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Quality Analysis for Least-Squares Transformation of
Unevenly Spaced Interferograms
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A least-squares method of transforming interferograms into spectra
is compared with the traditional fast Fourier transform (FFT) for
varying degree of point-spacing unevenness. A Gaussian distribu-
tion is assumed for the deviations from even spacing. FFT gives
inferior spectra quality above a critical unevenness, which decreases
as more interferograms are averaged.

Index Headings: Spectroscopy; Fourier ; Time-resolv ed; Interfero-
gram.

INTRODUCTION

Most Fourier transform spectrometers digitize the op-
tical signal from a Michelson interferometer at even path-
length intervals determined by the zero crossings of a
HeNe laser interference pattern. Deviations from an even
sample spacing can seriously compromise the quality of
resulting spectra. Artifacts from periodic sample position
errors have been described.1 Random position errors pre-
sumably create noise.1

For time-resolved Fourier transform spectroscopy
(TRFTS), the problem of sample spacing accuracy is am-
pli® ed. TRFTS requires simultaneous accuracy for posi-
tions and times of sampling. Depending on the time-re-
solved acquisition scheme, unavoidable mirror speed
variations cause either timing errors or uncertain sam-
pling positions. The well-known interleaved method2± 4

gives good position accuracy but poor timing accuracy.
The new event-locked Fourier spectroscopy (ELFS)5 as-
sures accurate timing and hence must accept the resulting
uneven sample spacing.

In this respect, ELFS is equivalent to the synchronous
method,2 where short transient events are initiated at
evenly spaced positions, and the signal is sampled after
an accurate delay time. Short delay times lead to small
uncertainties in sampling positions. Consequences for the
quality of the spectra are assumed to be negligible.

The fast Fourier transform (FFT) is the main tool in
analyzing common evenly spaced interferograms. Since
FFT requires even sample spacing, a new method of
transformation into spectra5 was developed as part of
ELFS. This new method requires measurement of the ac-
tual sampling positions and uses least-squares ® tting of
harmonic functions to the unevenly spaced interfero-
grams. This technique will be referred to as `̀ ELFS-style
analysis’’ hereafter. ELFS-style analysis requires more
computer memory and more computation time than a reg-
ular FFT procedure for spectra with the same resolution
and frequency range. Hence, regular FFT analysis would
be preferable in cases where ELFS-style analysis does not
result in better spectra quality. For almost equally spaced
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interferograms, it might be possible to ignore the un-
evenness and to use the more ef® cient FFT analysis with-
out introducing signi® cant noise or artifacts. This work
quantitatively describes the effects of random sample-
spacing unevenness on the quality of the spectra. Circum-
stances under which ELFS-style analysis is preferred to
regular FFT are identi® ed.

EXPERIMENTAL

Since it is dif® cult to acquire interferograms with vari-
able but known unevenness of the point spacing, numer-
ical simulation is used. The experiment is replaced by a
function I(x), which gives an interferogram value for any
pathlength difference x. The function used in our tests is

I(x) 5 [cos(a1x 1 0.3) 1 cos(a2x 1 0.1)22e (a x)0

1 2cos(a3x 2 0.5)] (1)

with a0 5 158 cm2 1, a1 5 2p 12 000 cm2 1, a2 5 2p
11 900 cm2 1, and a3 5 2p 11 000 cm2 1. In the spectral
domain, this function describes one isolated Gaussian
peak at 11 000 cm2 1 and two partially overlapping Gauss-
ian peaks near 12 000 cm2 1. The factor in front of the
bracket apodizes the interferogram and gives the lines a
® nite width. Discrete interferograms consisting of N
points (xi, I(xi)) are computed with the index i, assuming
all integer values from 1 to N. For an evenly spaced in-
terferogram the (unprimed) xi values are found from

xi 5 D X i 2 x0 (2)

where D X is the sampling interval, and x0 is some offset
to give partially double-sided interferograms. Unevenly
spaced interferograms (indicated by primed variables)
have points at

xi 9 5 xi 1 D xi (3)

where the D xi are slight individual offsets for the points.
For the simulations, the D xi are randomly selected according
to a Gaussian distribution with a width of D x.6 The width
of the distribution can be varied and was used as a measure
for the unevenness of the points in the interferogram.

