑛𝑒2

𝜖𝑜𝑚
 and 𝛾 is the damping frequency associated with 

collisions, which is the inverse of the relaxation time for a free electron gas, and 𝜖∞ is the 

static permittivity at infinite frequency.  For a simple metal-dielectric interface, the wave 

vector of a surface plasmon is given by 

 

𝑘𝑥 =
𝜔

𝑐
√

𝜖𝑚 + 𝜖𝑑

𝜖𝑚𝜖𝑑
 

(46) 

The dispersion relation of a material can be represented as a plot of the wave vector in 

frequency space.  Thus, the frequencies at which the specific modes of a periodic resonator 
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intersect with the dispersion relation of the material are the frequencies at which light will 

couple in to the material; that is, where absorption will be highest.  

Such absorbers can obtain can obtain a very high absorbtance, but typically only in a 

narrow band.  Liu et al. developed a metal-dielectric-metal (MDM) structure by placing a 

periodic array of gold disks (350 nm diameter by 20 nm thick) on a layer of Au/MgF2 

200nm/30nm [14], which resulted in an absorbtance of 0.99 at a frequency of 185 THz 

(~1.67 µm), although the full width half maximum (FWHM) of this peak is only ~30 THz 

(~1.5-1.7 µm absorption band). 

Plasmonic metamaterials have been integrated with microbolometers and shown signal 

enhancement.  Erturk et al. [53] patterned an array of concentric C-shaped patterns of gold 

onto silicon nitride on a standard microbolometer and measured an 18% increase in 

absorption.  The unit cell of these absorbers was 5 x 6 µm2, and the critical dimension was 

600nm, which is below the limitations of standard UV photolithography.   In contrast, 

Ogawa et al. [54] made features large enough to be compatible with standard 

photolithography.  They etched holes of 3 µm in diameter and a depth of 1.2 µm into a 

dielectric film and deposited an overcoat of gold.  By altering the period of these holes 

from 4 µm to 6.5 µm they were able to shift the peak absorbtance from 4 µm to 6.5 µm, 

matching the periodicity, although the absorbtance was 30% less for the highest 

wavelength.  Zhu et al. [55] designed an absorber to minimize heat capacity.  Unlike other 

plasmonic absorbers, which generally consist of ~1 µm dielectric, they deposited only 200 

nm silicon nitride and patterned 20 nm strips of gold of dimension 1.5 µm x 0.15 µm.  
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While the absorption of this film only achieved 45%, the minimal increase in heat capacity 

makes this approach attractive. 

The optimization goals in the implementation of such a plasmonic resonant structure is to 

maximize the absorptance over a wide bandwidth through multiple absorption peaks.  

While some heat capacity increase is expected, keeping this effect minimal is important for 

device response time.  

2.5 Measurement Techniques 

2.5.1 Testing Schematic 

Detectors are measured and characterized in a typical blackbody test configuration [24].  

The schematic for this configuration is shown in Figure 9.  A calibrated blackbody source 

(IR-301 Infrared Systems Development Corporation) is used as the power source.  This 

uses a cavity configuration with an active PID controller to maintain a stable temperature 

to within 0.1˚C, and can reach temperatures up to 1200˚C.  For testing described in this 

work temperatures ranged between 300˚C-500˚C.  The blackbody is set a distance r=14-

24 cm away from the detector, and the power from the blackbody is modulated using an 

optical chopper to frequencies between 10 Hz-160 Hz. 

Detectors were connected via patterned metal traces on the substrate to large gold bond 

pads.  These bond pads were wire bonded to standard chip carriers using aluminum wire.  

These chip carriers were placed in a vacuum box with electrical feedthroughs.  The box 
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has a Thallium Bromo-Iodide (KRS-5) window, which has a transmission of ~70% from 

0.6-40 µm wavelength.  This box was pumped down to ~20 mTorr before any testing 

commenced to reduce the thermal conductance through air.   

The detector is connected to a simple voltage divider circuit shown in Figure 3.  Bolometer 

and load resistances were matched 𝑅𝐿 ≈ 𝑅, and the circuit was biased with a low-noise DC 

source.  Based upon noise concerns raised earlier, the bias voltage was maintained between 

1-3V.  The modulation in Vout due to the chopped incident IR irradiance is the quantity 

dVout (Eq. 28), which was synchronously amplified using a lock-in amplifier (Stanford 

Research Systems SR530 analog and SR850 digital) with a 30 ms integration time constant.  

The modulation frequency was referenced via an output from the optical chopper.  A 

spectrum analyzer (HP 3585) was also used to identify the power spectrum of the noise.  

This was particularly useful in identifying noise features such as 1/f noise and 60 Hz noise.  

Information from the spectrum analyzer, along with the discussed noise concerns, 

influenced the decision to measure detectors initially at an 80 Hz chopping frequency.  
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Figure 9. Schematic of device test configuration. 

To characterize the noise [56], the incident blackbody irradiance was blocked by a shield, 

whose highly reflecting surface faced the blackbody, and whose blackened surface faced 

the bolometer.  The noise is the output voltage variation measured using the lock-in 

amplifier with a time constant of 30 ms. 

Measurements of the thermal time constant were made by taking advantage of the 

frequency dependence of the voltage responsivity in Eq. 29, that is, ℛ ∝
1

√1+𝜔2𝜏𝑡ℎ
2

.  Solving 

Eq. 29 for 𝜏𝑡ℎ gives 

 1

2𝜋
√

𝑅0
2

𝑅𝑣
2 − 1 = 𝜏𝑡ℎ𝑓  

(47) 
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where R0 is responsivity when f = 0.  When the function of responsivity on the left is plotted 

as a function of chopping frequency, the slope of the linear fit gives the thermal time 

constant.  

2.5.2 Derivation of Incident Power 

A blackbody source may be approximated as a collection of finite point sources each 

emitting a certain and uniform amount of radiant energy.  The radiance of the blackbody 

L, defined in Eq. 3 for a given bandwidth 𝜆1 − 𝜆2, is the power per unit source area per 

unit solid angle.  The solid angle Ω is defined as 

 𝛺 =
𝐴𝑑

𝑟2  .  (48) 

As seen in Figure 10, each of these points will emit the same amount of power onto an 

object with area Ad located a distance r away from the blackbody, as the solid angle for 

each of these points is identical.  The total power on the object is thus the summation of all 

these point sources, which is 

 𝑃 = 𝐿 ×  𝐴𝐵𝐵  ×  𝛺 . (49) 
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Figure 10. Schematic showing the solid angle Ω based upon a detector with area Ad a 

distance r away from a blackbody. 

There will be a small amount of background energy based off of the ambient temperature, 

which will be different from the temperature of the blackbody.  In essence, this is the 

temperature of the chopping wheel.  As the signal voltage is actually the difference between 

the blocked and unblocked states of the chopper, the background radiance should be 

subtracted from the blackbody radiance, giving the differential radiance 𝛥𝐿 = 𝐿𝐵𝐵 −

𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑.  The incident power for a modulated signal is given by [24] 

 
𝛥𝑃𝑖(𝑇) = 𝛥𝐿(𝑇)

𝐴𝐵𝐵𝐴𝑑

𝑟2
𝐹𝑓𝓉 

(50) 

where 𝓉 is the transmittance of the KRS-5 window of the detector housing, and Ff is the 

incident power RMS form factor to account for the modulation of the signal, assuming the 

modulation produces a square wave with a 50% duty (𝐹𝑓 =
√2

𝑃𝑖
).   
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The blackbody has an aperture area ABB=26.4 cm2, and detectors have an area Ad= 1.225 

× 10-5 cm2.  The radiance is calculated between 0.6-40 µm, based off of the transmittance 

bandwidth for the KRS-5 window.  A background temperature of 22˚C (295 K) has a 

radiance of 13.07 mW/cm2 sr.   

2.5.3 NEP and D* 

Important figures of merit for an infrared detector are Noise Equivalent Power (NEP) and 

Normalized Detectivity (D*).  These figures of merit exist to help characterize infrared 

detectors and to compare detectors of different geometries and configurations.  NEP is 

defined as [24] 

 𝑁𝐸𝑃 =
𝛥𝑃𝑖

𝑆𝑁𝑅
=

𝑉𝑁

ℛ𝑣
 . (51) 

In general, NEP is the minimum amount of radiation discernable, that is, in which the 

signal-to-noise ratio is 1.  NEP depends upon many parameters of the detector, such as 

area, bias voltage, spectral range, chopping frequency and noise equivalent bandwidth 𝛥𝑓.  

The last of these factors, 𝛥𝑓, is of great importance.  Consider the lock-in amplifier used 

to measure a signal voltage.  This device functions by isolating a signal at a particular 

frequency.  According to Fourier’s theorem, any random periodic signal can be expressed 

as a series of sine waves of various frequencies.  A signal voltage as a function of time can 

be observed in in a frequency domain using a Fourier transform.  The range of frequencies 

that are observed for a given signal are hence related to the integration time over which the 

signal is being observed.  A small integration time will mean a large frequency bandwidth; 
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however in theory an infinite integration time would result in a delta function in the 

frequency domain.  This relationship has already been given in Eq. 31.  As the noise 

spectrum is largely flat over the frequency domain, the measured noise will be reduced as 

𝛥𝑓 gets smaller.  One could therefore report a very low NEP by integrating over a long 

time on a lock in amplifier. 

To normalize NEP for detector area and noise equivalent bandwidth, the normalized 

detectivity has been defined as [24] 

 
𝐷∗ =

√𝐴𝑑√𝛥𝑓

𝑁𝐸𝑃
 

(52) 

which has units of cm Hz1/2 W-1, sometimes referred to as Jones.  Unlike NEP, high D* is 

desirable.  Microbolometers generally have a D* of ~108 cm Hz-1/2 W-1 for LWIR. 

2.5.4 NETD 

The Noise Equivalent Temperature Difference (NETD, or NET) is the minimum 

temperature difference that an imaging system can observe.  In other terms, it is the 

temperature difference that would result in a SNR of 1.  NETD has already been defined 

in Eq. 1 for an imager.  However, NETD can be calculated for a single pixel with a given 

D*, assuming some parameters of the imaging system. 

An imaging system will consist of a detector, a lens, and an amplifier.  The lens helps to 

focus a distant image onto the detector, in essence increasing the total incident power.  The 
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amplifier is generally necessary as 𝛥𝐿 from distant objects at temperatures close to ambient 

is small.  The amplifier will increase the input voltage; this includes both signal voltage 

and noise voltage, so that the SNR, NEP and D* will remain constant (in practice, there is 

usually noise associated with an amplifier, so if anything, SNR can go down with the 

addition of an amplifier; low noise amplifiers have been developed to reduce the effect of 

this additional noise source).   

 

Figure 11. Ray diagram schematic in which a lens is used with a detector to image a 

source. 

A ray diagram schematic for a source-lens-detector system is shown in Figure 11.  The 

three solid angles drawn in the image are expressed as 

 𝛺1 =
𝐴𝑙𝑒𝑛𝑠

𝑝2
 , 𝛺2 =

𝐴𝑠

𝑝2
 , 𝛺 =

𝐴𝑑

𝑞2
   . (53) 
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As stands for that portion of an extended source (the scene) that is imaged onto the detector 

area Ad.  Rays from the extreme edges of As pass undeflected through the center of the lens 

to the extremes of Ad.  These rays are indicated by red lines Figure 11, which shows that 

𝛺2 = 𝛺3.  The incident power is thus 

 𝑃 = 𝐿 ×  𝐴𝑠 ×  𝛺1 = 𝐿 × 𝐴𝑙𝑒𝑛𝑠  ×  𝛺2 = 𝐿 ×  𝐴𝑙𝑒𝑛𝑠  ×  𝛺3 , (54) 

where the second equality holds by the definition of solid angle (Eq. 48).  For distant 

objects 𝑝 →∞ and q~F, the focal length of the lens, and the power can be expressed as 

 
𝑃 = 𝐿 ×  𝐴𝑙𝑒𝑛𝑠  ×

𝐴𝑑

𝐹2 = 𝐿 ×  𝜋 (
𝐷𝑙𝑒𝑛𝑠

2
)

2

×
𝐴𝑑

𝐹2 . 
(55) 

The F-number of the optical system is defined as  

 𝐹/# =
𝐹

𝐷𝑙𝑒𝑛𝑠
 , (56) 

so that the incident power can finally be written as [24] 

 𝑃 = 𝐿 ×
𝜋

4
×

 𝐴𝑑

(𝐹/#)2
  . (57) 

Eq. 57 can be defined in terms as signal voltage based upon the device responsivity.  

Seeking a thermal gradient, 
𝜕

𝜕𝑇
 is taken of both sides, which yields 

 𝑑𝑉𝑜𝑢𝑡

𝛥𝑇
= ℛ𝑉 ×

𝜕𝐿

𝜕𝑇
 ×

𝜋

4
×

 𝐴𝑑

(𝐹/#)2
. (58) 
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Eq. 51 gives ℛ𝑣 =
𝑉𝑁

𝑁𝐸𝑃
, and 

𝑑𝑉𝑜𝑢𝑡

𝑉𝑁
= 𝑆𝑁𝑅 by definition.  From this, the NETD can be 

written in terms of NEP as 

 𝛥𝑇

𝑆𝑁𝑅
= 𝑁𝐸𝑇𝐷 =

4

𝜋
[

(𝐹/#)2𝑁𝐸𝑃
𝜕𝐿

𝜕𝑇
𝐴𝑑

], 
(59) 

or in terms of D*, 

 
𝑁𝐸𝑇𝐷 =

4

𝜋
[

 (𝐹/#)2√𝛥𝑓

𝐷∗(
𝜕𝐿

𝜕𝑇
)√𝐴𝑑

]  . 
(60) 

The term 
𝜕𝐿

𝜕𝑇
 in Eq. 60 is the radiance contrast. L changes with T according to  

 𝜕𝐿

𝜕𝑇
= +

2𝑘4𝑇3

ℎ3𝑐2 ∫
𝑒𝑥𝑥4

(𝑒𝑥−1)2 𝑑𝑥
𝑥1

𝑥2
 , (61) 

Where 𝑥 =
ℎ𝑐

𝜆𝑘𝑇
.  At 300K, 

𝜕𝐿

𝜕𝑇
= 0.629

𝑊

𝑚2 𝑠𝑟 𝐾
 for LWIR. 

