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 ABSTRACT 

 This dissertation reports investigations into materials for, and applications of, infrared 

surface plasmon polaritons (SPP).  SPPs are inhomogeneous electromagnetic waves that are bound 

to the surface of a conductor.  Tight confinement of electromagnetic energy, the primary virtue of 

SPPs for so-called “plasmonic” applications, requires plasma frequencies for the conductor near 

the intended infrared operational frequencies.  This requires carrier concentrations that are much 

less than those of usual metals such as gold and silver.  I have investigated the optical properties 

and SPP excitation resonances of two materials having infrared plasma frequencies, namely the 

semimetal bismuth and the transparent conducting fluorine-doped tin-oxide (FTO).  The complex 

permittivity spectra for evaporated films of Bi were found to be distinctly different than earlier 

reports for crystal or polycrystalline films, and SPP excitation resonances on Bi-coated gratings 

were found to be disappointingly broad.  Permittivity spectra for chemical spray deposited FTO 

were obtained to long-wave IR wavelengths for the first time, and nano-crystalline FTO-coated 

silicon lamellar gratings show remarkable conformity.  SPP excitation resonances for FTO are 

more promising than for Bi.  Thus, FTO appears to be a promising SPP host for infrared 

plasmonics, e.g. a planer waveguide plasmonic spectral sensor, whose design was elaborated and 

investigated as part of my research and which requires SPP-host coating on deep vertical side walls 

of a trench-like analyte interaction region.   Additionally, FTO may serve as a useful conducting 

oxide for a near-IR plasmonic spectral imager that I have investigated theoretically. 
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CHAPTER ONE: INTRODUCTION 

 

 Surface plasmon polaritons (SPPs) are collected electron oscillations of surface charge 

density that propagate along dielectric/metal interface. The first experimental observation of SPPs 

on metals were reported in early 20th century by Wood [1]. Dark and light bands in the reflection 

spectrum of metallic gratings were observed when transverse magnetic light (TM) hits the metallic 

gratings. This uneven distribution of light and dark bands were not predicted and explained by 

theory of diffraction gratings and that is why they were called “Woods anomalies”. The first 

theoretical work on these so called Woods anomalies was published in 1907 by Lord Rayleigh [2].  

 Rayleigh’s formalism predicted wavelengths (Rayleigh’s wavelength) in which the 

scattered field is singular and also coincides with Wood’s anomalies wavelengths. This singularity 

in the scattered field was predicted by Rayleigh and a resonant type anomaly due to guided waves.  

In 1941, Fano [3] connected earlier theoretical work of Sommerfeld and Zenneck on radio waves 

propagating along the surface of a conductor to explain the experimental results of Wood and 

Rayleigh.  

 Pine and Bohm in 1956 [4] introduced these electrons on metal as plasma which later in 

1958 inspired Ritchie [5] to name them as “Plasmons”. In following years, Otto [6] and 

Kretschmann-Raethers [7] used the total internal reflection (TIR) phenomena in a high-index 

prism near a metal interface to excite surface plasmons. This work focuses on optical exciton of 

SPPs by grating and prism couplers. Optical excitation of SPPs by prisms is well understood while 

complicated numerical algorithms based on scattering matrix analysis [8, 9] are being used to 

describe coupling of SPPs. 
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 Surface plasmon polaritons are used in variety of optoelectronic applications which range 

from biosensing, solar cells, metamaterials and even cancer treatment [10]. SPPs are the primary 

means of energy and information transport in the blossoming field of nano-photonics.  Thus, nano-

photonic devices based on them are popularly referred to as “plasmonics”.  Figure 1 represents a 

historical timeline of development in SPPs which are related to this dissertation. More 

comprehensive of surface plasmon polaritons and plasmonics can be found in [11, 12]. 

 

 

Figure 1 Timeline of breakthroughs in plasmonics. 

   

 Despite extensive worldwide research and development in plasmonics [4], the only 

practical commercial devices based on SPPs are surface plasmon resonance (SPR) biosensors.  

These are based on the observation of photon-to-plasmon coupling resonances that change when 

bimolecular analytes selectively bind to biological recognition elements (BRE) on a functionalized 

conductor surface [5, 6].  Additionally, a coupling device such as a prism or grating provides 

momentum matching between photons and SPPs.   

 The first biosensor based on SPPs was developed in Sweden by Nylander and Lindberg 

[13, 14]. Lindberg device works based on surface plasmon resonance (SPR) reflection when the 

light is shun on a metal surface. The biosensor utilizes changes in SPR to analyze biomolecule 

interaction at the surface of a metallic film. Lot more work on SPR sensing has been carried out 
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since [15-17] with the first commercial device based on plasmonics introduced to market in 1991 

by Biacore [18]. 

 Most SPR biosensors operate in the visible to near-infrared (NIR) wavelength range, 

because it is here that SPPs are most tightly bound to ordinary metals such as gold, giving good 

mode overlap with the molecular analytes of submicron dimensions.  The opportunity that we 

pursue in this work is infrared SPR.  A hypothesized advantage is that molecules have 

characteristic IR vibrational absorptions, giving rise to strong molecule-specific dispersion, e.g. 

[7].  The associated increase in the refractive index on the long-wavelength side of the absorption 

bands promises to enhance the sensitivity. The specificity of the dispersion is expected to reduce 

false positives due to non-specific binding. 

 Plasmonic waveguides are also utilized to minimize the size of optical components. Most 

of earlier studies are focused on SPPs in visible wavelength. Plasmonics in long wave infrared 

(LWIR) was first introduced by Soref and Lorenzo [19] for application of silicon waveguides in 

the IR. Up until this point, silicon was used in the semiconductor industry to fabricate the 

miniaturized electrical devices but it was shown by Soref that Si can be used as efficiently in 

photonics. A comprehensive review of silicon photonics can be found here [20-22]. 

 Majority of plasmonic devices are using noble metals (i.e., Au and Ag) as hosts for 

excitation of SPPs in the visible and IR range of EM spectrum. Although noble metals provide the 

required negative permittivity for subwavelength confinement, they also possess a large imaginary 

component of permittivity which would result in loss in plasmon propagation [12]. Nanophotonics 

is in need of novel plasmonic materials which allow subwavelength optical confinement and loss 

mitigation, simultaneously [23-25]. This is the motivation to investigate other possible materials 
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as plasmonic hosts, such as highly-doped semiconductors [26], semimetals [27] and doped 

conducting oxides [28], as alternative for noble metals.  

 This dissertation focuses on the use of SPPs into the infrared (IR) region of the EM 

spectrum which has numerous advantages in the sensing and waveguide applications. IR surface 

plasmons are investigated on both prism and grating couplers for various metal, semi-metals and 

semiconductors [27, 29, 30]. The development and characterization of fluorine-doped tin oxide 

thin-films and bismuth thin films are studied for device applications in plasmonics. 

The subsequent chapters of this dissertation are organized in the following manner: 

 Chapter2: We discuss the basic theoretical foundation of surface plasmons excited via 

optical methods. 

 Chapter3: IR optical constants of semimetal bismuth is investigated. Experimental 

measurements of permittivity and reflectivity of material are used to calculate the surface 

plasmon properties. Calculated and measured surface plasmon resonance in grating 

couplers are investigated. A discussion on the origin of surface polaritons in LWIR and the 

applications of Bi in infrared plasmonics are discussed.  

 Chapter4: Streaming Process for Electrodeless Electrochemical Deposition (SPEED) is 

used to fabricate high-quality fluorine-doped tin oxide (FTO) thin films on hydrophilic 

substrates. These FTO film are highly crystalline and adhere strongly to surface and have 

been extensively studied by standard material characterization methods. The direct optical 

bandgap is spectroscopically determined while electrical properties of the FTO films are 

investigated and discussed. 

 Chapter5: Ellipsometry and FTIR reflectance are implemented to characterize the optical 

properties of FTO films. A method for fabricating high-quality FTO gratings on Si 
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substrate has been developed and discussed and resulting grating couplers are measured in 

specular- and angular- reflectance setups. The IR resonances of FTO lamellar gratings are 

distinct and potentially useful for sensing and opto-electronic devices. 

 Chapter6: A compact plasmonic device, consisting of a spectrometer-on-a-chip, featuring 

a plasmonic molecular interaction region was conceived, designed, modeled, and partially 

fabricated.  Such a device, once completed, can provide a possible chip-scale chemical 

sensor and spectrometer compatible with complementary-metal-oxide-semiconductor 

(CMOS) fabrication technology. 

 Chapter7:  A plasmonic photocapacitor based on electronic detection of SPPs in a 

Kretschmann-based prism coupler has been discussed, with the angular reflectance of the 

structure was both measured and calculated. 

 Chapter8: The dissertation has been summarized and future work is speculated. 
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CHAPTER TWO: INFRARED SURFACE PLASMON POLARITINS 

2.1 Theory of surface plasmon polaritons  

 Surface plasmon polaritons are bound electromagnetic wave at the interface of a dielectric 

and conductor. Oscillation of surface charge density, σ is the source for electric field. A 

discontinuity of the normal component of the electric field at the dielectric/conductor boundary is 

given by: 

1 0 4z zE E              (1) 

where Ez1 and Ez0 are normal components of electric field at the interface, respectively and σ is the 

surface charge density at the interface. The wavefunctions of the charge density is: 

( )

0( , ) xi k x t
x t e

  
            (2) 

where kx is the wavevector along the boundary and σ0 is a constant. These charged oscillation at 

the interface are coupled to external electric field which has both components perpendicular to the 

plane of propagation and parallel to it.  

 When the electric field is inside the plane of propagation, the EM light is called p-polarized 

or transverse magnetic (TM). In this case, E lies inside the xz-plane and is defined by surface 

normal and the propagation vector while the magnetic field is perpendicular to this plane. The SPP 

field at the interface of two materials decays exponentially and inside both media. The normal 

component of EM field can be written as: 

i( x z t)

0
x zk k

zE E e
 

            (3) 



7 
 

where kz is the projection of k vector on z- axis. kz has a large imaginary value which makes the 

SPPs to decay fast on both sides of interface.  Figure 2 presents the characteristics electric fields 

at conductor/dielectric interface. The positive and negative signs in the x and z terms are 

responsible for the exponential decay in all directions. 

 

Figure 2 Characteristic electric field lines of SPPs. 

  

 x- and z-components of wave vector are related to each other according to: 

2

2 2

, ,x zd zc d ck k
c




 
   

 
         (4) 

 where εd and εc are complex permittivities of the dielectric and the conductor, respectively. 

kzd refers to the dielectric region where z > 0 and kzc to the region of the conductor or z < 0. Bound 

plasmons to dielectric/conductor interface have an electric field that decays exponentially in both 

direction of propagation and polarization.  

 Non-radiative SPP will occur when the imaginary part of k is larger than its real part and 

the EM field’s penetration depth will be shorter than the wavelength of incident light. Both 
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radiative and non-radiative SPPs can travel along the interface (x) while their frequency is depends 

on kx wavevector which we will call kSPP from now on. 