An ELFS-style analysis routine, which includes apod-
ization and phase correction procedures, is used to extract
spectra from the interferograms. ELFS-style analysis re-
duces to FFT analysis in the limit of even sample spac-
ing.5 This fact permits comparison of ELFS-style and reg-
ular FFT analysis by using the same code on two slightly
different sets of simulated input data. Using the same
routine for both analysis styles has the advantage of iden-
tical phase correction and apodization. For ELFS-style
analysis, interferogram points (xi 9 , I(xi 9 )) are provided as
the input data. Using (xi, I(xi 9 )) as the input simulates
regular FFT analysis by assigning the interferogram val-
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FIG. 1. Simulated spectra obtained from regular FFT analysis with
increasing (back to front in steps of 0.01 fringes) unevenness D x of the data
point spacing.

FIG. 2. Simulated spectra obtained from ELFS-style analysis with in-
creasing (back to front in steps of 0.01 fringes) unevenness D x of the
data point spacing.

FIG. 3. Quality value of spectra for ELFS-style (solid symbols) and usual
FFT (crossed symbols) analyses as function of the sampling unevenness
D x (in units of the average sampling interval D X). A larger quality value
means better agreement with the ideal spectrum.

ues I(xi 9 ), which are found at unevenly spaced points, to
the evenly spaced xi.

RESULTS AND DISCUSSION

Interferograms with two samples per HeNe fringe ( D X

ø 316 nm) up to a maximum pathlength difference of
2.5 mm were created. The results with regular FFT anal-
ysis for varying D x are shown in Fig. 1. The ideal spec-
trum with D x 5 0 is plotted in the background. As the
value of D x increases towards the front, noise with in-
creasing amplitude appears. In addition, the heights of
the three lines deviate more and more from their original
values. Apparently, the lines lose strength to the predom-
inantly positive noise.

The results of ELFS-style analysis are shown in Fig.
2. Again, the only difference in the preparation of these
spectra is the use of the primed pathlength coordinates
(Eq. 3) in the interferograms. The noise appears to in-
crease (at least initially) in a similar fashion as in Fig. 1.
However, the line strengths vary only within the limits
of the noise.

The differences between the spectral values S 9 (vi) and
the ideal spectrum S(vi) may be used to quantify the
spectra quality. A quality value Q is de® ned as the ratio
of peak intensity AÃ to the root-mean-squared (rms) value
of such differences by

2 1/2M1
2ÃQ [ A (S 9 (v ) 2 S(v )) (4)O i i[ ]M i

where the summation is over the M spectral values in the
range of interest. The peak intensity of the 11 000 cm2 1

line in the ideal spectrum is used for AÃ in all further
calculations. Larger Q values indicate better agreement
with the ideal spectrum. Perfect agreement gives Q 5 ` .
In Fig. 3, Q is plotted against D x for ELFS-style and regular
FFT analyses for cases with and without averaging of
interferograms. The spectra quality tends to decrease as
the unevenness of the point spacing increases. Without

averaging (one scan), the qualities for ELFS and FFT
analyses are similar up to an unevenness of about 20%
of the sampling interval D X. Above this limit, ELFS
spectra have a nearly constant quality, whereas FFT spec-
tra continue to deteriorate until virtually no resemblance
to the ideal spectrum remains for D x . D X. The situation
differs for averaged interferograms (64 scans). Only for
very small D x does FFT analysis perform better than
ELFS. Above an unevenness of about 3% of the sampling
interval, ELFS analysis performs better and reaches a
constant level roughly three times higher than is the case
without averaging. In contrast, the quality value of FFT
spectra decreases at an accelerated rate until it reaches
the same low level that occurs without averaging.