Hence, by determining the D* of individual fabricated devices, the NETD of a potential 

imager can be determined.  Efforts to improve an imager must start at maximizing D*. 
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CHAPTER THREE: MICROBOLOMETER DEVELOPMENT 

3.1 Microbolometer Design and Performance Estimations 

The microbolometer under investigation in this work was designed by Plasmonics, Inc. for 

use in a linear array detector system [20].  Individual detectors (often referred to as pixels 

in an imaging system, as a single detector will generally correspond to one single pixel in 

a visual display) can be characterized by the pixel fill factor, which is the ratio of the active 

area to the total area.  High fill factor is desirable to maximize the efficiency of incident 

energy.  In a standard infrared imager, detectors are laid out in a two-dimensional grid, 

called a focal plane array (FPA), and so a two-dimensional fill factor is considered.  With 

a linear array, the fill factor is only considered in one dimension.  This influences the 

geometry of the support arms and increases the potential for thermal isolation.  

Detector design is shown in Figure 12, showing the detector built upon the sacrificial 

polyimide layer (A) and then freestanding after this layer has been removed (B). The 

structure is built on an oxidized silicon wafer for electrical isolation.  Gold reflectors are 

patterned where the elements will eventually sit. The air bridge structure is achieved by 

first depositing a sacrificial polyimide and using a wet etch process to form it into pillars 

of the desired thickness and lateral dimension.  The thickness of this layer will be the size 

of the quarter-wave cavity. Structural considerations with the support arms favor shallow-

sloped sidewalls, which are designed to be ~45˚. 
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Now the element is patterned on the polyimide.  Because the active film VOx-Au etches 

quickly in any plasma, the film is encapsulated in between two layers of silicon dioxide.  

Low-stress NiCr (80/20 nickel/chrome) arms are sputtered to form the arms of the air 

bridge.  These arms provide structural stability and electrical continuity.  They stretch over 

the polyimide pillar, so that the slope of the polyimide sidewalls corresponds to the slope 

of these arms (A).   

The final step in the process is the removal of the cured polyimide to create a freestanding 

air bridge with two NiCr anchors (B).  The sample is placed in an isotropic O2 plasma in a 

barrel asher and etched until the polyimide is removed. 
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Figure 12. Drawing of the detector design before (A) and after (B) removal of the 

sacrificial polyimide. 

The active area Ad is the VOx-Au film, which has an area of 35 x 35 µm2 and is 120 nm 

thick.  The SiO2  layers are 350 nm each, and have an area of 40 x 40 µm to facilitate full 

encapsulation of the VOx-Au.  The NiCr arms are 4 µm wide and have a total length of 10 

µm to the substrate.  The arms are designed to be 200 nm thick.  The heat capacity and 

device thermal conductance through the arms and by radiation can be evaluated using Eqs. 

42, 43, and 7 and material properties found in Table 1.  The calculated heat capacity is 1.87 

x 10-9 J/K, the thermal conductance through the arms is 1.8 x 10-6 W/K, and the thermal 

conductance by radiation is 7.5 x 10-9 W/K, which is small enough to be considered 
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negligible by these calculations.  The thermal time constant, given from Eq. 27, is 1.035 

ms. 

Table 1.  Physical and thermal properties of materials used in device fabrication  

 
Specific Heat 

[J g-1 K-1] 

Density 

[x 106 g m-3] 

Thermal Conductivity 

[W m-1 K-1] 

VO2 [12] 0.3 3.36 Temperature dependent 

Au [57] 0.129 19.8 314 

SiO2 [37] 0.7 2.2 1.1 

NiCr [58] 0.45 8.4 11.3 

 

Physical and thermal properties for the VOx-Au film are not known.  The parameters in 

Table 1 are reported for crystalline VO2, which neglects the non-stoichiometric 

composition of VOx and the additional degrees of freedom of amorphous over crystalline 

films.  Furthermore, the heat capacity of crystalline VO2 changes with a phase 

transformation, while the VOx films do not undergo any reversible phase transformation 

[32].  Furthermore, the dispersed Au nanoparticles add more complexity to determining 

these parameters.  Therefore it can be reasonably assumed that the density and specific heat 

are higher in VOx-Au than in crystalline VO2, and so the calculated heat capacity should 

be considered an underestimation. 

The average absorptance for LWIR for a quarter wave cavity of 2 µm was shown in Figure 

8 to be 71%.   

For an incident power of 100nW, the temperature of the device will rise by ΔT=38.5 mK, 

by Eq. 26.  From the definition of TCR (Eq. 9), the change in device resistance is 𝛥𝑅 ≈
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𝑅0𝛼𝛥𝑇.  Measurements of VOx-Au films have shown a sheet resistance of ~250 kΩ with a 

TCR of -2.0 %.  The resistance of the VOx film, with 100 nW of power, will decrease by 

192.7 Ω.  With 1V applied bias, the estimated responsivity by Eq. 29 is 1927 V/W.   

Noise calculations from Eqs. 30, 37, 38 and 39, show that the detector is Johnson noise 

limited.  From these calculations, Johnson noise is expected to be 352.5 nV, while thermal 

fluctuation, background fluctuation and 1/f noise contribute 44.6 nV, 2.4 nV, and 82.5 nV, 

respectively, giving a total expected noise voltage of 364.8 nV. 

From Eq. 51, 𝑁𝐸𝑃 =
𝑉𝑁

ℛ𝑣
=

364.8 𝑛𝑉

1927 𝑉/𝑊
= 1.9 × 10−10 𝑊.  From Eq. 52, D*=1.01 x 108 cm 

√Hz W-1.  Finally, for an imager using F/1 optics and operating at 30 Hz video frame rate, 

expected NETD by Eq. 60 is 312.7 mK. 

3.2 VOx-Au Development and Optimization 

3.2.1 Background 

VOx can be deposited by evaporating thin films of vanadium then annealing in an oxygen 

environment [59, 60], by reactive sputtering [35], and by sol-gel method [61].  The first 

method involves depositing pure vanadium by sputtering or evaporation onto a substrate.  

A subsequent anneal at high temperatures in an oxygen environment will cause oxygen 

atoms to diffuse into the vanadium film.  In reactive sputtering, pure vanadium is sputtered 

in an argon/oxygen plasma.  Vanadium atoms knocked off of the target will combine with 

oxygen atoms en route to the substrate, and thus can be deposited on the substrate as VOx.  
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The partial pressure of oxygen has a large effect on this process.   A sol-gel deposition 

involves a chemical process by which VOx powder is dissolved or suspended in a solvent 

solution.  This solution can then be spin-coated onto a substrate, and the solvent can be 

baked off.  Annealing steps are often employed to optimize film quality. 

Jin et al. have explored the factors that affect VOx deposition by DC magnetron reactive 

sputtering [35].  They identified chamber pressure, oxygen content, throw distance and 

oxygen inlet position as factors that can affect the TCR and resistivity of a VOx film.  The 

deposition rate is affected by these elements as well, and it may be concluded that the 

deposition rate is an indicator of the film quality. 

Figure 13 presents data from [35] showing the relationship of O2/Ar ratio and chamber 

pressure on TCR and resistivity.  When the oxygen content in the chamber is low, the metal 

sputtered from the target will largely remain metallic as it comes in contact with the 

substrate.  Only a small amount of vanadium will be oxidized, and the value of x in VOx 

will be small.  In other words, if the oxygen content is small, then there is not enough 

oxygen to quench all of the vanadium atoms.   

At the other extreme, if the oxygen content is too large, then not only will a higher ratio of 

vanadium atoms be oxidized en route to the substrate, but the excess oxygen will begin to 

oxidize the surface of the target.  This effect is called target poisoning.  Instead of 

sputtering pure vanadium, VOx will be sputtered.  DC magnetron sputtering relies on using 

the target at a cathode and an electrical potential being generated at the surface.  Thus, 

metals will sputter much more quickly than dielectrics.  If a metal target has surface 
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poisoning, the deposition rate will drastically drop.  The high oxygen content and target 

poisoning create a positive feedback loop that keeps the target surface oxidized and the 

value of x in the VOx film quite high.  The effects of target poisoning can be seen in Figure 

13 for high oxygen content.  At an O2/Ar ratio of 0.12, the deposition rate drops and the 

resistivity increases, sometimes by many orders of magnitude.  This effect is enhanced at 

higher chamber pressures; hence keeping the chamber pressure low may be useful in 

maintaining a more uniform and repeatable recipe.  As noted in the plots, the TCR is higher 

for films with higher resistivity. 
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Figure 13. Deposition rate, TCR and resistivity of VOx films as a function of 

oxygen/argon ratio.  Films were deposited by reactive pulsed-dc magnetron sputtering by 

Jin et al. [35].  Reprinted with permission from Jin, Y.O., et al., Potential for reactive 

pulsed-dc magnetron sputtering of nanocomposite VOx microbolometer thin films. 

Journal of Vacuum Science & Technology A, 2014. 32(6): p. 061501, Copyright 2014, 

American Vacuum Society. 

The VOx films doped with metallic particles investigated in this work were developed by 

Lam [62, 63].  Films were deposited by reactive DC magnetron co-sputtering of noble 
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metals with vanadium in an Argon/Oxygen plasma.  Films were made with platinum and 

gold dopant materials; the relative sputtering power of the respective targets controlled the 

concentration of metal to VOx.  Platinum proved to be more difficult to control, as it more 

greatly affected the TCR of the film.  On the other hand, it was shown that a small amount 

of gold infused into the VOx film would drop the resistivity of the film without decreasing 

the TCR.  Increasing the amount of gold would eventually result in a drop in TCR, along 

with a continued drop in resistivity.  

3.2.2 Experimental Methods 

VOx-Au films were deposited in a 6-gun AJA sputter coater with RF and DC magnetron 

power supply capabilities.  The system has a load lock to facilitate multiple depositions at 

uniformly low pressure in a small amount of time.  Up to four gasses can be flowed into 

the chamber with flow rates of 1-20 standard cubic centimeters per minute (sccm) with a 

precision of 0.1 sccm.  Chamber pressure is maintained with a throttle value to within 0.1 

mTorr.  Substrates are offset a distance of ~8 inches from the targets and rotated during 

deposition to ensure uniformity.  The substrate could also be RF biased, which increases 

the surface energy of the substrate and can increase the density of deposited films.  A 

residual gas analyzer (RGA) is attached to the machine that allows for in situ monitoring 

of chamber gas composition, before, during, and after a deposition. 
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The following parameters were modulated in the optimization of VOx films: (1) Number 

of vanadium targets and power; (2) gold target power; (3) oxygen-to-argon ratio; (4) 

chamber pressure; and (5) substrate RF bias voltage.  While not directly an experimental 

parameter, it was also observed that chamber contamination and base pressure also had an 

effect on the quality and reproducibility of VOx films.   By directly changing these 

parameters, the relative composition of vanadium, oxygen and gold are changed in the film, 

resulting in more dielectric or more metallic films, which in turn relate back to the TCR 

and resistivity of the film. 

The Au to VOx ratio was directly modulated by keeping the bias power constant for the 

vanadium target and altering the bias power on the gold target.  The total amount of Au in 

the film (%Au) is found from the ratio of the number of Au atoms to the total number of 

atoms in the film, where the number of atoms is  

 # 𝐴𝑡𝑜𝑚𝑠 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦×𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝐴𝑡𝑜𝑚𝑖𝑐 𝑀𝑎𝑠𝑠
,  (62) 

which has units of moles per area times time.  In essence, this describes the average number 

of atoms deposited in a single monolayer of material.  Deposition rates were measured for 

VOx and Au separately but in similar environments. For a 200W bias on a vanadium target 

in 2% O2, the deposition rate of VOx was ~60 Å/min per vanadium target, while the 

deposition rate for gold was found to be ~1 Å/min per Watt applied bias, which was 

determined to be accurate from ~3-10W applied bias.  Although the deposition rate for 

VOx is dependent upon the oxygen partial pressure, this deposition rate showed little 
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change so long as the target did not become poisoned, at which point the deposition rate 

would dramatically drop. 

The oxygen content in the atmosphere, which influences the value of x, was manipulated 

by the flow rates of oxygen and argon process gasses.  To fine-tune this ratio, a bottle of 

20% O2 to Ar was mixed with pure Ar, such that  

 %𝑂2 =
0.2×𝑂2/𝐴𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡𝑜𝑡𝑎𝑙 𝑔𝑎𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 . (63) 

An RGA is a mass spectrometer built in to the vacuum chamber.  Gas particles from the 

chamber are ionized and sent through a field, whereupon they are filtered out and separated 

by atomic mass.  An RGA gives data in terms of counts (# of atoms) per atomic mass unit.  

For a nominal O2 ratio of 20%, RGA analysis indicates only 12% oxygen environment in 

the chamber.  When a plasma is ignited on one vanadium target, free oxygen particles 

combine with ejected vanadium particles, and this ratio drops to 8%.  If the number of 

targets increases to four, then the oxygen ratio drops to 0.5%.  Figure 14 presents RGA 

data during a deposition at 4mTorr in which the nominal oxygen ratio is 20%.  The largest 

and most characteristic peaks represent Argon and Oxygen.  Argon has a peak at 40 AMU 

and a secondary isotope at 36 AMU.  The peak at 20 AMU can be explained by doubly 

ionized argon.  Oxygen has a characteristic peak at 32 AMU.  This plot also shows the 

presence of chamber contaminates.  While much less present, water vapor is characterized 

at 16 and 18 AMU, while another contaminate, possibly explained by a carbon-chloride 

molecule, is indicated at 38 AMU. 
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Figure 14. RGA data measured during a deposition  The peak at 32 AMU is 

characteristic for O2, while the peaks at 36 and 40 AMU show Argon. 

For testing, VOx-Au films were deposited on to oxidized silicon wafers.  The thick surface 

oxide facilitates electrical isolation of the film.  The resistivity of a VOx-Au film is 

measured using a four-point probe method.  A four-point probe has four pins equally 

spaced apart from each other, which are brought into contact with a thin film.  A bias 

current is supplied by the outermost pins of the probe, while the potential is measured by 

the inner two pins.  By the geometry of the system, the sheet resistance Rs is determined 

by 

 𝑅𝑠 =
𝜋

ln(2)

𝑉

𝐼
≈ 4.53

𝑉

𝐼
 , (64) 
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where sheet resistance is given in units of Ω/square.  The product of the sheet resistance 

and the film thickness is the resistivity. 