 By using Maxwell’s equations and considering the continuity of E and H vectors [31], the 

dispersion of non-radiative SPPs can be calculated. For EM light with p-polarization (meaning that 

E-field is in plane of propagation while H has just a -y component) one can write: 

0d zc c zdk k              (5) 

Surface plasmon wave vector or kx can be re-written as: 

( ) d c
SPP

d c

k
c

 


 

 
  

 
         (6) 

Due to complex nature of εd and εc , kSPP is also a complex number. 

 

2.2 Drude model 

 According to the Drude-model [32], the complex permittivity of material can be written 

as: 

2

2
( ) 1

p

i 


  

 


 
    

          (7) 

 where ε∞ is the permittivity of materials well above the bulk plasma frequency (ωp ) and ωτ 

is the relaxation frequency which is inverse of relation time or τ. For metals, ε∞ is generally equals 

to unity since the charge carrier concentration is sufficiently high. In the IR region, the real part of 
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permittivity is generally negative and much larger than the imaginary part. Assuming damping is 

negligible in this region, the permittivity of conductor can be written by 

2

2
1

p

c


 




 
   

 
          (8) 

 Figure 3 show the SPP dispersion relation based on the above equations. In low frequency 

regime, the dispersion curve follows the light line (ω = ckx) while for the optical frequencies 

approaching the limit plasmon dispersion at the interface, wavevector of SPP (kSPP) will approach 

infinity. For frequencies above plasm frequency, ωp, the SPPs will be unbound or radiative. As it 

was mentioned before, in case of noble metals, ε∞ is unity and for bound surface plasmin modes: 

1
p

d








           (9) 
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Figure 3 Dispersion relation for bound- and unbound- SPPs. 

  

 In the IR region of the spectrum and especially for doped-semiconductors and semimetals, 

the above assumption of ωτ ~ 0 and ε∞ ~ 1 is no longer valid. As we will see in chapter 3, for some 

semimetals the can be even up to 100. 

 The decay length and penetration depth of the SPP electric field is useful in determination 

of a useful optical coupler for sensing and wave guiding applications. The energy decay length in 

the propagation direction can be written as: 

1

2Im(k ( ))
x

spp

L


            (10) 

 Ld and Lc are characteristic lengths of 1/e penetration depth of the electric field of SPP into 

the dielectric and conductor, respectively and are given by: 
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,
2

,

1

Im

d c

d c

d c

L

c



 


 
 
 
 

          (11) 

2.3 Excitation of SPPs by prism-coupling method 

 First experimental method of exciting surface plasmon polaritons on flat metal surfaces 

was introduced by Otto in 1968 [6]. The prism coupling works based on transformation of incident 

light wave into an evanescent electromagnetic field that may couple to SPP. Figure 4 shows the 

Otto geometry for excitation of SPPs on flat metal surfaces. 

 

Figure 4 Excitation of SPP via a prism coupler in an Otto configuration. 

  

 As it is shown in Figure 4, phase-matching of SPP can be achieved in a three layer system 

consisting of a metal film sandwiched between two dielectrics with different permittivity values. 

In Otto’s configuration, prism works as a dispersive element with high permittivity value and there 

is an air gap (or any material with low dielectric value) between metal film and the prism. 

Plasmonic mode at right angle could be supported at air/metal interface. 



12 
 

 Total internal reflection (TIR) will occur when refractive index of prism (np) is larger than 

of the outside dielectric (nd). TIR will take place at the prism base with critical angle θc = Sin-

1(np/nd). In the case of TIR excitation, the evanescent field will penetrate through the medium with 

lower refractive index.  

 The dispersion for the SPP propagating along the metal/air interface can be written as 

( ) ( ) ( ( ) )spp m d m dk
c

                (12) 

while for the evanescent wave from TIR inside the prism, dispersion for the projection of 

wavevector on the prism base would be: 

( ) ( ( ))TIR pk n Sin
c

             (13) 

 Figure 5 shows the schematic of dispersion relation involved in prism coupling. Wave 

dispersion inside the prism is given by ω = ck(ω)/(np Sinθ (ω)) while the wavevector projection 

along the SPP projection is denoted by k(ω) and is the resonance angle. For an arbitrary angle of 

incidence, the dispersion falls into between the dispersion curves for incident light inside the 

dielectric and prism.  
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Figure 5 Dispersion relationship in a prism-coupler setup. 

 

 At a specific frequency (ω), one can obtain the resonance angle: 

( )1
( ) arcSin

( )

m d
res

p m dn

  
 

  

 
    

         (14) 

The half width of the resonance angle is given by: 

Im(k( ))
( )

( )
res

p res

c

n


 

  
            (15) 

Where k(ω) is the wavevector of the EM wave and np is the refractive index of the prism. 

 Two different geometries of SPP prism-coupling are called Otto and Kretschmann 

configurations and are depicted in Figure 6. In Kretschmann configuration, a thin conductor film 

is evaporated on top of borosilicate prism. With incident light from the glass side and an angles 

greater than critical angle, the incident photons will tunnel through the metal film and SPP will be 
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excited at metal/dielectric interface. As it was discuses earlier, Otto configuration is based on a 

metal film separated by a thin air gap. 

 

Figure 6 General prism coupling mechanisms for exciting SPPs (a) Kretschmann configuration, (b) Otto 

configuration. 

  

 SPP excitation will manifest itself as a minim in reflectivity spectrum. This minimum is 

due to destructive interference between the leakage radiation and reflected part of excited beam 

and its depth depends on thickness of the metallic film. For the optimum thickness, reflectance 

goes to zero. 

2.4 Excitation of SPPs by grating-coupling method 

 The coupling condition between an electromagnetic wave that is incident from the 

dielectric at an angle θ on a grating (the plane of incidence is perpendicular to the grating grooves) 

is: 

2
sin Re[ ]d sppm k

c p

 
              (16) 

 where m is an integer of either sign which is related to order of diffraction,  ηd is the 

refractive index of the dielectric above the grating and p is the period of grating. Because the 
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grating can produce the impinging free waves resulted from additional momentum of wavevector 

arising it periodic structure, the dispersion will have a set of straight lines with of c/Sinθ as it is 

shown in Figure 7. 

 
Figure 7 Dispersion in SPR grating coupler.   

 

 Figure 7 shows the dispersion curve of a SPP and photon for a fixed angle of incidence, θ.  

The horizontal axis is the in plane component of the incident EM wave with kx = (ω/c) Sin θ, or 

the real part of the SPP wavevector, while the vertical axis is the photon or SPP frequency.  All 

incident angles are at the same side of surface normal and consequently slopes of all light lines are 

positive.  A resonance occurs for a fixed angle of incidence once a wavevector of an incident wave 

intersects with SPP dispersion curve.  As it is clear for a fixed angle θ, the resonance could happen 

for both positive and negative kx values. 



16 
 

 Grating couplers with high efficiency have been reported before [33]. In fabrication of 

gratings one should be very careful to get the right period and height to get the sharpest possible 

surface plasmon resonances. Also, due to nature of momentum matching of gratings, only one 

frequency can be efficiently coupled to a SPP which makes them unsuitable for broadband 

measurements. 

2.5 Optical characterization of SPP hosts by ellipsometry 

 Complex permittivities of optically thick thin-films were carried out in a J.A. Woollam IR-

VASE and V-VASE ellipsometers in the infrared and visible wavelengths, respectively. The two 

raw ellipsometer outputs are the complex reflectance of a p-polarized light to s-polarized, Ψ and 

the phase shift, Δ between the two complex reflectances. The complex permittivity data ε, can then 

be calculated from values of Ψ and Δ at each wavelength. 

 The optical skin depth of SPP hosts can be determined from two different methods. By 

having the value of complex permittivity, ε the optical skin depth, δ is given by: 

1

k
c




             (17) 

where k is the extinction coefficient and is directly obtained from ellipsometry measurements. 

 In addition, by having the transmittance of two thin-films and knowing their respective 

thicknesses, the optical skin depth can be accurately determined according to: 

2 1

1

2

2(d d )

( )
ln

( )
T

T









 
 
 

           (18) 

where d and T are thickness and transmittance of each film, respectively. 
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CHAPTER THREE: SURFACE POLARITONS ON BISMUTH 

3.1 Introduction 

 Here we will investigate the infrared surface plasmon polaritons on the semimetal bismuth 

(Bi). The complex permittivity has been measured before from visible to far-infrared wavelengths, 

but the samples studied have been oriented single crystals or melt-cast and mirror-polished 

polycrystalline samples.  Evaporated Bi films are more likely to be used in applications, and an 

unanswered question is how the optical properties of these films compare with those for crystalline 

samples.  To this end, we measured the permittivity spectra for electron-beam and thermally 

evaporated Bi films by ellipsometry from 1.4 to 40 μm wavelength.  To validate the measured 

optical constants, we measured far-infrared reflectivity spectra on smooth Bi films and long-wave-

infrared optical excitation resonances for SPPs on Bi lamellar gratings.  These measurements were 

shown to agree well with calculations based on our permittivity values.      

A motivation for this study was that SPP modes on Bi have potential nanophotonic device 

applications due to their tight IR confinement when compared to traditional plasmon hosts such as 

noble metals. Tightly bound SPPs in the IR molecular fingerprint range could be used for real-

time sensing of biomolecule interactions on suitably functionalized surfaces [17, 34]. 

3.2 Theoretical model of permittivity of bismuth 

The long-wavelength permittivity of a conductor can usually be described by a modified-Drude 

model: 
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 where  is the relaxation time, ε∞ is the real part of permittivity well above the plasma 

frequency, which we defined here,  

 
2
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Ne

m





            (20) 

 This definition (in Gaussian units) is somewhat different than in [35].  This is done so that 

in the case ω >> 1when  is real, the value of ωp would be the frequency at which the permittivity 

changes sign.  Then ωp has the same physically-intuitive interpretation as for good metals, for 

which ε∞ = 1 and m = m*.  In the case of bismuth near the zero crossing of , we actually have 

ω ~ 1, so that the zero crossing frequency is red shifted and has the value 

2

2 2

*p

m

m
   

  
 

.  

 Using values of m*/m = 0.92 and 1= 270 cm-1 from [35] allows us to determine ωp from 

the zero crossing of , and we are left with the single parameter ε∞ to fit Eq. (19) to the ε∞  

spectrum.  For completeness, we give the formulas for  and : 
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        (21) 
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 When ω << 1, the limiting form of εgoes as 1/ω, as it should [31].  Far infrared 

reflectivity spectra are calculated from the complex permittivity spectra according to Fresnel’s 

equations, namely 

2

1

1
R









           (23) 

 This same expression was used to obtain an spectrum from experimental values of  

and R presented in [35]. 

 

3.3 Experimental details 

 Bismuth films were thermally and electron-beam evaporated from 99.999% pure Bi pellets 

onto one-sided polished (100) silicon substrates. Multiple evaporations were required to build-up 

an optically thick layer, with each layer thickness confirmed using a Veeco Dektak step profiler.  