To determine the film thickness, a physical step is produced in the test film by a shadow 

mask during deposition; this can be as simple as a piece of tape or mark from a felt pen 

that can be removed in acetone post-deposition.  The step can be measured using a stylus 

profilometer (Dektak 3).  This consists of a fine-point pin that is connected to a sensitive 

piezoelectric crystal and then dragged across a surface to be measured.  As the pin moves 

up and down across the topography of the surface, the piezoelectric crystal is stretched and 

compressed, which in turn releases a proportional electrical impulse.  By dragging the 

stylus profilometer tip across a pre-defined step in the film, the thickness can be determined 

to within ~20 nm. 

The TCR of a film is determined by measuring the sheet resistance of a film while it is 

heated on a hot plate.  The definition of TCR from Eq. 9 can be written as 𝛼𝑑𝑇 =
𝑑𝑅

𝑅
.  

Integrating both sides of this equation and solving for the TCR gives 

 𝛼 =
𝛥𝑙𝑛(𝑅)

𝛥𝑇
 . (65) 

Thus, TCR can be determined by plotting LN(R) as a function of T, and determining a 

linear fit of the data. A plot of Eq. 65 for a VOx-Au film is shown in Figure 15.  Deposition 

conditions were 12% Au, 3% O2, 4mTorr chamber pressure, and with no substrate bias.   
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Figure 15. Plot of ln(R) vs. T a VOx-Au film deposited with 3% O2 and 12% Au.   

3.2.3 Results 

The influence of oxygen and gold ratios in deposition parameters on the room temperature 

resistivity of VOx-Au is shown in Figure 16.  These films were produced using a single 

vanadium target.  Deposition parameters were randomized, instead of sequential, to reduce 

any tendency of systematic bias.  Depositions were also completed over multiple days.  The 

results indicate that a higher flow rate of oxygen compared with argon results in a generally 

more dielectric film with higher resistivity.  For these VOx films, the value of x increases 

with the amount of oxygen in the chamber.  The trend with the gold content ratio is less 

clear, although films with more gold tend to have higher resistivity than films with less 

gold, as should be expected.  The exception to this is the films produced using 12% Au, 
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which appeared to have the highest resistivity of all films at 1% O2 and 2% O2, while 

having a lower resistivity at 3% O2.  It should be noted that often depositions with the same 

parameters would have different results. 

 

Figure 16. Relationship between % O2, % Au and room temperature resistivity. 

Figure 17 presents the effect of oxygen and gold ratios on TCR from the same samples as 

was shown in Figure 16.  As the oxygen content increases, the films generally have a higher 

magnitude of TCR, which is to be expected from theory.  As before, the exception to this 

is with the films produced using 12% Au, in which the trend is reversed or flat.  

Interestingly, a trend between gold content and TCR is not visible from this data.  This 

suggests that a small amount of gold can influence the resistivity of film without negatively 

affecting the TCR.   
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Figure 17. Relationship between % O2, % Au and TCR. 

While these data show general trends that agree with theory, they also demonstrate a great 

deal of inconsistency between runs, even for samples with the same parameters.  Indeed, 

samples with the same measured resistivity will have different values for TCR, as noted in 

Figure 18.  This indicates that other factors, such as the chamber base pressure, target and 

chamber conditioning, and chamber contaminants have a much larger effect on TCR and 

resistivity than initially expected.  In addition, to achieve the desired parameters of low 

oxygen content and low gold content compared with sputtered vanadium, the flow rate of 

oxygen and power on the gold target had to be set to very low values, which may be near 

the limits of capabilities of the regulating mechanisms in the machine.  To increase 

repeatability in detected devices, two schemes were identified: (1) increasing the 

deposition rate of vanadium and (2) monitoring the chamber base pressure and 

contamination levels.  The former could be achieved by using co-sputtering with multiple 
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vanadium targets.  For the latter, the machine was allowed to pump down for 48 hours prior 

to any deposition.  RGA analysis showed a sizable presence of water vapor in the chamber, 

even at pressures of 10-6 Torr.   

 

Figure 18. TCR and resistivity plot for samples using only one vanadium target.  Samples 

are identified here by the nominal oxygen content.   

Table 2 presents data for VOx-Au deposited using 4 vanadium targets each powered at 

200W and one gold target powered at 10 W in a nominal oxygen concentration of 20% and 

a chamber pressure of 4mTorr.    

The nominal flow of oxygen in this case is much higher than when using only one 

vanadium target.  This of course was the desired effect; a higher deposition rate of 

vanadium allows the flow rate of oxygen to be higher while keeping the effective oxygen 

content small.  This was shown in RGA analysis from Figure 14.  All samples were 



 66 

deposited after the chamber was allowed to pump for 48 hours, and a base pressure less 

than 10-7 Torr was achieved.  This base pressure was reproducible even for sequential 

depositions by using a load lock chamber.  Films have an average resistivity of 2.66 Ω-cm 

with a standard deviation of 0.12 and an average TCR of -1.94% with a standard deviation 

of 0.0004.   

Table 2. Resistivity and TCR values of VOx-Au films produced with modified co-

sputtering method.  Samples 1 and 2 were purposely thicker films. 

Sample Thickness (nm) 
Sheet Resistance 

at 22˚C (kΩ) 

Resistivity at 

22˚C (Ω-cm) 
TCR (%/˚C) 

1 350 71.9 2.51 -1.98% 

2 140 198.8 2.78 -1.95% 

3 110 201.6 2.49 -1.92% 

4 110 257.8 2.84 -1.86% 

5 110 248.7 2.74 -1.93% 

6 110 242.8 2.67 -1.90% 

7 110 245.1 2.7 -1.95% 

8 110 240.1 2.64 -1.95% 

9 110 233.8 2.57 -2.00% 

 

Subsequent films using the same recipe were made on carbon substrates and analyzed using 

the Rutherford Backscattering technique to determine film composition.  In this process, 

films are bombarded by high energy alpha particles.  These particles lose energy simply by 

passing through a film, however a significant amount of energy is lost in a collision with 

an atom in the film.  This energy is lost in the form of x-rays.  By analyzing the spectrum 

of these x-rays information about the atomic composition of a sample can be determined.  

It is important to do this analysis on carbon substrates as the characteristic energies for 
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silicon overlap those of materials in the VOx-Au films.  The results of this testing 

determined the film composition of approximately 33.5% vanadium, 62.5% oxygen, and 

4% gold by mole. The resulting molecular formula for the amorphous vanadium oxide was 

determined to be VO1.87, with less than a 10% variation. 

With a more repeatable process determined, an investigation into the process parameters 

to optimize the VOx-Au film began.  Table 3 presents the effect of substrate bias for a 

number of different deposition parameters.  In most cases, substrate bias decreases the 

resistivity of the film while having little effect on the TCR of the film.  Low resistivity was 

achieved for films deposited in a nominal 30% oxygen environment.  In this case, the 

oxygen content was too high and the surface of the vanadium targets oxidized (target 

poisoning effect).  The deposition rate of the VOx greatly decreased, while the deposition 

rate of gold stayed constant as no oxidation occurs on the gold target.  Therefore, the films 

are much more metal rich, and have a lower resistivity. 

The predicted 1/f noise indicates that devices will likely be Johnson noise-limited for 

reasonable bias voltages if the resistance of the detector is at least 50 kΩ.  Devices with 

low resistivity will therefore perform well in terms of Johnson noise, but this advantage 

will be lost because of 1/f noise.  The ideal room temperature resistivity, therefore, is low 

but above 0.5 Ω-cm. 
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Table 3. Effect of substrate bias on TCR and resistivity for a number of different 

deposition parameters. 

Deposition Parameters Substrate Bias [W] 
RT Resistivity 

 [Ω-cm] 
TCR [%/°C] 

4 Vanadium targets, 20% 

O2, 6.9% Au, 4mTorr 

0 2.33 -1.99 

40 1.30 -2.00 

4 Vanadium targets, 20% 

O2, 12.8% Au, 4mTorr 

0 0.32 -1.89 

40 0.39 -1.66 

4 Vanadium targets, 30% 

O2, 6.9% Au, 4mTorr 

0 1.66 -1.89 

40 0.15 -1.19 

4 Vanadium targets, 30% 

O2, 12.8% Au, 4mTorr 

0 0.11 -1.11 

40 0.18 -1.37 

2 Vanadium targets, 20% 

O2, 0% Au, 2mTorr 

0 17.20 -2.79 

40 3.31 -2.24 

2 Vanadium targets, 20% 

O2, 0% Au, 4mTorr 

0 39.10 -2.57 

40 4.93 -2.40 

2 Vanadium targets, 20% 

O2, 4% Au, 2mTorr 

0 4.79 -2.22 

40 2.04 -2.32 

2 Vanadium targets, 20% 

O2, 6.8% Au, 2mTorr 

0 1.95 -1.60 

40 1.37 -1.96 

 

3.3 Optimization of Microbolometer Design 

3.3.1 NiCr Arms 

One obstacle in process development was the difficulty of depositing NiCr onto patterned 

photoresist.  Often, a deposition by sputtering would result in films that had cracked or 
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flaked off of the sample.  The breaking point would generally be along the sidewall of the 

polyimide pillar, although this was not exclusively the case.   An SEM image showing 

broken and deflected NiCr arms after one such deposition is shown in Figure 19.  Originally 

believed to be an overheating problem, many steps were taken to mitigate the issue, from 

use of thermal grease to testing different metals such as titanium and vanadium.  These 

tests had mixed results, leading to the explanation that this was not a thermal problem.  

Thin films (~100nm) of vanadium and nichrome were sputter coated onto wafers covered 

in photoresist at various pressures, and the film stress was measured using a Flexus laser 

scan technique.  It was determined that film stress was reduced at higher chamber pressure 

during the deposition, which allowed the deposition of thick films of NiCr without issue. 

Figure 20 shows a plot of film stress against chamber pressure for NiCr. 
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Figure 19. Film stress causing breaking and bending of deposited NiCr.  The breaking 

point is generally at the polyimide sidewall.  In this image, the polyimide was designed to 

be squares directly underneath the pixel. 

 

Figure 20. Film stress as a function of chamber pressure during sputter coating of NiCr. 
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3.3.2 Polyimide Sidewalls 

The success of the microbolometer development hinged on the quality of the sidewalls on 

the polyimide pillars.  The original design called for polyimide pillars to have 45˚ sidewalls 

upon which the NiCr arms could gently slope down to the substrate.  Polyimide was 

deposited on the wafer by spin coating, and selectively etched away to form the desired 

structure.  This patterning would also determine the length of the NiCr arms, which heavily 

influences the thermal conductance of the device. 

A wet etch technique was used to etch the polyimide using photoresist developer. After the 

polyimide was spun on a wafer, photoresist was deposited and the desired pattern exposed.  

In a TMAH-based developer (tetramethyl ammonium hydroxide), the unexposed positive 

resist acted as an etch mask for the underlying polyimide.  The wet etch technique was 

capable of leaving ~70˚ sidewalls, which was deemed sufficient for successful patterning 

of the NiCr arms.  Unfortunately, this process was unpredictable.  Often the sidewalls 

would be close to vertical or even have some slight undercut.  To solve this problem, a 

secondary isotropic O2/CF4 plasma etch in a barrel asher was added to round the corners 

of the sidewalls. In this process, the polyimide is purposefully patterned 50% larger and 

thicker than intended, and the plasma etch is timed to remove the excess material.  The 

plasma etches corners much more rapidly than flat regions, as the exposed surface area is 

larger; the end result is a rounded edge.  Figure 21 presents an SEM image of these 

sidewalls before and after this plasma etch.  Initially, the sidewall has a very still slope, 

which is smoothed out after the etch.  Additionally, the top surface appears to have an extra, 
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“hardened” layer before the plasma etch.  It is believed that this layer contains oxidized 

material, which is the reason for adding CF4 to the plasma composition.  Even still, this 

layer proved to have different and unpredictable etch rates than the rest of the polyimide, 

so that while this method was proved to be a success for some samples, it was still 

sufficiently unpredictable to keep yield of fabricated devices below 20%. 
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Figure 21. Polyimide sidewalls before and after an isotropic plasma etch.  This process is 

designed to increase the slope of the sidewall. 

3.3.3 Release Methods and Design Failures 

Both wet and dry etch methods were investigated to remove the sacrificial polyimide layer 

and create the free-standing air bridge method.  The wet etch methods involved submerging 

the sample in diluted Potassium Hydroxide (KOH).  While this method was quick, it often 

caused failure due to surface tension pulling samples down to the substrate during drying.  
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A critical point dryer is often used in fabrication to solve this exact problem, but this 

approach often seemed to be too aggressive for high yield. 

The more successful approach in the release etch was the use of the barrel asher.  In this 

process, a plasma is created using an RF bias, but no DC supply is present, so that the 

plasma does not have any directional preference.  This process is much slower than a more 

directional dry etch, such as in Reactive Ion Etching (RIE), in which plasma particles are 

accelerated towards the sample.  In a barrel etcher, the etch is simply due to chemical 

reactions at any surface.  During this process, the chamber reached temperatures of ~100˚C.  

The power was set at 400W, and the oxygen flow rate was set to achieve 650 mTorr 

pressure (usually around 200 sccm, but this could vary process to process).  Samples were 

etched in 15-20 minute increments in an effort to reduce heating effects.  After each 

increment, samples were imaged to determine if all of the polyimide had been removed.  

Figure 22 presents microscope images showing the progression of polyimide etching on a 

particular detector.  After 45 minutes, the polyimide around the pixel is starting to be 

removed, and just begins to show removal from underneath the pixel.  At 75 minutes, the 

polyimide is gone from around the pixel, and the contact with the underside of the pixel 

can be outlined easily.  After 2 hours of etching, only a small amount of polyimide remains, 

but appears to no longer be in contact with the pixel.  The right-hand side of the pixel shows 

some deformation or wrinkling of the film, a result of stresses induced in deposition and 

thermal processing.  These deformations were commonly observed in pixels, particularly 

around the edges.  This reduces the quality of the Fabry-Perot cavity and gives rise to a 

non-uniform absorptance across the pixel. 
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Figure 22. Microscope images showing the progression of the O2 plasma release etch on 

single pixel.  The polyimide seen around and under the pixel can be seen to be retreating 

over time. 

The NiCr arms were connected to patterned gold bond pads on the substrate.  Prior to any 

blackbody testing, these bond pads were probed and electrical continuity and resistance 

were determined for each detector.  Failure of detectors came in two modes: detectors either 

measured as complete open circuits, or detectors measured with a high resistance (>1MΩ).      