The infrared penetration depth into Bi was estimated from infrared transmittance spectra for films 

of different thicknesses to be ~ 3 μm at 10 μm wavelength [36, 37].  A thermally-evaporated Bi 

film of 12 μm thickness was prepared for ellipsometry measurements, and this sample was 

considered optically thick, such that no transmitted light reached the substrate. 

 An electron-beam evaporated film of 6 μm thickness was also studied, but even though this 

was twice the characteristic penetration depth, there was evidence in the ellipsometry and 

reflectivity spectra of Fabry-Perot fringes, indicating penetration to and reflection from the 
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substrate.  A study of the thickness dependence of the amplitude of these fringes was published in 

[36] and showed that the fringe amplitude decreases monotonically and are no longer observable 

for thicknesses of 8 microns and higher.   

 The Bi films were characterized by a J.A. Woollam IR-VASE ellipsometer, which spans 

the wavelength range 1.4 to 40 μm.  The complex permittivity spectrum was calculated from the 

raw ellipsometer output using standard Fresnel equations [31, 38], assuming no contribution from 

the substrate. 

 The normal-incidence far-infrared reflectivity spectrum was measured using a Bomem 

DA8 spectrometer with reflectivity accessory inside the evacuated sample compartment.  The 

resources used were a globar source, mylar pellical beamsplitters of thickness 3 and 6 μm, and a 

room temperature DTGS detector.  The useful spectral range for these measurements was 50 to 

700 cm-1 (200 to 14 μm wavelength). 

 Lamellar gratings for SPP generation experiments were fabricated by photolithography. A 

~1 μm thick layer of photoresist was spun on Si substrate followed by UV exposure under a grating 

mask with 20 μm period and 50% duty cycle. This was followed by development in 

Tetramethylammonium hydroxide (TMAH) based solution.  A thick Bi coating was thermally 

evaporated on the gratings.  The grating profile was characterized by cross-sectional scanning 

electron microscopy (Hitachi FE-SEM SU-70). 

 The reflectance of the grating was measured using a tunable quantum cascade laser (QCL) 

from Daylight solutions with specular resolution of 0.1 nm. The incident radiation was tunable in 

the range of 7.9 μm to 10.5 μm, and was digitally chopped at 1 kHz. A mercury cadmium telluride 

(MCT) detector was used to measure the reflected intensity, utilizing a lock in amplifier to 

http://en.wikipedia.org/wiki/Mercury_(element)
http://en.wikipedia.org/wiki/Cadmium
http://en.wikipedia.org/wiki/Telluride_(chemistry)
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demodulate the signal at the chopping frequency. With the QCL fixed, the sample and detector 

were rotated to perform angular reflectance measurements as it is shown in Figure 8. 

 

Figure 8 A schematic showing the experimental setup. A fixed QCL was used to excite surface plasmon modes in a 

bismuth grating fixed to a motor controlled goniometer. The MCT detector was positioned at twice the incidence 

angle, and a lock in amplifier was used to record the intensity. 

. 

 The completed grating was mounted on top of a motor controlled goniometer for precise 

control over the incidence angle of the incoming radiation. The detector was mounted on an arm 

of the goniometer and programed to move twice the angular distance of the sample, in order to 

track the primary reflection. The grating rulings were positioned to be orthogonal to the TM-

polarized beam. A custom LabView program was used to record the signal from the lock in, in 

addition to controlling the angle of incidence and the wavelength of the source. A background 

measurement was performed after each measurement by replacing the grating with a gold mirror. 

The reflectance was then found by dividing the grating spectrum by the background signal. 

 Angular reflectance measurements were performed at a fixed excitation wavelength, as the 

sample and detector are rotated. Stepper motors capable of one hundredth of a degree accuracy 

were used to rotate the sample from 5 to 80 degrees angle of incidence. A fixed angle of incidence 

was used to perform the specular reflectance measurements. The wavelength of the source was 
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incremented by 5nm over the full range from 7.9 to 10.5 μm. The specular reflectance of the 

bismuth grating is shown later in results section. 

 

3.4 Characterization of bismuth thin-films 

 Figure 9 present SEM images of the surfaces of thermally and electron-beam evaporated 

Bi films.  The thermally evaporated sample is composed of nano-crystals of Bi with characteristic 

lengths of 100 to 200 nm.  The electron-beam evaporated film has larger average particle in the 

range 200 to 600 nm.  Differences in the porosity and concentration of boundaries for the two films 

are expected to cause their permittivity spectra to differ from each other and from that of single 

crystal Bi. 
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Fig. 9. SEM image of (a) thermally evaporated (b) e-beam evaporated Bi thin films.  
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 Figure 10 presents XRD θ-2θ measurement of both thermal and e-beam evaporated Bi 

films. The e-beam evaporated Bi films exhibit only reflections from (003), (006) and (009) planes, 

which suggests that the Bi trigonal axis is oriented perpendicular to the substrate. The thermally 

evaporated film has additional reflections from (104), (202), suggesting a lower degree of 

orientation.  The broad weak peak at 69 deg is due to the substrate, as confirmed by its 

disappearance when the sample is tilted slightly off-normal to the plane of incidence.  All of the 

sharp peaks belong to crystalline Bi.  If the interpretation of the SEM images as being overlapping 

nano-crystalline platelets is correct, the larger platelets for the e-beam evaporated sample might 

give a more oriented, less jumbled, pile of particles, which would explain the difference in the 

XRD results. 

 

Figure 10 XRD of thermally and e-beam evaporated bismuth films. 
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The complex permittivity spectra of our Bi films are presented in Figure 11.  The values are 

negative beyond ~31 m wavelength, which indicates a smaller plasma frequency than for Sb, 

where the cross-over occurs at 11 m [27].  The εvalues are positive over the whole spectrum, 

as thermodynamically required [31].  In the wavelength region of our SPP studies (8 to 10.5 m), 

  > 0 and its value is comparable to that of ε.  This situation is similar to that of Sb in the same 

region, where bound SPP waves were demonstrated [27].   
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Figure 11 Permittivity spectra for thermally and electron-beam evaporated bismuth. (a) Imaginary part.  (b) Real 

part.  Comparison is made to prior reports for melt-cast polycrystalline or trigonally-oriented crystalline samples. 

  

 Comparison is made in Figure 11 with previous near- to long-wave IR results for melt-cast 

polycrystalline Bi [39] and for oriented single crystal [35, 40] Bi.  The short-wave permittivity 

values for the evaporated films are significantly smaller.  This may be a consequence of porosity 
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and grain boundaries in the evaporated film.  The e-beam evaporated film has higher permittivity 

values to shorter wavelength than does the thermally-evaporated film, and this may be explained 

as due to its larger grains so that the film behaves more like continuous metal.   

 The permittivity spectrum of Tediosi et al. [35] for single crystal Bi oriented along the 

trigonal axis is the only other published result for wavelengths longer than 12 microns.  Their  

data are determined from their presented normal incidence reflectivity spectrum R and the εvalues 

that we calculated from their presented conductivity spectrum, ε = /0in S.I. units, where ε0 is 

the vacuum permittivity [35].   

 The reflection from an optically thick bismuth thin film at normal incidence can be written 

according to Eq. (23). By plugging in the measured values for ε from Tediosi et al. [35] and R 

from normal reflection measurements, ε can be calculated at each wavelength.  Figure 12 

represents two possible solutions for  but considering the fact that the real part of permittivity is 

negative below plasm frequency and first derivative of  relative to frequency is always positive, 

d/dω > 0, only one solution is physical. Calculated is positive below plasm frequency and 

crosses zero at 31 microns. Above the zero crossing wavelength, the value of real permittivity is 

negative and its magnitude increases by increasing wavelength. 
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Figure 12 Calculation of real permittivity of bismuth from values of reflectivity and imaginary part of permittivity. 

  

 Significant differences in the εvalues for the three curves point to loss mechanics of 

morphological rather than fundamental origin.  The larger grained electron-beam evaporated 

sample may be expected to behave more like a continuous film, and its εspectrum is indeed closer 

to that of the single crystal result as it is shown in Figure 11 

 Using the observed zero crossing at 30.86 m for , together with values for τ and m* 

from [35], determines the value ωp = 437 cm-1.  Then, fitting Eq. 21 to the Figure 11 spectrum in 

the range 30-38 m determines the ε∞ value to be 112, which is essentially the same as the value 

108 given in [35].  The spectrum for the thermally-evaporated film and the fit are presented in 
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Figure 12, and the agreement is excellent for wavelengths of 30 m and beyond.  (The spectrum 

for the e-beam evaporated film is very similar).  From Eq. 20, we determine the concentration of 

carriers to be 2.2 x 1020 cm-3, which is at least 20x larger than the values previously reported for 

molecular beam epitaxy (MBE) grown films [41]. 

 

Figure 13 Permittivity spectrum compared to Drude calculation.  The real part of the permittivity for the thermally 

evaporated film is plotted as symbols, while the Drude calculation is given by the solid line.  Drude parameters used 

are indicated. 

 

 Calculated εspectra from Eq. (22) gives poor agreement with experimental results in both 

shape and magnitude.  This indicates that the main source of far-infrared loss is something other 

than free electron absorption at these wavelengths.  A possible source is multi-phonon absorption, 

but the difference between thermal and e-beam evaporated samples shows that there are also losses 

of technological, rather than fundamental, nature. 
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 Figure 14 compares measured reflectance for an e-beam-evaporated 6-µm-thick bismuth 

film with calculations Eq. (23) and with prior measurement [35].  The measured spectrum shows 

Fabry-Perot oscillations because the film thickness is only twice the skin depth and there is a large 

index mismatch between the Bi (  ~ 40-50, see Figure 11) and the silicon substrate ( = 11.7) at 

these wavelengths.  The similarity between calculated and measured R spectra confirms our 

ellipsometer-measured permittivity spectra.  The minimum of reflectance occurs at ~ 343 cm-1, 

and the absorption feature is somewhat broader and deeper than reported earlier for the crystal 

sample [35]. 

 

Figure 14 Measured and calculated reflectance from an e-beam made Bi sample is compared with Tediosi et al.. 

 

 The SPP propagation length Lx and field penetration depths Ld,c, calculated from 

permittivity data using Eqs. (11 and 12), are presented in Figure 15.  A broad shallow dip for Bi 
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occurs around 31 microns where  changes sign.  At 10 m wavelength, Lx is around 400 m.  

Here, Ld ~ 100 m and Lc ~ 3 m. 

 

Figure 15 Surface plasmon polariton characteristic lengths as a function of free-space wavelength (top) Propagation 

length Lx. (bottom) Penetration depth in dielectric (Ld) and conductor (Lc), respectively. 

 

 Figure 16 presents an SEM image of the grating profile.  The average groove depth is 2.0 

µm. The thickness of the thermally-evaporated Bi is 1.4 μm, which is only half the penetration 

depth at 10 microns wavelength, so that the SPP fields will penetrate to the Si and photoresist.  

Due to the coating of the groove side walls, the duty of the grating bars is ~ 65%, i.e. it exceeds 

the 50% duty cycle of the photomask. 
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Figure 16 SEM cross section of bismuth gratings.  Si substrate, photoresist ridges (PR), and thermally-evaporated Bi 

coating are indicated. 

 

 Figure 17 (a) presents measured and calculated reflectance spectrum from the Bi grating at 

64 deg angle of incidence.  The values plotted are normalized reflected intensity with the QCL 

wavelength stepped in 5 nm intervals from 8 to 10.5 μm wavelength. A resonance due to excitation 

of SPPs appears near 9.5 microns, which agrees with Eq. (16) for the m = -4 order. The calculated 

spectrum (scattering matrix method [8, 9]) that gave the best agreement (plotted) assumed a grating 

amplitude of 1.4 μm and a grating-bar duty of 65%, values somewhat smaller and larger, 

respectively, than obtained for the actual grating.  Calculations using our permittivity values and 

those of [40] for crystal Bi are very similar despite a ~5-fold difference in  values, although the 

width of the resonance calculated using the published spectrum is closer to what is observed.  

 A resonance due to excitation of SPPs appears near 9.4 µm wavelength, in agreement with 

Eq. (16) for the m = 1 order.  Figure 17 (b) presents the measured and calculated reflectance 

spectrum from Bi gratings at 32 deg of incidence. The calculated spectrum with best agreement 
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assumes a grating with amplitude of 1.8 μm and duty cycle of 70%.  Again, the calculation based 

on the published permittivity gives a resonance width in closer agreement with observation.  

 

Figure 17 Specular reflectance of Bi gratings at (a) 64 degrees angle of incidence, m = -4 resonance order. (b) 32 

degrees angle of incidence, m = 1 resonance order. 

 

 Figure 18 presents experimental reflectance spectra for the m = -4 resonance at different 

angles of incidence. Resonances sharpen and red-shift as the incidence becomes more oblique.  
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This order’s absorption is sharper and more resonance-like, and hence more interesting for sensing 

applications. 

 

 

Figure 18 Reflectance spectra for Bi gratings at different incidence angles corresponding to the m = -4 resonance. 

 

 In summary, we have measured permittivity spectra for evaporated bismuth films in the 

range of 1.4 to 40 microns. These spectra differ significantly from those previously published for 

oriented single crystal or melt-cast polycrystalline Bi, and the spectra for thermal and e-beam 

evaporated films differ from each other.  We studied the excitation resonances for infrared SPPs 

in evaporated Bi gratings, and we found that calculated spectra based on our permittivity values 

agree well with the observed spectra.  The IR resonances in the range of 8-10.5 microns are distinct 

and potentially useful in sensing applications. Hence Bismuth, whose plasma frequency is more 
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than two orders smaller than traditional metal hosts such as Au, has potential for mid- to long-

wave IR plasmonic applications.  
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CHAPTER FOUR: FLOURINE DOPED TIN OXIDE THIN FILMS BY 

STREAMING PROCESS FOR ELECTRODELSSS ELECTROCHEMICAL 

DEPOSITION (SPEED) 

4.1 Introduction  

 Transparent conducting oxides (TCOs) are wide band-gap semiconductors with relatively 

high free-electron concentration, which arises either from defects or extrinsic dopants with shallow 

levels near the conduction band edge [42, 43].  TCOs are increasingly used in photovoltaic (PV) 

devices and as electrodes, structural templates, and diffusion barriers. TCO work function defines 

the device open-circuit voltage [44]. Examples of TCOs include ZnO, In2O3/SnO2 (ITO) and SnO2: 

F (FTO).  

 Among TCOs, indium tin oxide is the most widely used [45, 46] because of its high 

electrical conductivity and optical transparency. Use of ITO has the disadvantage of the scarcity 

and expense of indium (In), whose price rose due to market demand to over $800 per kg in 2006. 

This motivates the search for alternative TCOs.  Fluorine-doped tin oxide (FTO) is a promising 

candidate due to its chemical stability, electrical conductivity, optical transparency, and thermal 

stability, especially in high-temperature hydrogen-containing environments for gas sensing 

applications [47-49]. These properties, however, depend on the deposition technique and growth 

conditions. 

 The microstructural, electrical, and optical properties of FTO are sensitive to deposition 

technique and conditions [50]. Methods for SnO2 thin-film deposition have included ultrasonic 

chemical spray [51], spray pyrolysis [52], reactive sputtering [53], sol-gel spin coating [54], 

magnetron sputtering [55-57], and photochemical vapor deposition [58]. Reactive sputtering and 

evaporation are high vacuum techniques, which makes them expensive for large-scale production. 
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The films produced by chemical vapor deposition require large volumes of expensive high purity 

precursors for large area coatings.  Films prepared by most spray pyrolysis methods are non-

uniform and full of voids and other defects due to uncontrolled droplet sizes and the precursor 

chemistry [59].  

4.2 Streaming Process for Electrodeless Electrochemical Deposition (SPEED)  

 Streaming Process for Electrodeless Electrochemical Deposition (SPEED) [60-62] is a 

high-rate uniform deposition technique that uses water-soluble precursors to rapidly coat the 

substrate with nanoparticle-based films.  There are no fundamental limits to the achievable film 

thickness.  SPEED allows high-quality film growth on large area hydrophilic rigid or flexible 

substrates, at lower temperature than the traditional spray pyrolysis, using environmentally 

friendly water-soluble primary chemicals and very flexible chemistry formulation for binary or 

more complex compound materials growth.  SPEED allows high-quality film growth on large area 

hydrophilic rigid or flexible substrates, at lower temperature than the traditional spray pyrolysis, 

using environmentally friendly water-soluble primary chemicals and very flexible chemistry 

formulation for binary or more complex compound materials growth.  Here we report application 

of SPEED to grow SnO2: F thin films.  

SPEED has is foundation in chemical bath deposition (CBD) [60, 62, 63] and is distinct 

from spray pyrolysis. To be pyrolysis, there must be a thermochemical decomposition of organic 

material at elevated temperatures (> 400 oC) in the absence of oxygen. Indeed, the Greek root 

“lysis” means “separating”. Organic solvents are used, and the products of the decomposition then 

react to form a film.  In contrast, SPEED is a pure heterogeneous reaction between two reactants 

at a surface, using water as the primary solvent. Without the need to thermally decompose 
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anything, SPEED is capable of growing materials at much lower substrate temperatures than is 

spray pyrolysis. 

 There are no fundamental limits to the achievable film thickness.  SPEED allows high-

quality film growth on large area hydrophilic rigid or flexible substrates, at lower temperature than 

the traditional spray pyrolysis, using environmentally friendly water-soluble primary chemicals 

and very flexible chemistry formulation for binary or more complex compound materials growth.  

Here we report application of SPEED to grow FTO films.  

 

4.3 SPEED for fluorine-doped tin oxide deposition 

 The main precursors in the reagent solution are 0.4 M tin IV chloride (the Sn source) and 

ammonium fluoride (the F source, at 20% of the Sn concentration).  The chemicals (Alfa Aesar) 

were dissolved in a mixed solvent of water, ethanol, isopropanol, and methyl propanol.  Deionized 

water (20% by volume) is one of the main requirements in SPEED chemistry [60], serving as both 

solvent and oxygen source. The ethanol, isopropanol, and methyl propanol are mainly complexing 

agents for Sn ions. The complexing capabilities of the mixed solvents controls solution stability 

and shelf life.  

 A reservoir of the solution is maintained at a temperature sufficiently low to inhibit 

homogeneous reactions.  The solution was nebulized into droplets (5 - 15 μm size range) by an 

ICP/MS nozzle and sprayed onto the heated substrate.  Before deposition, the 5.0 cm × 5.0 cm 

substrates were cleaned thoroughly with industrial soap, rinsed with deionized water followed by 

acetone, then rinsed again with deionized water, and hot-air dried. The film deposition was done 

by scanning the surface of the vacuum-chucked substrate with the sprayer in cycles. A 
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proportional-integral-derivative (PID) controlled heater maintained the substrate temperature at 

440, 460, 470, or 500 °C. Fig 1 presents a photograph of the SPEED system during deposition. 

 

 

Figure 19 Photograph of SPEED spray head. 

 

 SPEED processes and chemistries, have their foundation in chemical bath deposition 

(CBD) [60, 61, 63] and they are designed to ensure film growth takes place via heterogeneous 
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reaction only.-A process requirement is a hydrophilic substrate that attaches OH- ions, which serve 

as heterogeneous-reaction nucleation sites.  The local electrical field created by the adsorbed OH- 

to the substrate attracts the positively charged complex to initiate the electrochemical reaction 

process without an external electrical field, which eliminates the need for electrodes. Similar to 

what we have in CBD [63], the reactions that summarize the film growth are:  

 

[Sub](OH)- + [SnLn]
p+(4+)    [Sub]Sn(OH)3+ + (Ln)

p  ,  (24) 

 

[Sub]Sn(OH)3+ + 3OH-    [Sub]SnO2 + 2H2O  ,  (25) 

 

 where L is the ligand supplied by the organic solvents, [Sub] is the heated substrate, p is 

the charge of the ligand L, and n is the number of ligands involved in the Sn/L coordination. The 

upward arrows signify reaction byproducts that are decomposed and volatilized.  The substrate kT 

must exceed the heterogeneous reaction activation energy and sufficient to decompose and 

volatilize the reaction byproducts.  Formation of attached SnO2 in Eq. (25) is followed by site 

regeneration according to  

 

[Sub]SnO2 + OH-  [Sub]SnO2(OH)-      (26) 
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 The attachment of fresh OH- from a freshly sprayed precursor initiates the next growth 

cycle, which continues thus layer-by-layer.  The high concentration of OH- nucleation sites causes 

lateral grain growth competition, leading to nanoparticle morphology of the resulting film. The 

fluorine doping reaction is  

 

[Sub]Sn(OH)3+ + 4NH4F + 3OH-   [Sub]SnF4 + 4H2O + 4NH3
 . (27) 

 Growth of SnF4 molecules occur randomly during growth.  F on the O lattice site is a donor. 

Oxygen vacancies occur via adsorption of the tin complex [SnLn]
p+(4+) according to  

 

[Sub][SnLn]
p+(4+) + mOH-   [Sub]Sn + m(OHLn)    (28) 

 

 With solvent ligands, the adsorbed complex undergoes hydroxyl-ion-assisted reduction to 

form attached Sn [59], which paired with the oxygen vacancy acts as an donor [52].  

 

4.4 Characterization of Fluorine-doped tin oxide thin films grown on glass substrate 

With our current precursors we have observed that transparent and conductive films are 

grown only when the substrate is subjected to at least 400 oC.  This is the temperature at which the 

heterogeneous reaction for the formation of SnO2 is overcome, and the reaction byproducts are 

decomposed and volatilized. However, most of our depositions were carried out at 440 oC to 500 

oC.  At these temperatures, adhesion of the grown film to the substrate is very strong.  The film is 
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plastic-object scratch resistant due to the heterogeneous film growth mechanisms and high 

crystallinity, since higher cohesive strength is associated with smaller free volume [64, 65]. 