These two failures were identified to be occurring in two places: the first is in the bottom 

of the polyimide sidewall, where the NiCr arm starts to rise from the substrate surface to 

the top of the sacrificial layer.  If there is any undercut or irregularity in the sidewall, then 
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the arm often have a break, as shown in Figure 23.  This becomes more pronounced as 

sacrificial layer is removed and the arm weight applied to it.  The second failure point was 

at the interface between the NiCr and the VOx-Au film itself.  This was due to poor contact 

due to “bat-ears”, or curled up portions of the film near the edges of the patterned area (see 

Figure 24).  This effect is due to deposition on the sidewalls of the masking photoresist that 

is not removed cleanly during lift-off, and was solved by implementing a bi-layer resist 

process. 

 

Figure 23. SEM image of a detector in which the NiCr arm has broken along the 

polyimide sidewall after release. 
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Figure 24. The edges of a sputtered VOx-Au film, showing the “bat-ear” effect that could 

cause electrical impedance issues. 

3.3.4 Detector Redesign 

The microbolometer fabrication process was redesigned to address the issues from the 

polyimide sidewalls.  Even functioning devices in this initial design were incredibly fragile.  

This was due to the vertical or near vertical portion of the NiCr arm.  Therefore, the detector 

was designed to keep the arms completely flat, even upon release.  To do so, the detector 

was fabricated entirely flat on an SiO2 surface, and the release etch involved cutting a 

trench into the silicon wafer underneath the pixel.  In this redesign, detector arms were also 

lengthened to increase thermal conductance of the detector. 
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Figure 25. Process schematic for the redesign of the pixel, using a trench etch as 

opposed to the polyimide sacrificial layer. 

Figure 25 presents a schematic of the fabrication steps.  First, nickel-chrome alloy 

(nichrome, 80/20) is deposited and patterned on a thermally- oxidized silicon substrate to 

create the structural arms electrical interconnect for the detector.  Next, VOx film is co-

sputtered with gold to form the active bolometer element.  A layer of silicon oxide is then 

deposited by plasma-enhanced chemical vapor deposition (PECVD) over the surface to 

protect the VOx-Au film, provide electrical isolation, and provide additional structural 

stability.  The PECVD and thermal oxides are selectively co-etched to create vias to the 

silicon.  Metal traces and bond pads are deposited and patterned by lift-off.  Finally, the 



 79 

detector elements were undercut by etching a trench in the silicon substrate using an 

isotropic fluorinated plasma in a barrel asher to form air bridges. 

This process not only improved the production yield to over 95%, but detectors were much 

more mechanically stable upon release.  Additionally, detectors in the second design 

seemed to measure with a lower and more uniform resistance than detectors using the first 

method, even though VOx-Au witness samples had similar properties.  There are two 

explanations for this effect, both of which may have contributed to the observation.  First, 

the second design involved a PECVD oxide step, during which the sample is heated to 

300˚C.  This would inadvertently anneal the VOx-Au film.  Gold grains have proven to 

grow as a result of annealing, and the density of the film would likely increase.  Both of 

these effects would likely cause a drop in resistance, although the magnitude of this effect 

was never measured.  Additionally, measured resistance variation in the first design could 

have been a result of poor ohmic contacts in the arms of the device, an effect that is solved 

in the redesign. 

The downside of the redesigned microbolometer using the trench etch is the lack of control 

of the cavity dimensions.  As the trench is etched using an isotropic plasma, a lateral etch 

of 17.5 µm (half the pixel dimension, the minimum necessary to release the pixel) would 

also etch 17.5 µm down, much greater than the desired 2-2.5 µm cavity designed originally 

for absorption.  Indeed, fully released samples had very deep trenches.  While the exact 

depth was never accurately measured, a metered changing in focus on an optical 

microscope between the base of the trench and the pixel indicated that this trench was over 
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10 µm deep.  Furthermore, the trench is not flat, but slopes down to the bottom of the 

trench. 

The fabrication plan was slightly altered in an attempt to achieve the desired cavity 

dimensions.  First, a metal was deposited onto a bare silicon wafer by e-beam evaporation.  

This would act as the reflector for the absorbing cavity.   Without breaking vacuum, 

amorphous silicon would be deposited on top of the metal, which served the role of the 

sacrificial material.  Next, oxide would be deposited by PECVD, and the process would 

continue as before.  Titanium, nickel and chromium were tested as the base metal for this 

process.  The nickel failed due to adhesion problems with the evaporated amorphous 

silicon, and the titanium and chromium films failed to act as an adequate etch stop during 

the fluorinated oxide and release etches.  This method should work given the right materials 

and process development, but this was never fully investigated.   

Figure 26 shows SEM images of detectors fabricated using both designs.  The sacrificial 

polyimide design produced functional devices and allowed for tight control over the cavity 

thickness, allowing for high absorption by this method.  However, the weak arms made the 

device fragile and potentially hindered electrical continuity for the detector.  This weakness 

also limited the total arm length possible, limiting the thermal conductance of the detector.  

The trench etch design is much more mechanically robust, involved fewer fabrication steps 

and facilitated clean, ohmic contacts across the detector.  A stronger, more mechanically 

robust pixel allowed arm to be elongated to decrease thermal conductance.  However, the 
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design removes practically all absorption gained by a Fabry-Perot quarter wave cavity.  

This created a need to investigate alternative absorption techniques. 

 

Figure 26. SEM images showing the two designs of microbolometers fabricated in this 

study: the top utilizes the sacrificial polyimide, while the bottom utilizes the flat pixel and 

silicon trench etch. 
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CHAPTER FOUR: SENSITIVITY ENHANCEMENTS USING 

PATTERNED GOLD BLACK ABSORBER 

4.1 Experimental Methods 

The use of metal black films and their advantages was discussed in Chapter 2.  The aim of 

this investigation was to develop an absorptive coating that could work in tandem or even 

instead of the Fabry-Perot resonant cavity to achieve high responsivity in developed 

microbolometers.  Gold black was chosen as an absorbing film due to its high absorptance 

over a very broad bandwidth [21, 49].  Gold black is a fragile film and as such is not suitable 

for integration with standard CMOS fabrication techniques.  However, the ability to 

selectively pattern gold black by standard lift-off process using an oxide overcoat had 

recently been developed at UCF by Panjwani et al. [22], making this process readily 

available for integration with the designed microbolometers. 

In this investigation, detectors were fabricated using the sacrificial polyimide layer design 

presented in Chapter 3.  One single wafer containing hundreds of devices was fabricated 

and cleaved in half prior to deposition of gold black.  Half of the detectors fabricated were 

kept uncoated for comparison.  In this manner, the gold black coated samples and uncoated 

samples had entirely identical fabrication processes, excepting small uniformity variations.  

Gold black was deposited prior to the release etch, as observed fragility in the NiCr arms 

prevents any processing after samples are released.  
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Gold black was deposited and patterning were first described in [22].  Squares of dimension 

identical to the VOx-Au film (35 x 35 µm2) were patterned directly on top of the fabricated 

pixels using a negative tone resist, meaning that after development resist was removed only 

in this region above the pixel.  The resist had a small amount of undercut to facilitate 

effective lift-off after deposition of the gold black. 

 

Figure 27. Deposition chamber for thermal evaporation of gold black (bell jar is 

removed). [49] 

The deposition chamber used for thermal evaporation of gold black is shown in Figure 27.  

Gold source material was thermally evaporated at 300 mTorr N2 ambient.  The low mean 

free path inside the vacuum chamber causes gold atoms to collide and bind prior to landing 

on the thermoelectrically-cooled substrate (-13˚C) [64].  For sufficient uniformity and 



 84 

thickness, multiple depositions were required with sample rotation between each 

deposition.  The gold black was then encapsulated with 250 nm of e-beam evaporated SiO2 

prior to lift-off using n-methyl pyrrolidinone (NMP).  After the deposition of gold black, 

samples were placed in the barrel asher for the isotropic O2 plasma etch described in 

Chapter 3.  As uncoated gold black does not even survive a puff of air directed at the film, 

it is worth noting that gold black in these detectors survives a solvent rinse, blow dry, and 

plasma treatment at temperatures up to 100˚C. 

For characterization of absorptance, SiO2-coated gold black films were deposited onto 

gold-coated silicon substrates. Specular and diffuse reflectance spectra were measured in 

a Hemispherical Directional Reflectance Spectrometer (SOC-100 HDR) connected to an 

Fourier Transform Infrared Spectrometer (FTIR, Thermo Scientific) using unpolarized 

light at incident angles of 7, 15, 30, 45, and 60°.  Transmittance was zero due to the gold 

film on the substrate, so that absorptance is unity minus the measured reflectance. 

Absorptance of individual bolometers was measured using the imaging spectrometer at the 

University of Wisconsin, Milwaukee (formerly at the Synchrotron Radiation Center)[65].  

A Bruker Vertex FT-IR spectrometer equipped with a Hyperion 3000 infrared microscope 

was used to image the sample with a standard globar source.  A 128 x 128 pixel focal plane 

array (FPA) detector was used to collect reflectance data over the 900-3700 cm-1 spectral 

range (2.7-11.1 μm) with a 4 cm-1 spectral resolution.  A gold mirror was used for reference 

for the reflectance spectra.  IRidys (Infrared Imaging and Data Analysis) software was used 
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to analyze the spectrum collected by each pixel of the FPA.  The gold reflector allows no 

transmittance, so the absorptance is again unity minus reflectance. 

Figure 28 presents a top-down SEM image of a linear bolometer array.  There is slight 

misalignment of the gold black on the square resistor elements, but not enough to cause 

thermal or electrical cross talk between pixels or short to the substrate. 

 

Figure 28. An array of gold black-coated pixels fabricated for testing purposes.  In this 

image the gold black has been slightly misaligned, but is still electrically isolated. 

Figure 29 presents SEM images of bolometers with (a) and without (b) gold black.  The 

VOx film is slightly inscribed within the pixel area, and it is protected on all sides by SiO2.  

The NiCr arms come into contact with the VOx film on either side of the pixel, and they 

support it above the substrate.  The slight warping observed for the pixels affects mainly 

the Q of the Fabry-Perot resonant cavity formed by the air gap.  The gold black film is 

uniform across the pixel, although it slopes down slightly around the edges.  (The pixels 
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shown in Figure 29 have residual polyimide at the elbow joints of the arms.  Such residues 

can also be seen with an optical microscope, which was used to confirm that such were 

absent from the pixels considered in responsivity studies.) 

 

Figure 29. VOx air-bridge bolometers without (a) and with (b) the gold black coating. 

4.2 Absorption Measurements 

Figure 30 presents the specular and diffuse reflectance spectra R for a gold black layer with 

250 nm SiO2 protection.  No dependence on angle of incidence appears until angles of 

about 45 deg.  Diffuse reflectance is <1% for the LWIR and is only ~1% for the MWIR, 

indicating negligible scattering.  The spectrally-averaged absorptance over the 8-12 m 

LWIR wavelength band is ~70% for the smaller incidence angles, with a peak at 9.4 µm 
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of 93% due to the SiO2.  The absorptance averaged over the 3-5 m MWIR wavelength 

band is ~86% for the smaller angles.  In comparison to uncoated gold black, the 

absorptance is weaker, although the strong SiO2 peak helps to compensate for this. 

 

Figure 30. Specular and diffuse reflectance of SiO2-protected gold black film on gold-

coated silicon, at incidence angles of 7, 15, 30, 45, and 60°. 
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Figure 31 presents spatial maps of reflectance measured for MWIR (3-5 µm) and LWIR 

(8-11 µm).  All four images have the same 35 m x 35 m field of view.  The spatial 

sampling is 0.5 m x 0.5 m, so that the actual resolution is diffraction limited at all 

wavelengths. The pixel outline is represented by the black dashed line in images (a) and 

(c).  The absorptance of bare pixels varies by 40% across the pixel, with the minimum at 

the center, where some points show almost zero absorption.  The uncoated pixel’s 

absorption is stronger in the LWIR than in the MWIR, due to the engineered Fabry-Perot 

resonance.  However, the spatial uniformity is quite poor, which we attribute to the 

distortions in the FP cavity noted in Figure 29.  A gold black coating greatly increases the 

absorption and its uniformity across the pixel in both bands.  There is a narrow region 

around the edges with weaker absorption, because the gold black is thinner there, as can be 

seen in Figure 29. 
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Figure 31 Spatial absorptance map for individual pixel.  (a) and (b) show the 

absorptance across a single pixel without gold black coating for MWIR and LWIR, 

respectively.  The corresponding absorptance for a pixel with the gold black coating is 

shown in images (c) and (d). 

Figure 32 presents reflectance spectra obtained from spatial-averages over the pixel areas 

from the micro-FTIR images.  For the uncoated sample, the Fabry-Perot absorption peak 

appears at 8.3 µm wavelength, indicating a cavity size just under 2.1 µm, which is well 

within the designed parameter.  There is an SiO2 absorption peak at 9.8 µm, which also 

appears in the spectrum for the gold black coated sample, although less pronounced due to 

the already high absorptance.  The SiO2 absorption is also observed in the oxide coated 

gold black sample (Figure 30).  When the coating is added, the absorption increases over 
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the full 3 – 11 m wavelength range of the measurement.  The small oscillations in the 

spectrum for the sample without gold black are related to diffraction, as the period of 

oscillation is similar to the periodicity of the pixels in the array.  These oscillations are not 

present in the spectrum for gold black because of low reflectance.  The maximum spatially-

averaged absorptance without gold black is only 64% for LWIR and less than 50% for 

MWIR.  With the gold black coating the absorptance becomes ~90% and is fairly flat across 

the spectrum.  The improvement is more in the MWIR than in the LWIR, where the 

absorption was initially strongest. 

The absorption spectrum presented in Figure 32 for a single pixel is an improvement over 

the bulk reflectance data presented in Figure 30.  A few fundamental differences between 

these two measurements may explain these results.  Most obviously, the gold black 

patterned on the pixel benefits from any additional absorption from the SiO2, VOx-Au or 

the cavity.  Additionally, the spectrum for the single pixel was taken at normal incidence, 

at which the absorption is maximized based on the trend observed for the bulk sample, 

although this effect would be minimal compared to the spectrum at 7˚ incident angle.  

Finally, the detection area is much smaller in the single pixel (35 x 35 µm2) as opposed to 

the bulk measurements, in which the detection area was ~1 cm2.  With a larger detection 

area, any defects in the film will be integrated into the measurement.  In the case of the 

gold black detectors, only pixels with no optically visible defects were tested.  
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Figure 32. Absorptance spectra averaged over one pixel with and without gold black 

overcoat.  The spike near 4.2 µm is an artifact due to atmospheric CO2.  