 Initial films were grown on borofloat and quartz glass substrates.  As-grown films on 

quartz have lower resistance than films grown on borofloat glass.  Annealing both in vacuum at 

450 oC causes their resistances to increase, with the film on borofloat glass still giving the highest 

value. Poor results when using borofloat glass substrates may be attributed partially to diffusion 

of boron impurities into the grown film.  Boron is a group III element and Sn is a group IV element, 

so that B on the Sn site should act as an acceptor. The boron impurities therefore compensate the 

film and increase its resistance. The increase in resistance observed after vacuum annealing may 

also occur because of F out-diffusion. Hence, we subsequently abandoned post-deposition 

annealing. 

To block substrate interactions, such as the compensating diffusion of B into the films, 

borofloat glass substrates were subsequently coated with Al2O3 before growth of FTO.  The 

SPEED deposited thin layer of Al2O3, using our existing recipe [60], acts as an impurity diffusion 

barrier.  This function is inferred from the success in obtaining low resistivity SnO2 film compared 

to when bare borofloat glass was used.   

4.4.1 Scanning Electron Microscopy (SEM) 

All deposited films grown at 440 oC and above appear uniform and shiny.  Scanning 

electron microscopy (SEM) images were obtained using a Zeiss Ultra 55 SEM at 5 kV to 

characterize the particle morphologies. Figure 20 presents an SEM micrograph of an FTO film 

grown by SPEED at 460 oC.  The SEM image reveals a dense nanostructure apparently devoid of 

cracks and voids. Grains of all FTO samples have about 100 nm lateral dimensions.  
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Figure 20 SEM image of FTO film grown on borofloat glass by SPEED at 460 oC. 

 

 Cross-sectional SEM images were used to determine the thickness of FTO films. 

Figure 21 presents such images where both Al2O3 and SnO2:F layers are evident despite charging 

of the glass substrate.  Their thicknesses in this sample are approximately 150 and 250 nm, 

respectively.  The top down and cross-sectional views (Figures 20 and 21, respectively) show that 

the film has a columnar growth. Thus the OH- attachment for a subsequent molecule formation 

preferably takes place on an existing grain as explained in section 3.2. 
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Figure 21 SEM cross section of FTO film grown on Al2O3 coated glass substrate. 

 

4.4.2 Atomic Force Microscopy (AFM) 

 Atomic force microscopy (AFM) was performed by a Dimension 5000 AFM (Digital 

Instruments) in a contact mode for a 2.5 × 2.5 μm2 array to study surface topology. 

Figure 22 presents the surface morphology of an FTO film determined by Atomic Force 

Microscopy (AFM).  The relief is at least 50- 70 nm, where the measurement is limited by the 

ability of the AFM tip to probe deep narrow recesses.  This large area view of the film confirms 

the surface quality of the SPEED grown film.  Here, the surface roughness is about the size of the 

grains constituting the film. 
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Figure 22 AFM image of the FTO film grown at substrate temperature of 460 oC. 

 

4.4.3 X-ray diffraction (XRD) 

 A Panalytical Empyrean X-ray diffraction (XRD) system in asymmetric out-of-plane 

geometry (with 30 kV, 40 mA, Cu Kα radiation at λ = 0.1540598 nm) was used to record the XRD 

pattern of fabricated films for 2θ values from 20 to 80 degrees.  The incidence angle measured 

with respect to the substrate plane was  = 15 deg. 

Figure 23 presents XRD 2θ-measurement for a FTO film, where reflections from (110), 

(200), (211), (310) and (301) planes of tetragonal SnO2 [64] are observed.  No peaks of any other 

crystal or phase are observed. 
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Figure 23 XRD spectra of FTO film grown at substrate temperature of 460 oC. 

 

4.4.4 Normal incidence transmission with spectrophotometer 

 A Perkin-Elmer Lambda 900 spectrophotometer collected transmittance spectra T over 

the wavelength range 200 – 1000 nm.  An Al2O3-coated borofloat glass was used in the reference 

beam.  Absorption coefficient was calculated according to Beer’s law,  = (1/d) ln (1/T).  Film 

thickness d was determined from cross-sectional SEM.  The optical bandgap of the material was 

deduced from the absorption coefficient spectrum. 

Figure 24 presents an unpolarized, normal-incidence transmittance spectrum collected at 

room temperature for a typical SPEED-grown FTO film in the wavelength range 250 to 1000 nm.  

The film microstructure (~100 nm according to Figures 20 and 22) is smaller than the wavelength, 

so that little scattering is expected. FTO film exhibits average transmittance of 93% in the visible 

range, and there is a sharp short-wavelength cut-off due to fundamental absorption [55].  These 

observations are in good agreement with the earlier reports for FTO [65-73].  
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Figure 24 Transmittance spectrum of a typical SPEED-grown SnO2: F film deposited on Al2O3-coated glass.  Al2O3 

coated glass was used as a reference during the data acquisition. 

 

 The absorption coefficient α is related to the incident photon energy by  

αhν = C(hν –Eg)
1/2     (6) 

 where C is a constant characteristic of the medium, Eg is the direct bandgap energy, hν is 

the photon energy [74].  By plotting (αhν)2 vs hν and extrapolating the linear portion to zero, we 

obtain the bandgap, as shown in Figure 25. The bandgap values of all films are around 4.0 eV. 

This value is in agreement with previous reports that the bandgap of FTO is in the range 3.9- 4.6 

eV [52]. : The bandgaps of Al2O3 and the glass substrate are significantly larger, so that they do 

not contribute to the absorption in Figure 25. 
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Figure 25 Plot of (αhν)2 as a function of photon energy (hν) has been used to estimate the optical bandgap of SPEED 

grown FTO thin-film. 

 

4.4.5 Hall measurement 

 Resistivity, mobility, and carrier concentration were evaluated by Hall effect 

measurements at room temperature in a Van der Pauw four-point probe configuration, using 

indium contacts, in a Hall effect system (MMR technologies) with a magnetic induction of 0.65 T. 

 The Hall coefficients are negative for all films, confirming their n-type conductivity.  The 

best results achieved for the 250 nm thick film are an electrical resistivity of 6 × 10-4 Ω.cm, Hall 

mobility 8.3 cm2/V.s, and carrier concentration 1 × 1021 cm-3.  These values are comparable to 

most of the earlier reports for FTOs fabricated from SnCl2 [65, 67-69] and SnCl4 precursors [66, 

71-73].  

 Haacke’s figure of merit [75] for the photovoltaic application of transparent conducting 

films is φ = T10/Rs, where T is the transmittance in the visible range and Rs is the sheet resistance. 

FTO film grown by SPEED method at 460 oC has a sheet resistance of 21 Ω/sq with average 
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transmittance of 93% in the visible range, which leads to φ = 0.023 S. This is comparable to 

numbers reported for FTO films fabricated by spray deposition [52, 75].  The value 0.071 obtained 

for sputter-coated TCO Cd2SnO4 is one of the highest known [75], and experimental FTO films 

grown by CVD have reached that value [52].  However, most commercial ITO and FTO coated 

glasses have values in the range 0.0009 to 0.020, and our FTO film is superior to these.  The spray-

pyrolysis-grown FTO sample with the same thickness as ours of Ref. [52] had the lower value 

0.018, since our sample has higher transmittance and comparable sheet resistance relative to that 

sample. 
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CHAPTER FIVE: PLASMON POLARITONS IN FLOURINE DOPED TIN 

OXIDES IN INFRARED 

5.1 Introduction 

 The motivation of this work has been finding plasmonic host materials that are efficient in 

IR region of the spectrum. Heavily-doped degenerate semiconductors, such as indium tin oxide 

(ITO), aluminum doped zinc-oxide (AZO) and gallium-doped zinc oxide (GZO) are some 

examples of transparent conductor oxides (TCOs) and have been recently studied for applications 

in nano-photonics [28, 76].  Moreover, it has been shown that the carrier density and the 

permittivity of TCOs can be tuned in a broad range by applying an external electric field [77]. 

 SPPs at the telecom wavelength and higher wavelengths in IR could be supported by TCOs 

due to their high concentration of free carriers and consequently, relatively high plasma frequency. 

ITO is the most well-known of TCOs with a plasma frequency in the near-IR region, making the 

material to be reflective in the mid-IR.  

 Experimental and theoretical investigations of plasmonic properties of TCOs is mostly 

focused on ITO [76-80] while the literature in fluorine-doped tin oxide is still behind. Thus, our 

focus here is investigating the plasmon polaritons in FTO for their potential in IR plasmonics. 

5.2 Optical properties of FTO thin films 

 Fluorine doped tin oxide with 20% fluorine dopant relative to tin was fabricated directly 

on borofloat glass. The thickness of the film was conformed to be around 200 nm with SEM.  The 

transmittance T(λ) and reflectance R(λ) spectra of the FTO sample fabricated by SPEED have been 

recorded in Figure 26 from 600 nm to 8 microns.  By having the accurate thickness of FTO film, 

complex permittivity values of FTO can be calculated. 
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Figure 26 Transmittance and reflection spectrum of a FTO film grown on glass at 460 oC with 20% fluorine dopant 

level. 

 

 The drop in reflectance observed just below 3 microns is due to the low transmission from 

borosilicate glass substrate in this range. 

 

5.3 Ellipsometry of fluorine-doped tin oxide thin-films  

 The FTO films were characterized by a J. A. Woollam IR-VASE ellipsometer, which spans 

the wavelength from 0.6 to 6 microns. Complex permittivity spectra of fabricated FTO thin films 

on glass is presented in Figure 27. First, an uncoated borofloat glass substrate and a substrate with 
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250 nm of FTO was measured. The Woollam WVASE32 software was used to determine the 

complex permittivity of FTO grown by SPEED method at 460 oC. 

 

Figure 27 Complex permittivity of a FTO thin films grown on glass in range of 1-6 microns. 

  

 From Figure 27 it is clear that real part of permittivity crosses zero at 2.16 µm (screened 

plasma frequency) and real and imaginary parts of permittivity are equal at 1.89 microns. The 

Drude free-electron model was used to fit the Drude parameters to the ellipsometry measurements 

in NIR-MIR. The Drude fit results to 284.5 THz for surface plasma frequency (ωsp), 43.28 THz 

for Γ and 3.853 for the real part of permittivity well above plasma frequency which is in agreement 

with earlier report from Dominici et al. [81]. 
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 Nobel metals such as Ag and Au are not suitable for plasmonic applications at NIR-MIR 

because of extremely low compactness at these wavelengths [28]. On the other hand, wide-

bandgap semiconductors such as ITO and FTO could be efficient nanoplasmonic hosts due to their 

strong confinement of SPPs and low loss. 

5.4 Fabrication of lamellar gratings of fluorine-doped tin oxide 

 Si lamellar grating were fabricated with a photomask with 4 different periods of 7.5, 15, 

10 and 20 microns and 50% duty cycle. Si grating couplers were photolithographically patterned 

by deep reactive ion etching (DRIE) using a STS DRIE system. An optimized process with 

combination of C4F8, SF6, CF4 and O2 gases which uses a two-step etching/passivation step, was 

successfully developed. The resulting gratings possess straight sidewalls and could be 

manufactured with various amplitudes. A thin layer SiO2  then was deposited onto the Si gratings 

by plasma enhanced chemical vapor deposition (PECVD) in order to make the substrate grating 

hydrophilic and ready for the SPEED coating of lamellar Si gratings.  

 Here, we focus on gratings with amplitude of 1 to 1.5 microns. A uniform FTO coating 

then was deposited on all Si grating using the SPEED method.  Figure 28 shows a top view of a Si 

grating with p = 7.5 μm, 50% duty cycle and 1.5 μm amplitude (FTO-NN-G5) that was coated by 

a FTO film at temperature of 460 oC . 
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Figure 28 SEM top veiw of FTO gratings with period of 20 microns. 

 

 The FTO-G1 grating then was cleaved and polished by a mechanical polisher. The SEM 

cross section of the FTO-G1 grating then was taken buy a Zeiss Ultra 55 system at 5 kV and with 

working distance of 2.5 mm.  The depth of grating G1 was around 1.46 μm while the FTO coating 

deposited by speed varied from 560 to 590 nm. Each grating bar’s length is found to be around 4.9 

μm form Figure 29. 
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Figure 29 SEM cross section of polsihded FTO gratings deposited on Si. Two layers of Si ans FTO are disticnt with 

an adhesive layer attahcing sample to wafer handle seen on top. 

 

 A second set of grating with p = 20 µm and 50% duty cycle were also fabricated on Si 

and coated by a FTO layer. Amplitude of these gratings were measured by profilometry to be 

around 1.6 microns as it is shown in Figure 30. 

 

Figure 30 Height profile of FTO grating (NN3) shows an average amplitude of around 1.6 microns.  
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5.5 FOURIER TRANSFORM INFRA-RED (FTIR) reflectance of FTO gratings 

 FTIR reflectance spectra of FTO gratings were acquired by a FTR microscope at normal-

incidence. 0 deg polarization corresponds to p- (TM) polarized light while 90 deg polarization 

represents the s- or TE polarization. The surface plasmon polaritons are expected to be excited for 

TM polarization when the incident light’s propagation is along gratings groove and polarization is 

perpendicular to grating grooves. 

 Figure 31 shows the calculated nspp values from ellipsometry measurements plotted 

together with different grating modes, or when the value of Sinθ+ (2π/λ)m equals to the kspp (this 

can be called the resonance condition). For a normal incidence at 0 deg, 3 possible modes of m = 

-3, -2, -1 could be observed at different wavelengths in MIR as it is shown in Figure 31. 

 

Figure 31 Possible excited SPP modes for a FTO grating with period of 7.5 microns at normal incidence. 

 

 According to Figure 32, the FTIR reflection spectrum of a grating with p = 7.5 µm shows 

a dip around 8 µm for a TM incident light which could correspond to the m = -1 resonance mode. 
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There is also a minor dip observed at 3.8 microns of TM mode that can be possibly related to the 

m = -2 mode.  

 

Figure 32 FTIR reflectnace of FTO coated Si grating with period of 7.5 microns. 

 

 Figure 33 shows the calculated nspp values from ellipsometry measurements plotted 

together with different grating modes, or the resonance condition. For a normal incidence at 0 deg, 

4 possible modes of m = -4, -3, -2, -1 could be observed at different wavelengths in IR as it is 

shown in Figure 33. 
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Figure 33 Possible excited SPP modes for a FTO grating with period of 10 microns at normal incidence. 

  

 Figure 34 shows the FTIR normal incidence reflectance for a FTO grating with p = 10 μm. 

Two resonances are observed for p-polarized light (90 deg polarization): a strong dip just below 

10.5 μm which corresponds to m = -3 mode. 

 

Figure 34 FTIR reflectnace of FTO coated Si grating with period of 10 microns. 
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 Figure 35 shows the predated resonances in reflectance for a FTO grating with p = 20 μm 

grating. Three resonances are predicted for p-polarized light (90 deg polarization) at wavelength 

from 4 to 10 microns. 

 

Figure 35 Possible excited SPP modes for a FTO grating with period of 20 microns at normal incidence. 

  

 Figure 36 shows the FTIR reflection spectra of a FTO grating with 20 microns period with 

a major dip in reflection spectra of a TM-polarized light just below 7 μm, which could correspond 

to m = -3 mode. 
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Figure 36 FTIR reflectnace of FTO coated Si grating with period of 20 microns. 

 

5.6 Angular and specular reflectance measurements of FTO gratings couplers 

5.6.1 Angular and specular reflectance of a FTO grating-G1with p = 7.5 μm 

 The reflectance of the FTO grating was measured using a tunable quantum cascade laser 

(QCL) from Daylight solutions with specular resolution of 0.1 nm. The incident radiation was 

tunable in the range of 7.9 μm to 10.5 μm, and was digitally chopped at 1 kHz. A mercury cadmium 

telluride (MCT) detector was used to measure the reflected intensity, utilizing a lock in amplifier 

to demodulate the signal at the chopping frequency. With the QCL fixed, the sample and detector 

were rotated to perform angular reflectance measurements. For the specular reflectance 

measurements, the angle of incidence is fixes and the wavelength is swept from 8 to 10.5 microns 

in 0.25 microns increments. 

 Figure 37 represents the angular reflectance of a FTO grating with period of 7.5 microns 

in various frequencies in mid-IR. A broad resonance corresponding to m = -1 mode is observed 

http://en.wikipedia.org/wiki/Mercury_(element)
http://en.wikipedia.org/wiki/Cadmium
http://en.wikipedia.org/wiki/Telluride_(chemistry)
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for all wavelengths. By increasing wavelengths, the angular resonance shifts toward higher angles 

on incidence. All angular shifts can be explained by changes in SPP dispersion curve toward higher 

wavevector values. It is seen in Figure 37 that for lower frequencies in IR, the resonance angle 

shifts toward the larger angles due to increase in the value of the wavevector. 

 

Figure 37 Angular reflectance spectra for FTO gratings with p = 7.5 μm at 8 different wavelengths from 8.5 to 10.25 

microns corresponding to the m = -1 resonance mode. 

  

 Figure 38 (below) shows the specular reflectance of a FTO-G1 grating with p = 7.5 microns 

for nine different incident angles ranging 6 to 22 deg in 2 deg increments, while the laser 

wavelength is swept from 8 to 10.5 microns. . Lineshape and depth of each resonance depends on 

height and profile of the grating grooves. The m = -1 resonance is observed in specular reflectance 

graph when the decreasing kspp value results in lower θres. Other resonance modes (including m = 
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-2, -3, +1) are expected to be observed in 2-6 micron range in mid-IR which lies outside of our 

laser range.  

 

 

Figure 38 Specular reflectance spectra for lamellar FTO gratings at different incidence angles corresponding to the 

m = -1 resonance. 

 

5.6.2 Angular reflectance of a FTO grating with p = 20 μm 

 Figure 39 shows the angular reflectance spectra of a 20 μm grating in increments of 0.25 

microns from 8 to 10.5 microns. There are two diffracted modes observed: m = -3 and m = +1. In 

m= +1 mode, increasing the laser wavelength will result the angular resonance to shift to lowers 

angles while for m = -3 mode, the resonances shift toward higher angles with increasing (QCL) 

wavelength. 
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Figure 39 Angular reflectance spectra for FTO gratings with p = 20 μm at different wavelengths corresponding to 

the m = -3 and +1 resonance modes. 
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CHAPTER SIX: PLANAR INTEGERATED PLASMONIC MID-IR 

SPECTROMETER 

6.1 Introduction 

 Here in this chapter we have investigated the integration of plasmonic elements with silicon 

photonics to provide a possible chip scale chemical sensor and spectrometer compatible with 

complementary metal-oxide semiconductor (CMOS) fabrication technology [22, 82]. Opportunity 

that we are looking for here is for a planar integrated spectrometer which uses a broadband IR 

source and is based on a Si photonic waveguide.   

 We present a compact mid-IR spectrometer based on a broad-band light source, dielectric 

waveguides, a transformer to convert between waveguide modes and surface plasmon polaritons 

(SPP), an interaction region where analyte molecules are interrogated by SPPs, an array of ring 

resonators to disperse the light into spectral components, and photodetectors. 

 A light source will emit into a dielectric waveguide, which will lead to a region which will 

allow coupling of the incident photons into SPPs. These will propagate along a functionalized 

metal surface within a sample interaction zone. This functionalized metal surface will allow 

interactions between the propagating SPP and any analytes bound to the surface, causing increased 

loss at those wavelengths that correspond to the analyte vibrational modes. After a suitable 

propagation length the SPP will be coupled back into a dielectric waveguide, where specific 

wavelength components will be out-coupled to detectors by an array of ring resonators. The 

simplest useful spectral sensor of this design would have two spectral channels. The use of SPPs 

in the interaction region favors application to surface. 
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6.2 Light emitting diode source in mid-IR 

 Infrared light emitting diodes (LED) offer smoother, broader, stable, cheaper solution with 

wavelengths in H stretch region. So, a set of these LEDs was purchased from Boston Electronics 

at the very attractive cost (in comparison to QCLs) of just ~$100 each.  Their spectra (Figure 40) 

and temperature dependence were characterized using a Fourier transform infrared (FTIR) 

spectrometer of a Bomem DA8 with a KBr beam splitter using a 77 K-cooled InSb detector.  

 The LEDs were mounted at the spectrometer emission port. Each LED was operated at the 

specified maximum power conditions in continuous wave mode, with an excitation current of 100-

200 mA. Each observed band matches the center wavelength specified. Shifts with temperature, 

measured by attaching the LED to a thermoelectric heater/cooler, were less than the emission 

bandwidths. Unlike the QCL, there is no mode structure. In comparison to QCLs, the range of 

available wavelengths is shifted to the blue, such that the important region of characteristic 

vibrations below 3 microns is accessible. 

 Normalized spectra of several of the LEDs are shown below in Figure 40.  They span the 

range from approximately 1.9 to 7 microns and are much less expensive than QCLs, leading to the 

potential for very inexpensive systems in the near term.  
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Figure 40 Normalized spectra of mid-IR LEDs obtained from Boston Electronics, measured with the Bomem FTIR 

spectrometer at UCF using a liquid nitrogen-cooled InSb detector.   

 

 We will work with the 3.4 micron (200 µW CW, 500 µW pulsed) LED for the rest of 

measurements.  The wavelength region near 3.4 microns is very important not only because of the 

atmospheric transmission window between 3 and 5 µm, but because it is the C-H stretch region 

for all hydrocarbons as well as NH, OH, CO double bonds, NH2, and CN.  This region is hence 

especially important for identifying specific chemical and biological threats. The targeted short 

wave infrared SWIR region (3 - 4 μm wavelengths) features low loss propagation in silicon and 

the characteristic absorptions of (e.g.) C-H (Alkynes), O-H (monomeric alcohols, phenols), N-H 

(Amines), CO double bonds, NH2, and CN, as shown in Figure 41.  This motivates the shift to 
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longer wavelengths from telecom bands, where the first work waveguide-to-plasmon modes using 

tapered waveguides was done [83]. 