4.3 Responsivity and Noise Measurements 

Fabrication yield was determined based on optical inspection and measured resistance.  The 

most common failure is support-arm breakage, which results in an open circuit.  Less 

common are electrical shorts from patterning misalignments.   Inadequate or incomplete 

gold black coating occurs on fewer than 5% of pixels.  Of the good pixels, we randomly 

selected and wire bonded 15 without the coating and 15 with the coating for testing.  

Detectors without gold black had an average resistance of 233 kΩ, while coated 

detectors had an average resistance of 221  25 kΩ.  Load resistor values were selected in 

the range 200-250 kΩ to match the device under test.  The signal voltage dVout, defined in 

Eq. 18 based upon the voltage divider circuit, depends upon the quality of the impedance 
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matching, such that the approximation 
𝑅𝐿

(𝑅𝐿+𝑅)2 ≈
1

4𝑅
 can be made.  The variation in the 

factor of ¼ due to imperfect load matching was less than 0.2%, far below the variance in 

detector resistance and the variance observed in dVout.   

Figure 33 presents measured voltage responsivity values ℛ𝑣 =
𝑑𝑉𝑜𝑢𝑡

𝑑𝑃
 as a function of 

detector resistance.  Chopping frequency was 80 Hz, and detector bias was 1 V.  No optical 

filter was used, so the incident spectral range was defined by window transmittance to be 

0.6 - 40 µm wavelength.  The average responsivity for detectors without gold black was 

753 V/W, while the average responsivity for gold black-coated samples was 1110 

 V/W.  Thus, the coating improved the responsivity by 47%, which is much more 

than the 9 and 11% statistical uncertainties for the ℛ𝑣  values within each group, 

respectively.  TCR goes as log(R) [24], so that the variation in ℛ𝑣 should be small over the 

range of resistances plotted in Figure 33.  In fact, no trend in ℛ𝑣 is observed comparable 

to the statistical variations.  This justifies the averaging represented by the horizontal 

dashed lines in Figure 33.  
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Figure 33.  Voltage responsivity and noise voltage over a range of detectors, displayed as 

a function of detector resistance. Measurements are made at 80 Hz chopping frequency 

with 1 V applied bias and no optical filter. 

The measured noise is presented in the lower part of Figure 33.  There is no statistically 

significant increase in measured noise with the addition of the gold black film.  The noise 

measurements exceed the ~250 nV expected for Johnson noise by a factor 10.  While 

thermal fluctuation noise and photon noise contribute very little to the total device noise, 

the magnitude of 1/f noise is less easy to predict.  To investigate the frequency dependence 
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of the noise, 5 samples with gold black and five without gold black were chosen at random 

from samples with resistances in the range of Figure 33. Figure 34 presents a plot of the 

measured noise voltage.  Here, the noise voltage is doubled to show a full decade in the 

vertical scale.  To fit the data, the 1/f noise given in Eq. 39 is integrated over the 

measurement bandwidth of 17 Hz, which solves to 

 
𝑉𝑓 = √𝑘 (√𝑓 +

𝛥𝑓

2
− √𝑓 −

𝛥𝑓

2
), 

(66) 

where 𝜅 =
𝛼𝐻

𝑛𝑉
 is the fitting parameter and the bias voltage is 1V such that (

𝑉𝐵𝑅

𝑅𝐿+𝑅
)

~2

≈

0.25. The slope of the fitted lines is approximately -0.5 on the log scale, indicating the 

dependence on V of f-1/2, as indicated in Eq. 39.  The difference between the two curves is 

clearly much less than the statistical variation of the data, so that we conclude that gold 

black causes no increase in the noise.   Using the volume of the VOx film, we find values 

for the normalized Hooge parameter 
𝛼𝐻

𝑛
~1.5 × 10−22 𝑐𝑚3.  Wood [25] reports a similar 

value of 
𝛼𝐻

𝑛
~10−22𝑐𝑚3 for VOx films developed at Honeywell, while Basantani et al. [29]  

reports values in the range 10-17-10-22 cm3, with larger values holding for high resistivity 

VOx films. 
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Figure 34. Measured noise voltage as a function of frequency for five devices with gold 

black compared with five uncoated device.  A fit of the data generated by integrating Eq. 

39 is presented, using a measurement bandwidth of 17 Hz. 

It should be noted that this measurement considers the entire electrical path; the VOx-Au 

film, the NiCr arms, bond pads, and even the electrical feed-throughs on the testing 

chamber.  There is no clear explanation for 1/f noise; analytical calculations are based off 

of experimental data without the true mechanisms being fully understood.  It has been 

suggested that 1/f noise is related to the number of defects in the electrical path of a material 

[24, 25].  As noted earlier, many failed devices tested with high resistance or open circuits, 

an effect that can be explained by the weak arms NiCr arms.  Even for devices that 

measured with adequate resistance, it may be assumed that the arm path contains defects 

related to this fragility.  Additionally, the embedded gold particles in the VOx film create 

extra surfaces between various grains of vanadium oxide.  The shortest electrical path is 



 96 

through these low resistance gold particles, therefore these Au/VOx interfaces may be 

viewed as defects in terms of 1/f noise. 

The absorbing gold black film is electrically isolated from the VOx-Au film by a thick layer 

of SiO2.  The addition of gold black to a pixel in no way will increase the resistance of the 

film or the number of defects in the electrical path.  The added absorption and bandwidth 

will increase the background fluctuation noise, or photon noise, of the detector by an 

amount of √𝛥𝜂, the square root of the increase in absorptance.  Thermal fluctuation noise 

may be affected by the increase in thermal response time due to added heat capacity.  

However, as it has been shown that Johnson noise and 1/f noise dominate, the increase in 

total noise due to the addition of gold black should be marginal at best, which is consistent 

with experimental observation. 

The voltage responsivity is given in Eq. 29, which may be written as  

 ℛ𝑣 =
ℛ0

√1+(2𝜋𝑓)2𝜏2
 , (67) 

where ℛ0 =
𝑉𝐵𝛼𝜂

4𝐺𝑒𝑓𝑓
 is the voltage responsivity at f=0.   Figure 35 presents ℛ𝑣 for one pixel 

as a function of chopping frequency from 10 to 150 Hz for detectors with and without gold 

black.  The applied bias was 1 V and no optical filter was used in this data.  Values are 

excluded near 60 Hz due to high noise. The parameters for ℛ0 and 𝜏𝑡ℎ were determined by 

fitting these data with the function in Eq. 67.  This fit (solid lines) shows that the DC 
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responsivity increases from 4.13 to 6.24 kV/W by adding gold black, an increase of 51%, 

while the thermal response time only increases by 15%, from 9.57 to 10.97 ms.    

 

Figure 35. Voltage responsivity as a function of chopping frequency. The solid lines are 

fits to Eq. 29. 

The values determined from the fitting parameter ℛ0 allow an estimate of the effective 

thermal conductance Geff, assuming the TCR to be -2.0% and the absorptance to be 0.85 

for gold black-coated samples and 0.54 for uncoated samples, as shown in Figure 32 for 3-

11µm.  This yields thermal conductance G values of 6.5 x 10-7 W K-1 and 6.8 x 10-7 W K-

1, respectively, i.e. an increase of 4% caused by the coating.  The smallness of this increase 

emphasizes that the main thermal conductance path is the arms, which are unaffected by 

the coating.   
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The fitting parameter  and the just determined value for G allow an estimate of heat 

capacity C using Eq. 27.  For bare and coated bolometers we find C = 6.26 x 10-9 and 7.47 

x 10-9 J K-1, respectively, i.e. the coating increases C by 19%.  The density of protected 

gold black after lift-off was estimated to be 8% of bulk gold [17], so a 2 µm thick layer of 

gold black with 250 nm SiO2 should add 0.87 x 10-9 J K-1 to the heat capacity, or a 14% 

increase, which is in reasonable agreement with the value obtained from the fit. 

Figure 36 presents the effect of restricting the spectral range with an optical filter on the 

responsivity improvement achieved with gold black coating.  This data was taken with a 

modulation frequency of 37 Hz.  Additionally, a higher applied bias of 3V was chosen to 

counteract the reduced incident power due to the optical filters.  Without an optical filter, 

the bandwidth incident on the detector was window-limited to the range 0.6 - 40 µm 

wavelength, but there is effectively no irradiance beyond about 20 m, according to the 

300˚C black body curve also plotted in Figure 36. The improvement is smallest for the 

LWIR band, where the uncoated bolometers already had significant absorption due to the 

resonant cavity and the oxide. The improvement for the MWIR band is much larger and is 

comparable to that obtained over the full unfiltered band. 
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Figure 36. Voltage responsivity as function of IR bandwidth, which is given by horizontal 

limits of each bar.  The solid curve is the incident power spectrum based on the 

blackbody radiance at 300˚.  The upper percentage labels give the responsivity increase 

due to the gold black coating, while the lower values in parentheses give the absorptance 

increase for the same range.  Note that the range for LWIR responsivity is 7.6-14.6 µm, 

while the LWIR absorption range is only from 7.6-11 µm.  Measurements taken at 37 Hz 

with 3V applied bias. 

 

4.4 Absorption Effects from Thermal Processing 

Gold black is vulnerable to thermal effects [49].  The mechanism by which gold black 

achieves high absorption is related to the porosity and size of the web-like structures within 

gold black, which by their own nature have high surface area and thus a high chemical 

potential, leaving the system in a thermomechanical unstable state.  To be suitable for 

commercial IR imaging systems, gold black must be able to survive standard vacuum 
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sealing techniques, in which temperatures can be raised above 300˚C for a period of time 

[66, 67].  This heating is expected to degrade the absorption of gold black significantly. 

To investigate this effect, a gold black film with evaporated SiO2 overcoat was prepared in 

the usual manner for FTIR spectroscopy.  This sample was broken into multiple pieces for 

thermal processing.  One was kept as the reference.  Two other samples were heated on a 

hot plate for 10 minutes at 100˚C and 300˚C, respectively. 

Infrared characterization of the effects of thermal processing on gold black was performed 

by collecting reflectance spectra at normal incidence from 3 to 15 µm wavelength.  A 

Bomem DA8 FTIR spectrometer with globar source, KBr beamsplitter, and 77 K HgCdTe 

detector were used.  The substrates for the coatings used in these studies had a thick Au 

coating to ensure zero transmittance, so that absorptance is one minus reflectance.  The 

reference spectrum for determining the reflectance was measured on a gold mirror.  

Figure 37 presents the reflectance spectra for heated gold black films, which show that the 

heat treatment increases the reflectance and degrades the absorption.  There is little 

degradation after heating at 100˚C, particularly for the MWIR.  At higher wavelengths, this 

degradation is enhanced.  At 300˚C, the effect is much more pronounced, although the 

trend with wavelength is still present.  The SiO2 absorption feature shows little change 

from thermal stress, implicating the degradation is due to a change in the microstructure of 

the gold black. 
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Figure 37. Reflectance spectra of gold black after annealing at the indicated 

temperatures for 10 minutes. 

In an effort to reduce this effect, a fourth sample underwent a PECVD deposition of 350 

nm SiO2, in which the processing temperature is 300˚C for approximately 10 minutes.  

Figure 38 compares the reflectance of these two samples with nearly identical thermal 

processing.  While both films have a weaker absorptance than an unheated film, the 

absorption is increased for a film with the additional PECVD processing, despite the heat 

load.  Due to the increased SiO2, this absorption band is much higher just above 9 µm.  

Additional absorption band are also present in the PECVD sample.  This suggests that 

PECVD oxide may utilized to thermally stabilize the film, although the effect may be 

explained simply by the additional absorbing material. 
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Figure 38. Comparison of protected gold black films under similar thermal processes.  

The red curve shows the reflectance of a sample that has an additional 350 nm SiO2 

deposited in a 300˚C PECVD process. 

Gold black films were investigated using SEM imaging both in top-down view and in cross 

section.  Figure 39 shows the top-down images of the unheated sample, heated samples at 

100˚C and 300˚C, as well as the PECVD coated sample.  These images reveal the size and 

topography of the SiO2 on top of the gold black.  Images (a), (b), and (c) show nearly 

identical particle sizes, although the sample heated at 300˚C (c) has particles more 

conglomerated together.  Heating therefore seems to influence the spacing of particles and 

thus the size of the voids, however the SiO2 particle sizes remain unchanged.  The PECVD 
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oxide forms as large, conglomerated particles with few voids present.  As PECVD 

deposition is much more conformal than evaporation, this process makes the surface much 

more planar, which may be desired in a process that would require any patterning steps 

beyond the deposition of gold black.  The dark and bright spots in this image are a charging 

effect from the electron beam in the SEM.  

 

Figure 39. Top-down view of gold black films coated in SiO2.  The first sample (a) has 

had no heat treatment, while (b) and (c) have been heated on a hot plate at 100˚C and 

300˚C, respectively.  350 nm PECVD oxide has been deposited on (d), during which 

thermal treatment was very similar to (c). 
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Figure 40 presents cross section images of the four samples.  The SiO2 overcoat imaged in 

Figure 39 can be seen, and the observations regarding particle size, voids and planarization 

are confirmed.  The surface topography is smoothed as a result of heating, and even more 

so with the PECVD oxide, in which surface non-uniformities occur on a much larger scale.  

More interesting in these images is the grain structure and apparent thickness of the gold 

black.  The unheated sample (a) appears similar to that heated at 100˚C (b).  The thicknesses 

of these films are approximately 1.6 µm and the web-like structure of gold black is still 

intact. The gold black has collapsed and begun to coalesce after 300˚C heating (c).  The 

web-like structure has largely been replaced with crystallites having a diameter on the order 

of 100nm.  The thickness of this film has dropped to 1.2 µm.  The result is a film with far 

fewer voids in which to trap light.  Interestingly, the sample with PECVD oxide (d) shows 

less evidence of collapse and coalescing of the gold black chains (although still much more 

than (a) and (b)).  While the heat has still been detrimental to the film, this additional oxide 

film helps to stabilize the film from further collapse. 

As gold black collapses, the microstructural features that allow gold black to be a good 

absorber (i.e., small scale porosity that enables light trapping) are reduced.  This means 

that absorption is lost in the longer wavelengths first, while the shorter wavelengths are 

still effectively absorbed.  This is evident in the reflectance spectrum in Figure 37, as well 

as the color of the films.  Gold black appears black because it highly absorbs light in the 

visible spectrum.  After being heated, red light is partially reflected, while the other colors 

are still absorbed.  The thermal degradation of gold black indicates the need for new low-
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temperature methods of vacuum packaging for arrays so coated.  Research in low 

temperature vacuum sealing is ongoing [68, 69]. 