 

Figure 41 Representative spectra of molecules superimposed on the measured spectrum of a 3.4 μm LED. 

 

 Although proposed several years ago, the first experimentally verified transmission of mid-

IR radiation through SOI waveguides was published only recently [84]. The authors coupled 3.39 

μm radiation from a He-Ne laser into a bundle of single mode fibers which were end fire-coupled 

to their silicon-on-insulator (SOI) waveguides. The use of ring resonators as frequency selective 

elements has also been verified in the mid-IR suggesting their usefulness in this proposed 

application [85]. 
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6.3 Silicon waveguides for mid-IR applications 

6.3.1 Silicon on insulator (SOI) waveguides in mid-IR 

 A bent Silicon waveguide on a Silicon-on-insulator (SOI) platform has been designed to 

isolate the output light from the IR input. Figure 42 shows the schematic of a bent Si waveguide 

on a silicon oxide substrate. In order to eliminate the possibility of detecting LED light later in 

light-coupling, the design is based on a waveguide with 90 deg bend.  

 

Figure 42 Schematic of the bent silicon on SOI platform. 

  

 The structure is based on a 10 micron wide x 10 micron tall Si waveguide on a SiO2 slab. 

Initial propagation is assumed to be in +z-direction. After the 90 deg bend, the propagation mode 

will be rotated along –y direction. 

 Lumerical FDTD solutions has been used to simulate the propagation mode in the proposed 

structure. Figure 43 presents results of 3D FDTD simulation that demonstrate the creation of 
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surface plasmons inside the SOI structure.  The silicon waveguide has 10 m x 10 m cross section 

on oxide. 

 

Figure 43 Schematic of the bent silicon waveguide establishing the coordinate system used in the electrodynamic 

simulations. 

 

 Our starting material is commercial SOI wafer (10 µm thick silicon on 10 µm 

oxide).  SiO2 has low loss at 3.4 microns.  Structures are defined by conventional lift-off in Al, 

which serves as etch mask.  Etching is performed in deep reactive ion etching (DRIE) using a STS 

RIE system.  Figure 44 is an SEM image of waveguides on a SOI platform.  
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Figure 44 A Si waveguide has been fabricated photolithographically on a SOI platform.. 

 

6.3.2 Ring-resonator for high resolution spectroscopy 

 High resolution spectroscopy can be achieved by implanting cascade ring resonators. The 

optical resonance will occur when circumference of a micro-ring resonator is equal to integral (m) 

number of signals wavelengths λ/n in, where n is the refractive index of Si and λ is the vacuum 

wavelength. For hypothetical photons of 3.4 micron wavelength travelling through silicon (n = 

3.4), the circumference must therefore be m microns.  Figure 45 presents a schematic of set of ring 

resonators. 
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Figure 45 Set of ring resonators could be used for high resolution spectroscopy.  

 

 The resolving power (Q) of the micro-ring resonator is dependent on its width, as a large 

width can allow transverse modes. We desire a Q = λ/Δλ of at least 1000 to ensure that each ring 

will act as single resolution channel with a reasonably useful resolution of Δλ = 3 nm. This value 

of Q seems readily obtainable with present fabrication techniques. The precise requirements of the 

micro-ring resonator’s circumference and width may be achieved in principle by photolithography. 

The device may be conveniently fabricated from silicon-on-insulator (SOI), where the waveguides 

and rings are supported by a layer of SiO2, which has lower index than silicon. Figure 46 presents 

a 3-micron wide Si micro-ring resonator fabricated on an oxide layer by deep reactive ion etching 

(DRIE). 
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Figure 46 A sample 3 micron-wide resonator has been fabricated by DRIE. 

  

 As an example to understand how set of micro-ring resonators can work to resolve the 

spectrum of a broad light source, let’s consider our proposed LEDs spectrum at 3.4 microns where 

its bandwidth is ~ 400 nm. A first layer of micro-ring resonators with 1.58 μm diameters might be 

used to resolve part of the broad LED spectrum around 3.38 µm. With introducing second set of 

ring resonator with 15.82 µm diameter, the resonance full width at half maximum (FWHM) of 

around 3 nm could be achieved.  More sets of ring resonators with the right optical path lengths, 

will be added in the same manner to achieve the desirable resolution at each wavelength between 

3.3 to 3.5 µm.  
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6.4 Mid-IR spectrometer design and parameters 

 Figure 47 presents a design schematic consisting of source, interaction, and detector 

regions.  A commercial 3.4 μm wavelength LED with ~ 400 nm bandwidth is proposed for use as 

the optical source which will be coupled into a silicon-on-insulator waveguide adiabatically 

tapered to a dimension below cutoff, in order to transform the waveguide mode to a plasmon that 

propagates in the metallic slot of the interaction region shown schematically in Figure 47 (b).  

Molecules will interact with the bound electromagnetic waves in this region, giving rise to 

absorption.  Functionalizing the surface in the interaction region will allow concentration of the 

molecular analyte in order to measure the infrared absorption of the bound molecules as well as to 

probe their binding kinetics.  After conversion back to a waveguide mode via another adiabatic 

taper, wavelength dispersion is accomplished through the use of a series of micro-ring resonators.  
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Figure 47(a) Schematic of planar integrated plasmonic mid-IR spectrometer. A broad band LED source feeds a 

plasmonic based interaction region. The layered micro-ring resonator section as described in the text determines 

spectral content. (b) FDTD simulation of the interaction region showing generation of plasmon modes in the gap 

located between the dielectric and the surrounding metal. 

 

 Micro-rings resonate when the round trip path length of the optical field is an integral 

multiple of the effective wavelength of the optical field [4]. The separation between resonances, 

or the free spectral range, FSR, is inversely proportional to the round trip path length, while the 

full width half max, FWHM, of any resonance is proportional to the FSR. Decreasing the resonant 

line width by increasing the round trip path length correspondingly reduces the FSR. Attempts to 
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increase resolution by decreasing the FWHM of the filter resonance introduce ambiguities in 

wavelength determination if the excitation bandwidth exceeds the FSR.  

 To alleviate this problem, a layered micro-ring resonator approach is proposed as it was 

discussed earlier (Figure 47 (a)).  The first layer of filters has a small optical path and its FSR 

needs only to exceed the LED bandwidth.  The second layer of filters has a larger optical path 

length with a reduced FSR that only needs to be as wide as the first layer’s FWHM.  This second 

layer will have a correspondingly smaller FWHM and provides the resolution needed for chemical 

identification.  Unambiguous determination of spectral content results can be achieved by this 

method. 

 Silicon waveguides on oxide have been fabricated by DRIE with fluorine chemistry using 

photolithographically defined metal masks.  Figure 48 presents a SEM image of some our 

waveguides, showing the progression in quality as process development was undertaken.  Vertical 

sidewalls as well as smooth etched surfaces were achieved. 

 

 

Figure 48 (left) Si waveguide on insulator, (center) Two adjacent Si waveguides 100 μm apart, (right) Bent Si 

waveguides with different radii of curvature. 
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6.5 Interaction region 

 Figure 49 presents our process for patterning the interaction region. Electron-beam 

lithography is followed by metal evaporation and lift-off to form an etch mask (a).  The Si top 

layer is etched using DRIE, leaving the waveguide structure on top of the oxide layer.  A seed 

layer of ~50 nm of Au is then deposited over the entire area (b), followed by a CVD layer of nitride 

(c).  Conformal coating on the waveguide sidewalls defines the eventual width of the plasmon slot 

waveguide.   

 Next, the surface is spin-coated with a thick layer of photoresist and a rectangular window 

opened by lithography (d).  The thickness of this resist layer matches or exceeds the height of the 

waveguide (10 μm).  The nitride is etched by anisotropic RIE (e) to remove Nitride from the 

horizontal surfaces without removing nitride from the vertical sidewalls.  This step is followed by 

electroplating 10 μm of Au over the window (f).  The electrical isolation of the waveguide from 

the rest of the structure in the window should prevent plating of the top of the waveguide.  We 

then strip the resist (g) and wet etch the Nitride from the sidewalls (h).  The thin seed layer of Au 

is then removed and we are left with the tapered interaction region waveguide separated from the 

metal plasmon host by a gap of the proper width (i). 

 FDTD simulations of the interaction region are show in Figure 49 (b). The cross section is 

a top down view of the waveguide in the interaction region.  As the lateral dimension is tapered to 

a width of 1 μm, the waveguide becomes too narrow to support a waveguided photonic mode, so 

the electromagnetic energy is forced into the gap where it excites a SPP bound to the metal.  The 

cross section view displayed in the lower right hand corner is a head on view in the propagation 

direction through the waveguide. 
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Figure 49 (a-i) Processing steps for fabrication of the interaction region. 

 

 An estimate for the necessary length of the interaction region may be obtained by 

simulating the effect of changing the index in the slot.  The relevant parameters are the refractive 

index, the thickness of the layer, and the extinction coefficient.  Alternatively, we may estimate 

the ratio of transmitted optical intensity, I, to source intensity, Io, as function of length of using the 

Beer-Lambert law,  

 exp( Nx)
o

I
T

I
    
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 where   is the absorption cross section, N is the number per unit volume of absorbing 

particles.  Small ligands (< 300 Da) can have characteristic lengths on the order of 10 Angstrom, 

while 60 kDa biomolecules can be 10’s of nm in length.  The diameter of the DNA double helix 

is roughly 2 nm, but of course the length is orders of magnitude larger.  Taking as an example a 

molecule of 10 nm radius gives a molecular volume of 10-18 cm3, or for 100% concentration, 1018 

molecules per cm3.   

 Estimating an absorption cross section of 10-18 cm2 gives T = e -x.  Thus, for an easily 

measureable change in transmittance due to molecular absorption of 10%, x = -ln(0.9) = 1 mm is 

obtained suggesting an appropriate interaction region length of 1 mm.  The propagation length of 

surface plasmons on gold at 3 micron wavelength is several millimeters [6].  So, sufficient 

throughput and sufficient path length for sensing are simultaneously feasible. Figure 50 represents 

the characteristics SPP propagation lengths of some Si based materials versus Au. 
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Figure 50 SPP characteristic lengths of p- and n- doped Si, Pd2Si versus Au. 

  

 The particular micro-ring resonator of Figure 46 was defined using optical lithography. 

The corners have radius 3 μm and the 3 μm wide extended straight sections are designed to improve 

coupling with the waveguides by providing a longer interaction length. The micro-ring resonators 

to be defined by e-beam lithography will have widths of approximately 1 μm, with distinct 

channels defined by differences in diameter of tens of nanometers.   