 

Figure 40. SEM cross section images of investigated samples: (a) unheated, (b) 100˚C, 

(c) 300˚C and (d) PECVD additional overcoat. 

4.5 D* and NETD 

Measured responsivity and noise values can be used to calculate total device performance 

in terms of NEP, D* and NETD, using Eqs 51, 52, and 60, respectively. Table 4 shows 

these values for 3 different testing conditions.  All three of these tests consistently show an 
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increase in D*, which leads to a potential decrease in NETD for an imager.  The greatest 

increase in device performance is at 30 Hz modulation frequency, which is a consequence 

of the increased thermal response time.  For LWIR, only a modest increase in D* is 

observed, as was seen in Figure 36 in responsivity comparisons. 

Table 4. Comparison of D* and NETD for devices with and without gold black under 

various testing conditions 

Testing 

Conditions 
NEP [W] 

D*      

[cm√Hz W-1] 

NETD 

[mK] 

% Increase 

D* 

% Decrease 

NETD 

No Gold Black, 

1V, 80 Hz 1.06 x 10-9 1.32 x 107 2388.78 
33% -25% 

Gold Black, 1V, 

80Hz 8.02 x 10-10 1.76 x 107 1802.80 

No Gold Black, 

1V, 30 Hz 5.51 x 10-10 2.55 x 107 1239.34 
48% -33% 

Gold Black, 1V, 

30 Hz 3.72 x 10-10 3.79 x 107 835.38 

No Gold Black, 

3V, 37 Hz, LWIR 6.09 x 10-10 2.31 x 107 1368.69 
17% -14% 

Gold Black, 3V, 

37 Hz, LWIR 5.21 x 10-10 2.70 x 107 1170.77 

 

The measured D* values are about an order of magnitude lower than comparable 

commercial devices, even considering the enhancement gained by the gold black absorber.  

To some extent, the TCR of VOx in commercial devices may be ~50% larger than that used 

in these devices [4], and the detector redesign discussed in Chapter 3 demonstrated the 

possibility of decreasing the thermal conductance by as much as a factor of 3.  Therefore 

the discussed fabricated device potentially has a responsivity ~4.5 times less than 

commercial devices. 
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These devices suffered from a higher than anticipated noise floor that is roughly an order 

of magnitude higher than the Johnson noise.  This is much more likely to be the source of 

the low D*.  For the same responsivity, D* would be ~108 for Johnson-noise limited 

devices. 

4.6 Summary 

Results presented demonstrate the potential of patterned gold black as a dual band, wide-

angle absorber for improving the responsivity of room temperature bolometer arrays.  Gold 

black films protected by evaporated oxide were successfully patterned by lift-off onto 

pixels of the microbolometer, giving a spectrally averaged responsivity improvement of 

~50%.  In the LWIR band, the improvement was nearly 30%, and it was over 70% in 

MWIR.  The coating increased the thermal time constant by ~15%, but the detectors remain 

sufficiently fast for standard 30 Hz video frame rates.  A vacuum packaging method that 

maintains array temperatures below 100 ˚C would be required to avoid degrading the gold 

black coatings. 
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CHAPTER FIVE: SENSITIVITY ENHANCEMENTS USING SUB-

WAVELENGTH RESONANT ABSORBERS 

5.1 Theoretical Considerations 

Thin film metamaterial, or plasmonic resonant absorbers, were discussed in Chapter 2 as 

an alternative to a metal black for enhanced absorption and sensitivity of an infrared 

microbolometer.  Such films can be advantageous as they can achieve high absorption 

using relatively thin films, so that heat capacity and therefore thermal response time have 

minimal increase.  While explanations for the absorption vary between a metamaterials 

approach, which utilizes effective medium theory based off of the electric permittivity and 

magnetic permeability of a material [15], to an interference approach, which is based off 

of phase-matching of electromagnetic waves similar to Fabry-Perot resonances [70], it is 

agreed that the absorption is related to the dimensions of sub-wavelength structures.  Nath 

et al. [71] recently developed such a resonant absorber structure based on a metal-

dielectric-metal (MDM) structure.  This structure was developed for LWIR and far-IR 

(wavelengths longer than 12µm), in which the resonant absorption frequencies are 

dependent upon designed dimensions, and are therefore configurable to a wide range of 

bandwidths.  Absorption in Ref. [71] is highest at 53.5 µm and 30 µm, where the absorption 

is 95% and 98%, respectively, while the same design with different dimensions has a peak 

absorption of 93% at 6.7 µm wavelength [23]. 
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Such a resonant absorber is preferable to gold black in that it is not subject to any aging or 

heating degradation.  Furthermore, this process involves standard e-beam evaporation of 

metals and dielectrics, while gold black requires a slightly more exotic deposition method 

that may not be compatible with all labs and foundries.  Like gold black, these absorbers 

can be easily patterned through standard UV-photolithography.  However, the absorber is 

not quite as broadband as gold black, and although the film thicknesses are comparable, 

the porosity of gold black allows it to have low heat capacity compared to the resonant 

absorbers described here, so a higher increase in thermal response time is expected.  The 

goal of this investigation was to determine performance enhancements of the 

microbolometer after integration with the described resonant absorber, and to define the 

potential drawback associated with this method. 

 

Figure 41. Schematic of the structured metamaterial absorber.  

Figure 41 presents a schematic of the structured thin film absorber.  The ground plane 

consists of optically thick gold with a titanium sticking layer, followed by a dielectric layer 
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(SiO2) of thickness t.  Optically thick gold squares are patterned on top of the SiO2 in a 

periodic array with square dimension l.  A standing wave resonance model accurately 

predicts the resonant absorption wavelengths [71].  This model considers electromagnetic 

waves traversing through the SiO2 emanating from the edges of the top metal squares, 

driven by a periodic polarization induced from incident radiation.  Based upon multiple 

reflections b off of the metallic surfaces, the mth order standing wave resonance occurs at 

wavelength [71] 

 
𝜆(𝑏, 𝑚) =

2(𝑏+1)𝑛(𝜆)

2𝑚+𝑏
√𝑡2 +

𝑙2

(𝑏+1)2 , 
(68) 

where n(λ) is the wavelength dependent index of refraction of the SiO2. It should be noted 

that, by symmetry, the number of reflections b will always be odd.  The maximum 

resonance should occur at the fundamental m=0 mode for b=1,3.  Hence, the absorption 

bands for this film are functions configurable by adjusting the thickness t of the dielectric 

and the length l of the gold square.  Dependence on any other parameter, such as 

periodicity, is very weak [72].  Therefore the absorption profile can be explained even for 

a single square.  Multiple absorption bands are achieved by using SiO2, which is a 

dispersive dielectric, with such absorber structure. Strong wideband absorption is reported 

for such structures which cover almost the entire LWIR region [72]. 
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5.2 Experimental Methods 

The designed metamaterial absorber was patterned and deposited onto trench-etch 

microbolometers, the latter of the two designs described in Chapter 3.  Therefore detectors 

in this investigation were much more robust, had a lower resistance with smaller variance, 

and arrays had a higher yield.  A single wafer containing hundreds of individual detectors 

was fabricated.  The absorber was patterned directly on top of a thick PECVD oxide layer, 

ensuring electrical isolation from the VOx film.  The total area of the absorber was 35 x 35 

µm2, matching the size of the VOx-Au film.  A shadow mask covered half of the wafer 

during depositions for the absorber, so that half of the devices could be kept without the 

absorber for comparison.  The absorber metal (200 nm Au with 10 nm Ti sticking layer) 

and dielectric (1.3 µm evaporated SiO2) layers were patterned first by a lift-off technique. 

Then, 150-nm-thick gold squares with 5 µm lateral dimension in a 7.5 µm period two-

dimensional array were patterned on the bolometers by a second lithography step.  The 

detectors were again patterned and covered in photoresist as an etch mask for the isotropic 

silicon etch in a fluorinated plasma to form the air bridges. 

For characterization of absorbers independent of the bolometers, the absorber structure was 

patterned over large areas of a silicon substrate.  The squares were fabricated using standard 

i-line UV photolithography.   

Infrared characterization was performed by collecting reflectance spectra at normal 

incidence from 3 to 15 µm wavelength.  A Bomem DA8 FTIR spectrometer with globar 

source, KBr beamsplitter, and 77 K HgCdTe detector were used.  Transmission was 
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confirmed to be zero due to the optically thick gold ground plane on the silicon substrate, 

and no scattering is expected from the subwavelength squares.  Hence, the absorptance is 

one minus reflection.  The reference spectrum for determining the reflectance was 

measured on a gold mirror. 

Figure 42 presents SEM images of detectors with and without the absorbers.  The top image 

of the detectors without absorbers is taken from a separate wafer designed with a higher 

fill factor, but in every other regard the design is identical to the detectors tested in this 

work.  One thing to note is that the edges appear rougher in the bottom image.  This is an 

effect from silicon or “grass” that is formed during the fluorinated plasma etch. This is an 

unwanted byproduct common to this etch chemistry related to contaminants materials [73].  

As this etch chemistry will etch both silicon and silicon dioxide (although the latter with a 

much slower rate), a photoresist etch mask must be utilized.  The residue was not 

completely removed even with an oxygen plasma clean.  Due to the minimal presence of 

this residue and location on the sample, it is not believed to have any measureable effect in 

our experiments.   
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Figure 42. Comparison of detectors without patterned metamaterial (top) and with the 

metamaterial detector patterned (bottom). 

Figure 43 compares top-view SEM images of the large reference absorber array and a 

smaller array selectively patterned onto a single bolometer element.  Both arrays have a 

period of 7.5 µm and a lateral dimension of ~5 µm.  The edge squares on the 

microbolometers are deformed due to the selective pattering process.  Due to the nature of 
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the patterning process, different detectors had slightly different numbers of square patterns, 

as can be viewed by comparing the squares in Figure 42 and Figure 43.  Theoretical 

analysis suggests little influence of periodicity on absorptance, although non-uniform 

square sizes will result in a smaller effective absorbing area or non-uniform absorption 

peaks across the pixel.  Some variation in measured signal is expected from this non-

uniformity from pixel to pixel. 

 

Figure 43. SEM images of (top) absorber structures on VOx air-bridge bolometer and 

(bottom) absorber structures on Si substrate. 
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Figure 44. Reflectance spectra of absorber structure measured by FTIR.  Reflectance 

minima (absorption peaks) are labeled. 

Measured reflectance spectra are plotted in Figure 44. Multiple absorption bands appear at 

5.8 µm, 8.5 µm, 10.2 µm, and 16.9 µm, with a small peak appearing at 12.5 µm.    The 

peak at 10.2 µm corresponds to the absorption band of SiO2, although slightly red-shifted 

due to the resonance of the squares.  Because multiple bands overlap in the LWIR, the 

average absorption over this region is ~80%.  Average absorption across the MWIR is only 

~45%, which is still an improvement for a detector designed for LWIR.   

Fabrication yield for devices was over 95%, based off of measured electrical resistance and 

mechanical stability.  Patterned absorbers ideally would have a 4x4 array of squares visible 

on the surface.  Due to fabrication limitations and low tolerance arising from the small 

critical dimension of the pattern, some pixels had fewer squares.  The failure mode for 
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absorbers was determined by the number of visible squares on the surface under an optical 

microscope; detectors with fewer than 50% of the surface patterned (less than 8 full-sized 

squares) were deemed an unsuccessful absorber.  Based upon this metric, the yield on 

patterned absorbers was only around 50%, and was largely dependent on the position of 

the wafer.  That is to say, some sections of the wafer would have near 100% yield while 

other sections would have close to 0% yield.  

Responsivity and noise measurements were carried out in a similar method as described in 

Chapter 3, however the electronic read-out circuit was slightly different.  These detectors 

were designed to be part of an imaging system using a custom amplifier and ROIC that 

would measure all devices in an array.  For single pixel measurements conducted for this 

study, the simple voltage divider electronics were utilized instead.  However, to 

accommodate the custom electronics for the imager, detectors were fabricated with on-chip 

impedance-matched load resistors connected to a common ground.  Thus, instead of 

directly measuring the voltage across the detector, the voltage across the equivalent 

resistance of the detector and the load resistor was measured.  As 𝑅 ≈ 𝑅𝐿 to within the 

measured standard deviation (1.1%), 𝑅𝑒𝑞 ≈
𝑅

2
 . 

For blackbody testing, ten devices without absorbers and ten samples with absorbers were 

chosen at random from among pixels that were deemed successful.  For detectors with 

absorbers, the average equivalent resistance was 45.75 ± 0.31 kΩ, such that the detector 

resistance was 91.50 ± 0.62 kΩ.  The average equivalent resistance for detectors without 

patterned absorbers was 40.01 ± 0.60 kΩ, such that the detector resistance was 80.02 ± 1.2 
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kΩ.  Resistance differed between the two groups by roughly 12%.  The difference in 

resistances between the two groups is larger than the standard deviation within the groups, 

so in this sense the difference is systematic.  The absorber is electrically insulated from the 

VOx-Au film, and the bottom layer of the absorber structure is a gold ground plane.  Any 

interference this supplies on the electrical path, by design or by a fabrication error, would 

likely be a short, and thus decrease the resistance; the observed effect is an increase in 

resistance.  It is unlikely, therefore, that this change in resistance is related to the application 

of the absorber, and more likely indicative of non-uniformity across the wafer of the 

deposited VOx-Au film.  

5.3 Responsivity and Noise Measurements 

Bolometer testing conditions and results are presented in Table 5. For each set of 

conditions, measurements for the 10 different elements were averaged.  Applied bias was 

1.0 V in each case.  “Full” bandwidth means the measurement was performed without an 

optical filter, so the incident power spectrum depended only on the blackbody spectra, 

atmospheric transmission, and the KRS-5 transmittance.  For “LWIR” bandwidth, an AR-

coated germanium long pass optical filter was used (Edmund Optics 68656) which has a 

spectral window of about 7.6 µm-14.6 µm.  The lock-in time constant was 30 ms, giving a 

measurement bandwidth f of ~17 Hz. 