 As an example, a first layer of micro-ring resonators with 1.58 μm diameters might be used 

with a second layer of 15.82 μm diameters, where there resonance FWHM of roughly 3 nm would 

be suitable for chemical identification in the SWIR as proposed. All dimension are well with the 

range of ebeam lithography and are approaching dimensions whereby optical lithography could be 

used throughout for the fabrication of this integrated nanophotonic chip.  
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CHAPTER SEVEN: PLASMONIC PHOTOCAPACITOR BASED ON 

KRETSCHMANN PRISM COUPLER FOR SPECTRAL IMAGING 

7.1 Introduction 

 Hyperspectral imaging systems have been the subject of research for the past two decades 

[86]. Spectral imaging systems could obtain the spectrum of each pixel in the image of a scene and 

are extremely useful in earth sciences, chemical identification and remote sensing [87, 88]. Most 

of commonly used spectral imagers are bulky and possess complicated optics with large moving 

parts, which makes them expensive to operate in space-based spectral sensing.  The opportunity 

we are looking for here is a plasmonic device that can be potentially used as a spectral imager, in 

which spectra is obtained by a novel kind of filtering based on a resonant transduction to a 

detectable SPP. 

 In this chapter, we will discuss a plasmonic device based on electronic detection of surface 

plasmon polaritons in a Kretschmann-based prism coupler. Such a device then will be coupled to 

a photocapacitor while the evanescent field bound to surface plasmon polaritons can penetrate 

through the air, and can be potentially used for detection applications.  

 As it was shown earlier in this dissertation, at a specific angle of incidence, the in-plane 

(TM) part of the incident light can match the momentum of the SPP at a specific optical frequency. 

For an optimized metal thickness, the incident p-polarized light can be completely converted to 

SPPs. Consequently, the reflectance from such a device is zero at resonance angle as it is shown 

in Figure 51 where the light is assumed to be p-polarized and the wavelength is 651 nm. 
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Figure 51 Angular refletnace of a 45 nm thick-Ag evapoarted on a BK7 prsim at 651 nm. 

 

7.2 Plasmonic photocapacitor  

 The device is based on a Kretschmann prism-coupler that can be potentially used in a 

special configuration to detect the SPPs electronically. Prism coupler consists of a right-angle BK7 

prism with a thin layer of plasmonic metal, in this case Ag, is evaporated by e-beam deposition. 

As it was shown earlier in this dissertation, SPP can be generated at the interface of Ag/air if a TM 

polarized light hits on the surface of the metal.  

 Second part of the device consists of a capacitor that is formed on a lightly p-doped Si 

(100) substrate with 280 nm of SiO2 electron beam evaporated on its surface. A very thin layer of 

a transparent conductor (TC) is deposited on a top of this heterostructures and it will be used to 
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allow the biasing of the capacitor. Then, Au/Cr contact on sides of the prism can be defined 

photolithographically on each end of the Au layer of prism and later could be wire-bonded to the 

Si substrate with Aluminum wires. So, the second part of the device which is a photo-capacitor 

comprises a silicon substrate, a layer of silicon oxide, and a transparent conductor.  The latter may 

be a thin evaporated metal such as Au, or a transparent conducting oxide such as SnO2:F, discussed 

earlier in this dissertation.   

 The metallic surface of a prism then is mounted on a capacitor with an air gap of 600 nm 

using SiO2 standoffs. This standoff is necessary to make the air gap, so SPP will penetrate through 

photocapacitor and produces the necessary index contrast for SPP excitation at the interface. 

Transient charging of the Si/SiO2 interface induces a current in the transparent conductor (i.e., thin 

Au layer) which passes through the Au/Cr contact to an inverting current amplifier and can be 

detected. Figure 52 shows the schematic of the proposed device. 

 

Figure 52 Schematic of a plasmonic photocapacitor. 
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 Exposure to light only at the SPP resonance wavelength and angle of incidence generates 

electron-hole pairs in the semiconductor.  The electrons accumulate at the semiconductor-oxide 

interface, inducing a current in the transparent conductor, which could be amplified and recorded.  

Biasing the transparent conductor enables electronic modulation of the photoresponse. 

 

7.3 Optical characterization of the prism-based device in a goniometer setup 

 For the start, the measured reflectance from a right-angle BK7 prism coated with 45 nm of 

Ag is shown in Figure 53 for a TM-polarized light at 651 nm.  Angular reflectance of the device 

was then measured in a goniometer setup with a LabView-controlled system. A detector rotates at 

2g to synchronously monitor the reflected intensity, and the size of the detector element gives an 

angular uncertainty of about 0.3 deg. The incident medium was on a BK7 glass, followed by Ag, 

air, and SiO2 layers, and the exit medium was silicon. Two laser diodes (LDs) at 651 nm and 532 

nm were used as light-sources. Angular reflectivity of the device at 651 nm was measured and is 

depicted in Figure 52. Angular reflectance is also calculated using permittivity values of Ag, Au, 

SiO2 and Si from and is proved to have a minimum around 42 deg [89].  
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Figure 53 Measured and calculated angular reflection from the device at 651 nm. 

  

 The minimum of reflectivity for the TM-polarized light at 532 nm occurs at the resonance 

angle for excitation of SPPs which is around 43.5 deg. Fresnel calculations for the same structure 

confirms the prediction of SPP excitation at 43.5 deg for a p-polarized incident light at 532 nm, as 

it is shown in Figure 54. 
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Figure 54 Measured and calculated angular reflection from the device at 532 nm. 

 

 Transmission of the device inside the Si can be also acquired by Fresnel calculations. We 

expect such a transmission to closely match the photo-induced current curve for the device, once 

it is measured. 
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CHAPTER EIGHT: CONCLUDING REMARKS 

 

 Focus of this work is on the extension of the use of SPPs in mid-infrared range of the 

spectrum in order to achieve efficient plasmonic devices that can support strong SPP confinement 

modes with low loss. IR SPP properties are investigated by prism- and grating- couplers for variety 

of novel hosts such as semimetals and doped semiconductors.  

  Optically thick bismuth films were fabricated by electron beam and thermal evaporation 

methods and their optical characteristics were investigated by means of scanning electron 

microscopy, x-ray diffraction and ellipsometry. Permittivity spectra of bismuth films in range of 

1.4 to 40 microns were measured and compared to earlier published reports.  Bismuth lamellar 

gratings were also fabricated by photolithography and evaporation techniques. Resonances of 

bismuth lamellar gratings in range of 8 to 10.5 microns were observed and studied. These 

extinction resonances can be useful in sensing applications in infrared. Therefore, bismuth with 

plasma frequency of two orders of magnitude smaller than traditional noble metals, could be 

potentially used in mid- to long-wave IR devices. 

 In recent years, lot of attention has been shifted to several transparent conducting oxides 

(TCOs), such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO), for their 

promising plasmonic properties. TCO have already been used in verity of opto-electronic devices 

although they have a lower carrier concentration (1020-22 cm-3) comparing to noble metals (1023 

cm-3). Consequently, TCOs possess lower plasma frequencies in infrared wavelength which makes 

them a candidate for applications in IR plasmonics. 
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 We have developed a CMOS compatible and highly useful transparent conducting thin-

films of SnO2: F which were grown on preheated glass and silicon substrate, by Streaming Process 

for Electrodeless Electrochemical Deposition (SPEED).  SPEED allows high-quality film growth 

on large area hydrophilic rigid or flexible substrates, at lower temperature than the traditional spray 

pyrolysis, using environmentally friendly water-soluble primary chemicals and very flexible 

chemistry formulation for binary or more complex compound materials growth. Stannic chloride 

(SnCl4) and ammonium fluoride (NH4F) dissolved in a mixture of deionized water and organic 

solvents were used as precursors. The preheated substrate temperature was varied between 440 

and 500 °C.  High quality SnO2:F films were grown at all the substrate temperatures studied.  The 

resulting typical film thickness was 250 nm.  X-ray diffraction shows that the grown films are 

polycrystalline SnO2 with a tetragonal crystal structure.  The average optical transmission of the 

films was around 93% throughout the wavelength range 400 to 1000 nm.  The lowest electrical 

resistivity achieved was 6 × 10-4 Ω-cm.  The Hall measurements showed that the film is an n-type 

semiconductor, with carrier mobility of 8.3 cm2/V-s, and carrier concentration of 1 × 1021 cm-3.  

The direct bandgap was determined to be 4.0 eV from the transmittance spectrum. 

 Optical properties of FTO films grown by SPEED were characterized by means of 

ellipsometry and FTIR reflectance.  Si gratings were also fabricated photolithographically and then 

were etched by (DRIE) in order to produce Si grating with 1.5 micron amplitude and various 

periods. A thin layer SiO2  then was deposited onto the Si gratings by plasma enhanced chemical 

vapor deposition (PECVD) in order to coat the Si grating with a hydrophilic layer and ready for 

the SPEED deposition of FTO.  The deposited FTO coating was found to be uniform across both 

grating bars and sidewalls.  Distinct resonances due to excitation of SPPs were observed in angular- 

and specular- reflection measurements of FTO gratings in a goniometer setup. Such resonances 
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could be potentially useful in sensing and design and development of efficient plasmonic devices 

in the mid-IR range. 

 In an effort to introduce a novel mid-IR plasmonic device, a compact spectrometer-on-a-

chip featuring a plasmonic molecular interaction region was conceived, designed, modeled, and 

partially fabricated.  The silicon-on-insulator (SOI) system was the chosen platform for the 

integration due to its CMOS compatibility.  The low loss of both silicon and SiO2 between 3 and 

4 μm wavelengths enables silicon waveguides on SiO2 as the basis for molecular sensors at these 

wavelengths.  Important characteristic molecular vibrations occur in this range, namely the bond 

stretching modes C-H (Alkynes), O-H (monomeric alcohols, phenols) and N-H (Amines), as well 

as CO double bonds, NH2, and CN.  The device consists of a broad-band infrared LED, photonic 

waveguides, photon-to-plasmon transformers, a molecular interaction region, dispersive 

structures, and detectors.  Photonic waveguide modes are adiabatically converted into SPPs on a 

neighboring metal surface by a tapered waveguide.  The plasmonic interaction region enhances 

optical intensity, which allows a reduction of the overall device size without a reduction of the 

interaction length, in comparison to ordinary optical methods.  After the SPPs propagate through 

the interaction region, they are converted back into photonic waveguide modes by a second taper.  

The dispersing region consists of a series of micro-ring resonators with photodetectors coupled to 

each resonator.  Design parameters were optimized via electro-dynamic simulations.  Fabrication 

was performed using a combination of photo- and electron-beam-lithography together with 

standard silicon processing techniques.  

 Optical properties of a plasmonic photocapacitor based on a Kretschmann prism-coupler 

that can be potentially useful in spectral imaging was also investigated.  A TM-polarized laser light 

at 651 and 532 nm wavelength was electronically chopped at 1 kHz while the beam was internally 
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reflected from the metalized prism face. The angle of incidence relative to goniometer, g was 

varied by a motor controlled goniometer with a photodetector which rotated at 2g to 

synchronously monitor the reflected intensity. Fresnel equations were used to calculate the 

reflectivity spectra of this Kretschmann-based prism device.  The excitation of SPPs at both 

wavelengths were confirmed by these calculations.  
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