The responsivity was highest at 35 Hz modulation frequencies, which is acceptable for 

video frame rates.  The responsivity was consistently higher with an absorber than without. 
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For 35 Hz modulation frequency, the detectors with absorbers showed a 71% increase in 

responsivity, but only a 56% increase at 100 Hz.  This is largely due to the increase in 

thermal time constant with the additional mass of absorber.  With LWIR filter, responsivity 

improvement drops to 49%.  The absorbers used have a much broader absorption 

bandwidth than the detectors achieve using a Fabry-Perot cavity alone, which is designed 

for LWIR.  The higher responsivity for the full band measurements is largely due to 

increased absorption outside of the LWIR bandwidth. 

Table 5. Data averaged over 10 detectors with and without the absorbing structure. 

Modulation 

Frequency 

[Hz] 

Bandwidth Detector 

Average 

Responsivity 

[V/W] 

Average Noise 

Voltage 

[µV] 

35 Full 
Absorber 1399 ± 36 0.67 ± 0.37 

No Absorber 817 ± 21 0.49 ± 0.29 

100 Full 
Absorber 656 ± 14 0.73 ± 0.35 

No Absorber 420 ± 14 0.49 ± 0.25 

35 LWIR 
Absorber 2171 ± 51 0.42 ± 0.16 

No Absorber 1457 ± 36 0.33 ± 0.17 

 

The measured noise was consistently larger for devices with the absorbers.  At 35 Hz 

modulation, the noise increased by 36%, while a slightly higher increase of 48% was 

observed at 100 Hz, almost equal to the increase in responsivity.  The smallest increase 

was observed for LWIR measurements at 27%.  It should be noted that while this increase 

is observed to be systematic, it is also smaller than the observed standard deviation of the 

measurements, which is approximately 50%.  Therefore the data are not sufficiently 

statically significant to conclude that the addition of the resonant absorbers increases the 

noise of the devices. 
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With a resistance of 80-90 kΩ, the Johnson noise for measured devices should 

approximately 200 nV by Eq. 30, which is 2-3 times lower than presented in Table 5. It 

was observed in gold black testing that 1/f noise was a higher noise source than originally 

expected, so it is reasonable to assume that 1/f noise is a larger source in these devices as 

well.  This assumption is not supported by the results in Table 5, as noise remains more or 

less constant between 35 Hz and 100 Hz, but this effect was looked into more closely. 

 

Figure 45. Noise voltages from devices with and without absorbers as a function of 

frequency, here plotted on a log-log scale.  The Johnson noise floor is shown in blue, and 

the data are fitted based on Eq. 66 for 1/f noise. 

Noise voltages as a function of modulation frequency are plotted in Figure 45.  The Johnson 

noise floor at 200nV is plotted in comparison.  The data suggest a strong 1/f dependence, 

with the 1/f knee at or before 100 Hz.  The data are fitted using Eq. 66 as was done for gold 

black detectors in Chapter 4, from which the 1/f parameter 𝜅 =
𝛼𝐻

𝑛𝑉
 is found to be 1.3 ×
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10−14 and 4.4 × 10−14 for detectors without and with absorbers, respectively.  This gives 

a normalized Hooge parameter 
𝛼𝐻

𝑛
 nearly two orders of magnitude smaller than was present 

for the previous design.  Although the fits for the data indicate less 1/f noise for detectors 

with absorbers, the large amount of measurement uncertainty makes this comparison 

inconclusive.  It may be concluded, however, that 1/f noise, while still dominant at low 

frequencies, is reduced from the design used in Chapter 4. 

The thermal time constant for detectors was determined in the same manner as for the gold 

black detectors discussed in Chapter 4.  The signal voltage was measured as a function of 

chopping frequency from 10-150 Hz for both detectors with and without the absorbers.  A 

2V applied bias was used over the full bandwidth.  Figure 46 presents a plot of responsivity 

as a function of chopping frequency.  Responsivity values are absent near 60 Hz due to 

noise.  The data are fit according to Eq. 67 for the parameters ℛ0 and 𝜏.  The thermal time 

constant is found to be 4.05 ms and 4.82 ms for samples with and without the absorbers, 

respectively, an increase of 19%.  ℛ0 increases from 2.31 kV/W to 4.21 kV/W by adding 

the absorber, which represents an increase of 82%, slightly higher than the earlier observed 

increase of 71% at 35 Hz frequency.  The detectors with absorbers are more sensitive to an 

increase in modulation frequency due to their higher time constant and thermal mass, 

therefore the lowest modulation frequencies will see the highest increase in responsivity. 
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Figure 46. The voltage responsivity of devices with and without absorbers as a function 

of chopping frequency.  This data is taken with a bias voltage of 2V.  The solid lines are 

fits to Eq. 29. 

The responsivity measurements with respect to frequency from Figure 46 give values for 

ℛ0 and the thermal time constant.  From these two values, and using assumptions for TCR 

and absorptance, the thermal conductance and heat capacity of devices can be calculated.  

Using TCR =-2.0% as was used for similar calculations in Chapter 4, and setting the 

absorptance to be 0.7 and 0.4 for the absorbers and non-absorbers, respectively, the thermal 

conductance calculates to be 𝐺 = 1.6 × 10−6 𝑊/𝐾 for detectors with absorbers and 𝐺 =

1.7 × 10−6 𝑊/𝐾 for detectors without absorbers.  The heat capacity calculates to be 𝐶 =

8 × 10−9 𝐽/𝐾 and 𝐶 = 7 ×  10−9 𝐽/𝐾, an increase of 14%, comparable to the increase of 

19% in thermal time constant.  The thermal conductance is considerably higher than 
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observed for gold black detectors, while the heat capacity is also larger, but by a smaller 

extent. 

The responsivity and noise voltage are plotted as a function of applied bias voltage in 

Figure 47.  Measurement error is shown for the noise measurements.  Measurement error 

for responsivity measurements was less than 1%, which is not visible on the scale of this 

plot, so these were omitted.  The responsivity peaks at an applied bias of 3V.  The linear 

relationship predicted by Eq. 29 thus holds only up to 3 V bias.  The noise increases as well 

but appears to flatten out around 3V.  Thus, the bias that optimizes D* is 3V.   

Excessive bias risks breakdown across the resistive element, resulting in a permanent short, 

and Joule heating raises bolometer temperature and reduces sensitivity [74].  Different 

designs have been introduced to compensate for such heating [75, 76].  By simply 

considering the bias voltage, a 1 V bias causes 5 µW heating, while 4 V increases this 

heating by a factor of 16 to 80 µW.  However, heating also decreases the bolometer 

resistance, which tempers the increase in power slightly.  The TCR 𝛼 =
1

𝑅

𝑑𝑅

𝑑𝑇
, so a lower 

device resistance reduces dR/dT.  Joule heating also decreases the thermal conductivity, 

increasing the thermal time constant, which affects the frequency response. 
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Figure 47. Responsivity and noise voltage as a function of bias voltage measured at 35 

Hz. 

Detectors were also measured using various optical filters to select different bandwidths.  

Data for responsivity as a function of detector bandwidth is reported in Figure 48.  

Responsivity was measured without an optical filter initially, which is indicated in the full 

bandwidth measurement.  An increase of 71% is observed over this region.  Optical filters 
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were used to isolate the MWIR and LWIR bandwidths.  Responsivity increased higher for 

MWIR at 96% than in LWIR with a 49% gain.  The device is designed for LWIR initially, 

and the absorption band for SiO2 is also in LWIR, so a smaller increase in this bandwidth 

is to be expected with the additional absorber.  Even with a 96% responsivity increase, the 

MWIR performance is still less than the LWIR performance without the absorber.  Hence, 

the absorber enables dual band function for a bolometer initially designed for single 

bandwidth capability. 

 

Figure 48. Voltage responsivity as a function of measurement bandwidth, plotted in 

comparison to the spectral incident power used in measurement for a 300°C blackbody.  

Data were taken using 2V applied bias at 35 Hz modulation. 
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5.4 D* and NETD 

Performance calculations derived from measured responsivity and noise voltage of devices 

is presented in Table 6.  While all testing conditions report an increase in D*, the greatest 

increases occur at lower frequencies, while only a modest improvement is seen at 100 Hz 

modulation.  Furthermore, performance in the LWIR are smaller than the full band, as the 

absorbers provide the benefit of additional bandwidth for achieving high absorption.   The 

largest improvement is observed for devices operated at a higher bias voltage.  D* also 

increases at a higher bias voltage, bringing it closer to desired performance levels. 

Table 6. Comparison of D* and NETD for devices with and without the absorbers under 

various testing configurations.  

Testing Conditions NEP [W] 
D*          

[cm√Hz W-1] 

NETD 

[mK] 

% Increase 

D* 

% 

Decrease 

NETD 

No Absorber, 35 

Hz, 1V 6.00 x 10-10 2.35 x 107 1348.51 
24% -19% 

Absorber, 35 Hz, 

1V 4.85 x 10-10 2.90 x 107 1091.27 

No Absorber, 100 

Hz, 1V 1.17 x 10-9 1.21 x 107 2623.17 
5% -5% 

Absorber, 100 Hz, 

1V 1.11 x10-9 1.26 x 107 2502.07 

No Absorber, 35 

Hz, 1V, LWIR 2.26 x 10-10 6.21 x 107 509.25 
17% -15% 

Absorber, 35 HZ, 

1V, LWIR 1.93 x 10-10 7.28 x 107 434.98 

No Absorber, 35 

HZ, 3V 5.00 x 10-10 2.81 x 107 1124.22 
33% -25% 

Absorber, 35 HZ, 

3V 3.75 x 10-10 3.75 x 107 843.16 
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D* is maximized by limiting the bandwidth to LWIR.  In this bandwidth, D* is roughly 

two times less than is achieved in many commercial devices.  However, these measurement 

values are only at 1V.  Increasing the bias voltage and limiting the bandwidth may increase 

D* to ~108. 

5.5 Summary 

We have demonstrated the integration of a thin-film “metamaterial” absorber onto a 

vanadium oxide microbolometer.  Strong increase in responsivity resulted due to improved 

absorption.  The uncoated bolometer was designed for a fairly narrow LWIR band by using 

a Fabry-Perot resonant cavity, and the thin film absorber broadens the spectral response to 

include the MWIR.  The device can be entirely patterned by photolithography and requires 

no exotic steps or materials.  By operating with 3 V bias and at a modulation frequency of 

30 Hz, it is possible to achieve D* of ~108 𝑐𝑚√𝐻𝑧/𝑊 for both the MWIR and LWIR 

bands, which is a significant improvement over the original design of these detectors. 
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CHAPTER SIX: CONCLUSIONS 

6.1 Evaluation of Methods 

It is clear that changing the detector design to the flat pattern in place of the polyimide 

sacrificial layer improved detector performance, mechanical stability and overall yield.  

The possibility of generating detectors with longer arms for higher lower thermal 

conductance makes this new approach very attractive.  The drawback of the latter design 

is the loss of the Fabry-Perot cavity, although this is a solvable problem a suitable metal 

etch stop layer, as discussed earlier. 

The biggest concern from devices fabricated is the relatively low TCR of the VOx-Au film.  

While -2.0% is acceptable, this value must be significantly higher to achieve D* values in 

the high 108 or even 109 range, in which state-of-the-art performance could be achieved. 

The two absorbing structures discussed in this work both have positive effects on device 

performance.  Comparing the results from the gold black experiments with results from the 

metamaterial experiments is unfortunately difficult because these absorbers were patterned 

on different detector designs.  The metamaterial absorbers had the lowest predicted NETD 

of all devices for the LWIR, as well as having a higher responsivity increase for full range, 

LWIR and MWIR measurements.  Responsivity increase, while a useful metric for 

evaluating the benefit of a specific type of film on a specific detector, is not transferrable 

to other detectors.  The responsivity increase observed for the metamaterial absorbers is 

likely high only because the native device absorption was low from a poor cavity design.  
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Application of these absorbers on a detector with a high native absorption would result in 

a very small increase in responsivity. 

To compare the gold black film and metamaterial absorber, it is more useful to look at 

absorptance, bandwidth and fabrication complexity and longevity of the material.  The 

absorbed power can be determined as the product of the spectral incident power and the 

spectral absorption.  Figure 49 compares the absorbed power of the measured Fabry-Perot 

cavity, as well as the measured gold black and metamaterial absorbers.  These values are 

plotted against the spectral radiance of the 300°C blackbody used in experiment.  One thing 

to note is that most of the blackbody incident power is in the MWIR, where the gold black 

and metamaterial absorber perform considerably well, especially compared with the Fabry-

Perot cavity.  In the LWIR, the differences are less pronounced.  Additionally, the 

advantage of the gold black film is that absorptance is much more flat across the spectrum 

than the metamaterial absorber.  In a practical device, there will not be much atmospheric 

transmission between 5-8 µm, therefore the sharp dip in this region for the metamaterial 

device will be negligible.  By optimizing the size of the squares, the metamaterial absorber 

can be designed to have peaks in the MWIR and LWIR, making it a comparable absorber 

to gold black. 
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Figure 49. Comparison of absorbed power between different absorbers, plotted against 

the maximum absorbed power for a 300°C blackbody. 

The additional benefit of the metamaterial absorber is the ease of fabrication and the 

longevity of the absorber.  Gold black requires a somewhat more exotic method of 

deposition, while the metamaterial absorber is deposited using standard fabrication 

techniques.  The drawbacks of thermal degradation of gold black is not apparent in the 

metamaterial film, as these structures are much more chemically and thermomechanically 

stable.  Until low-temperature vacuum sealing can be achieved and integrated into the 

process of standard vacuum sealing of devices, the metamaterial absorber remains a more 

attractive option. 
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6.2 Future Experiments 

Gold black is susceptible to thermal processing partially because gold is a highly mobile 

material [77].  It is possible that other metal blacks would withstand thermal processing if 

the metal was less mobile and had a higher melting point.  A proposed experiment would 

be to measure absorption for various metal blacks after different thermal processing steps, 

and to correlate this absorption to structure size visible through SEM cross sections.  

Materials such as platinum black, tungsten black, and even chromium black would be good 

candidates for experimentation. Deposition of these materials by thermal evaporation 

methods used for gold black would require higher currents, and is beyond the capability of 

the deposition chamber used for gold black processing. 

An alternative experiment involves further integration of the resonant absorbing structure 

with the VOx-Au microbolometer.  The main problem with the absorber is the added heat 

capacity, such that the thermal response time is increased.  To reduce this effect, the 

absorber could be fully and intimately integrated into the microbolometer.  Figure 50 

presents a cross section schematic of the proposed structure.   The absorber comprises an 

insulated metal blanket layer, a thin dielectric layer for electrical isolation, a thick 

semiconducting VOx film, another dielectric layer to encapsulate and insulate the VOx, and 

finally a periodic array of metal squares.   
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Figure 50. Schematic for a VOx-Au microbolometer with integrated resonant absorber 

structure. 

 

A secondary advantage of this approach is due to the thicker VOx layer.  This 

reduces device resistance given a constant film resistivity.  In theory, TCR would remain 

unchanged as this is related to resistivity, not total resistance.  The result would be a 

reduction in Johnson noise.  Potentially, absorption could increase over a larger bandwidth 

due the different dispersion relations of the dielectric and the VOx intersecting with the 

resonant modes of the periodic array, but these results require further study and simulation 

of designs. 
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APPENDIX A: DERIVATION OF BLACKBODY RADIANCE 
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Planck’s Law describes the amount of energy emitted from a blackbody with respect to the 

body temperature and wavelength bandwidth, given in the text as Eq. 2.  This derivation 

seeks to provide the theoretical background of this radiance term, and in the process, 

explain some mathematical properties of this function.  This derivation follows models 

given in Amit [28], Dereniak [24], Landau [27], and Pathria [78].  While none of these 

sources specifically includes all of the following derivations, it should be stressed that this 

work is simply combining various derivations and explanations from the above authors, 

who are themselves explaining phenomena derived by Planck and others. There are many 

different approaches towards deriving the Planck equation, historically stemming from 

work by Planck, Bose and Einstein.  Here, the approach looks at the distribution of 

harmonic oscillators under Bose-Einstein statistics, and then relates this to the specific case 

of photons. 

The probability of an oscillator being found in the nth energy level is given by 

𝑃(𝑛1, 𝑛2 … 𝑛𝑁) = 𝑍−1𝑒𝛽𝐸(𝑛1,𝑛2,𝑛𝑁),    (A1) 

where Z is the is the partition function and can be described as 𝑍 = 𝑧𝑁, where z is the 

partition function of a single oscillator such that  

𝑧 = ∑ 𝑒𝛽ℏ𝜔(𝑛+
1

2
)∞

𝑛=0  .     (A2) 

Eq. A2 gives the energy as of a system as 

𝐸 = ℏ𝜔 (𝑛 +
1

2
) .     (A3) 
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Eq. A1 can be rewritten as the product of N probabilities: 

𝑃(𝑛1, 𝑛2 … 𝑛𝑁) = 𝑃(𝑛1)𝑃(𝑛2) … 𝑃(𝑛𝑁) ,   (A4) 

where 𝑃(𝑛) = 𝑧−1𝑒−𝛽𝐸.  Now the expectation value of the distribution of oscillators is 

〈𝑛〉 = 𝑧−1 ∑ 𝑛𝑒−𝛽𝐸 ,     (A5) 

where the summation is taken over infinity.  This value is the mean number of oscillators 

in each quantum state, or the degree of excitation of the oscillators.  It will also be referred 

to as the distribution function.  Substituting from Eqs. A2 and A3 yields 

〈𝑛〉 =
∑ 𝑛𝑒

−𝛽ℏ𝜔(𝑛+
1
2

)

∑ 𝑒
−𝛽ℏ𝜔(𝑛+

1
2

)
=

∑ 𝑛𝑒−𝛽ℏ𝜔𝑛𝑒
−𝛽ℏ𝜔(

1
2

)

∑ 𝑒−𝛽ℏ𝜔𝑛𝑒
−𝛽ℏ𝜔(

1
2

)
=

∑ 𝑛𝑒−𝛽ℏ𝜔𝑛

∑ 𝑒−𝛽ℏ𝜔𝑛
=

∑ 𝑛𝑒−𝑥𝑛

∑ 𝑒−𝑥𝑛
 , (A6) 

where the final step comes from substituting 𝑥 = 𝛽ℏ𝜔.  As the numerator is the derivative 

of the denominator, Eq. A6 can be written as 

〈𝑛〉 = −
𝑑

𝑑𝑥
𝑙𝑛 ∑ 𝑒−𝑥𝑛 = −

𝑑

𝑑𝑥
𝑙𝑛 ∑(𝑒−𝑥)𝑛 = −

𝑑

𝑑𝑥
ln (

1

1−𝑒−𝑥) . (A7) 

Taking the derivative in Eq. A7 and substituting the original terms, we find 

〈𝑛〉 =
1

𝑒𝛽ℏ𝜔−1
 .      (A8) 

Eq. A8 is the Bose-Einstein distribution (Landau calls this Planck’s distribution) and 

describes the probability that an oscillator will be found in a specific state of certain energy.   
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The argument thus far is made for any oscillators subject to Bose-Einstein statistics 

(bosons).  It now makes sense to switch to speaking specifically of photons, which 

propagate in all directions at velocity c. 

The density of states is the number of quantum states of photons per wavelength (per 

volume).  This term, multiplied by distribution of oscillators in Eq. A8 will yield the total 

number of oscillators per unit frequency.  Consider a square box of length L, such that the 

volume of the box is given by V=L3.  The possible modes of oscillations of standing waves 

inside this box are, in each dimension, 

𝑘𝑥 =
2𝜋𝑛𝑥

𝐿
 , 𝑘𝑦 =

2𝜋𝑛𝑦

𝐿
 , 𝑘𝑧 =

2𝜋𝑛𝑧

𝐿
 ,   (A9) 

where nx, ny and nz are integers and k is the wave vector such that 𝑘 =
𝜔

𝑐
.  We can rewrite 

Eq. A9 to obtain the total number of possible modes in each dimension 

𝑛𝑥 =
𝑘𝑥𝐿

2𝜋
 , 𝑛𝑦 =

𝑘𝑦𝐿

2𝜋
, 𝑛𝑧 =

𝑘𝑧𝐿

2𝜋
.   (A10) 

The total number of possible modes in a volume dk is 

𝑑𝑛𝑥𝑑𝑛𝑦𝑑𝑛𝑧 =
𝐿3

(2𝜋)3 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧 =
𝑉

(2𝜋)3 𝑘2𝑑𝑘𝑑𝛺.   (A11) 

Here, L3 is the total volume, and the differential volume in Cartesian coordinates is 

translated into polar coordinates.  The integral over the solid angle yields 4π, and the 

substitution of 𝑘 =
𝜔

𝑐
 makes Eq. A11 become 



 136 

𝑑𝑛 =
𝑉

(2𝜋)3
(

𝜔2𝑑𝜔

𝑐3
) 4𝜋 =

𝑉𝜔2𝑑𝜔

2𝜋2𝑐3
 ×  2 =

𝑉𝜔2𝑑𝜔

𝜋2𝑐3
 .  (A12) 

The multiplication of two represents the two states of polarization of the photon spin, and 

the final term on the right is the density of states, g()d.  To find the total number of 

photons in a frequency d we multiply the right side of Eq. A12 with Eq. A8 to yield 

𝑑𝑁𝜔 =
𝑉

𝜋2𝑐3

𝜔2𝑑𝜔

𝑒𝛽ℏ𝜔−1
 ,     (A13) 

and the total energy with respect to frequency is found by multiplying Eq. A13 by the 

photon energy ℏ𝜔: 

𝑑𝐸𝜔 =
𝑉

𝜋2𝑐3  
ℏ𝜔3𝑑𝜔

𝑒𝛽ℏ𝜔−1
 .     (A14) 

This equation is Planck’s equation in terms of frequency, and is a common form of the 

equation found in most statistical physics textbooks.   

 At this point, Planck’s equation has been derived.  However, for the purposes of 

understanding the energy distributed to a particular area; a detector for instance, this 

equation must be translated into power per unit source area per unit wavelength, which is 

the radiance.  This can be accomplished by converting energy in terms of frequency to 

power in terms of frequency and then to power in terms of wavelength.  

Eq. A14 can be expressed as the energy density per unit source volume per unit frequency 

𝜌(𝜔) =
1

𝜋2𝑐3  
ℏ𝜔

𝑒𝛽ℏ𝜔 .     (A15) 



 137 

Each element dV of the source emits radiation in all directions as 𝜌(𝜔)𝑑𝜔𝑑𝑉, where the 

volume can be expressed as 𝑑𝑉 = 𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙.  The fraction of the total amount of 

radiation in the direction of a unit source area dA is given by the ratio of the projected solid 

angle 
𝑑𝐴𝑐𝑜𝑠𝜃

𝑟2  by the total solid angle of the volume element (4π).  Thus, the energy of the 

radiation emitted in the direction of the unit area is 

𝑑𝐸 = 𝜌(𝜔)𝑑𝜔𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙
𝑑𝐴𝑐𝑜𝑠𝜃

𝑟2 = 𝜌(𝜔)𝑑𝜔
𝑑𝐴

4𝜋
 𝑑𝑟 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃 𝑑𝜙. (A16) 

The total radiation passing through this unit area is found by integrating Eq. A16 over the 

volume.  As the radiation travels at the speed of light, the amount of radiation that will pass 

through the area in a time dt will be cdt.  We integrate over half of the sphere surrounding 

the area element, such that the equation becomes 

𝑑𝐸 = 𝜌(𝜔)𝑑𝜔
𝑑𝐴

4𝜋
 ∫ 𝑑𝑟

𝑐𝑑𝑡

0

∫ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃

𝜋
2

0

∫ 𝑑𝜙
2𝜋

0

 

𝑑𝐸 = 𝜌(𝜔)𝑑𝜔
𝑑𝐴

4𝜋
 𝑐𝑑𝑡 (

1

2
) (2𝜋) 

𝑑𝐸 = 𝜌(𝜔)𝑑𝜔𝑑𝐴𝑑𝑡
𝑐

4
 .    (A17) 

Dividing by the time and the area yields a power per unit area per unit time, which in 

radiation terms is the irradiance I or the exitance M, the first being radiation incident on a 

surface, the latter radiation leaving a surface: 

𝐼(𝜔) =
𝑐

4
𝜌(𝜔)𝑑𝜔        
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𝐼(𝜔) =
𝑐

4

1

𝜋2𝑐3

ℏ𝜔3𝑑𝜔

𝑒𝛽ℏ𝜔
=

1

4𝜋2𝑐2

ℏ𝜔3𝑑𝜔

𝑒𝛽ℏ𝜔
 .    (A18) 

To convert Eq. A18 to wavelength dependence, we utilize the equality 𝐼(𝜔)𝑑𝜔 = 𝐼(𝜆)𝑑𝜆 

so that 𝐼(𝜆) = 𝐼(𝜔) |
𝑑𝜔

𝑑𝜆
 |.  Substituting =

2𝜋𝑐

𝜆
 , ℏ =

ℎ

2𝜋
  and 𝛽 =

1

𝑘𝑇
 we finally have 

𝐼(𝜆) =
1

4𝜋2𝑐2

ℏ(
2𝜋𝑐

𝜆
)

3

𝑒
𝛽ℏ(

2𝜋𝑐
𝜆

)

2𝜋𝑐

𝜆2
=

2𝜋ℎ𝑐2

𝜆5[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]

𝑃𝑜𝑤𝑒𝑟

𝐴𝑟𝑒𝑎 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ
 .  (A19) 

All blackbody sources are Lambertian sources, meaning that the radiance is independent 

of the viewing angle.  The perceived “brightness” of the source would not change as the 

observer moved off of the normal of the surface.  In general, radiance is defined as 

𝐿 =
𝜕2𝜙

𝜕𝐴 𝑐𝑜𝑠𝜃 𝜕𝛺
  ,     (A20) 

where 𝜙 is radiated power.  That is, the radiance is the power emitted per unit projected 

area per unit solid angle.  Eq. A20 can be rewritten as 

𝜕2𝜙 = 𝐿 𝜕𝐴 𝑐𝑜𝑠𝜃 𝜕𝛺 .    (A21) 

Radiant exitance, or irradiance is the power per unit area, which can be derived as 

𝜕𝜙

𝜕𝐴
= ∫ 𝐿 𝑐𝑜𝑠𝜃 𝜕𝛺 = 𝐿 ∫ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 𝑑𝜃 ∫ 𝑑𝜙

2𝜋

0

𝜋

2
0

= 𝜋𝐿 .  (A22) 

From Eq. A22, we find the radiance by dividing Eq. A20 by π, so that radiance is 
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𝐿 =
2ℎ𝑐2

𝜆5[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]

𝑃𝑜𝑤𝑒𝑟

𝐴𝑟𝑒𝑎∙𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ∙𝑆𝑜𝑙𝑖𝑑 𝐴𝑛𝑔𝑙𝑒
 ,   (A23) 

which is Eq. 2 from Chapter 2. 

By differentiating Eq. A23 with respect to wavelength and setting the result equal to zero, 

we can determine the wavelength of the maximum power intensity.  This becomes 

𝜕𝐿

𝜕𝜆
= −

2ℎ𝑐2[5𝜆4[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]+𝜆5[−𝑒
ℎ𝑐

𝜆𝑘𝑇
ℎ𝑐

𝜆2𝑘𝑇
]]

𝜆10[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]

2  ,   (A24) 

which simplifies to 

𝜕𝐿

𝜕𝜆
=

2ℎ𝑐2𝑘6𝑇6

ℎ6𝑐6 (
ℎ𝑐

𝜆𝑘𝑇
)

6
[−5[𝑒

ℎ𝑐
𝜆𝑘𝑇−1]+[𝑒

ℎ𝑐
𝜆𝑘𝑇

ℎ𝑐

𝜆𝑘𝑇
]]

[𝑒
ℎ𝑐

𝜆𝑘𝑇−1]

2  .   (A25) 

Using the substitution 𝑥 =
ℎ𝑐

𝜆𝑘𝑇
 simplifies Eq. A25 to 

𝜕𝐿

𝜕𝜆
=

2ℎ𝑐2𝑘6𝑇6

ℎ6𝑐6 𝑥6[−5[𝑒𝑥−1]+[𝑒𝑥𝑥]]

[𝑒𝑥−1]2  .   (A26) 

Setting Eq. A26 equal to zero lets us find the maximum value of the radiance in wavelength 

space.  It also further simplifies the equation to 

5[𝑒𝑥 − 1] = 𝑥𝑒𝑥,      (A27) 
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which has the numerical solution of approximately 𝑥 ≈ 4.96511.  Plugging this value in 

to the substitution made earlier and solving for the wavelength yields 

𝜆𝑚𝑎𝑥 ≈
2880

𝑇
µ𝑚 ,     (A28) 

which is known as Wien’s Displacement Law. 
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