The quality values for ELFS analysis of averaged inter-
ferograms are nearly constant for small D x. Apparently,
there is at least one source of noise which is independent
of D x. The approximate evaluation of the least-squares for-
mulae could be this source of noise as shown in Fig. 4. In
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FIG. 4. Quality of spectra obtained from ELFS-style analysis using six
grid points (solid symbols) and four grid points (open symbols) for the
approximate evaluation of the least-squares formulae. The horizontal
lines indicate apparent quality limits for four and six grid points.

FIG. 5. Analog interferogram with intended and actual samples.

ELFS-style analysis, the exact evaluation of harmonic func-
tions at uneven intervals is replaced by an approximation
with the use of a certain number of neighboring points on
an even grid and an interpolation technique.5 Six grid
points/coef® cients are used for the data in Fig. 3. Figure 4
shows the effect of decreasing the number of grid points
on the quality of the spectra. Apparently, using fewer co-
ef® cients raises the noise ¯ oor (lower quality limit), as in-
dicated by the numbered horizontal lines. For the values of
D x in Fig. 4, the spectra quality does not exceed these limits
even with averaging. For medium and large values of D x,
the noise contribution from the approximate evaluation be-
comes less important and the spectra quality for four and
six coef® cients is approximately equal. The exactevaluation
of the ELFS formulae takes several orders of magnitude
more time than the approximate method, making it cur-
rently impractical. However, test runs seem to indicate an
equal or better quality of the spectra than either FFT and
ELFS analyses for all D x.

The quality dependence on D x differs, depending on
the spectral content of the interferogram. High optical
frequencies lead to steep slopes in the interferogram and
to large changes of I(xi 9 ) with variations of D xi. This sit-
uation is shown in Fig. 5. The sampling positions at 6 D X
lie on steep slopes, which leads to a large range of possible
interferogram values and potentially to noise. By plotting
the spectra quality vs. D x/D X in Figs. 3 and 4, where D X
is approximately half the inverse maximum optical fre-
quency, the dependence of the curves on the spectral con-
tent of the spectra has been reduced.

Figure 5 also explains why line strengths decrease with
D x when FFT analysis was used. The interferogram value
assigned to zero pathlength difference determines the in-
tegrated strength of all lines. Sampling positions different
from x 5 0 give smaller interferogram values and hence
lower line strengths. Averaging improves the situation
only if actual samples are quite close to their intended
position. ELFS analysis does not exhibit this problem,
since the actual sampling positions are used for calcula-
tions.

Practical conclusions may now be drawn. Depending on
the number of averaged interferograms, one can extract

from Fig. 3 a critical ratio D x/D X, which de® nes a thresh-
old above which one should use ELFS-style analysis. If
the unevenness of the sampling positions is unknown, an
approximate value may be found from the magnitude of
mirror speed variations. For continuously scanning inter-
ferometers, an estimate may be obtained by observing the
HeNe reference signal or the interferogram of another sin-
gle-line source on an oscilloscope. Variations in the fringe
period indicate speed changes. If the time delay between
accurate knowledge of position and the actual sampling is
td, and mirror speed variations are of size D v, the sampling
position error is D x 5 2D vtd. The factor `̀ 2’ ’ is for instru-
ments where the actual changes in pathlength difference
are twice as fast as the mirror speed. For a single inter-
ferogram (no averaging), the quality numbers for both
analysis types are comparable for D x/D X # 0.2. For 64
averaged interferograms, they are comparable for D x/D X
# 0.03. At a typical mirror speed of 0.5 cm/s with vari-
ations of 3% and sampling twice per fringe, it takes about
200 m s to reach the critical unevenness without averaging
(30 m s for 64 averages). In other words, ELFS-style anal-
ysis will give better spectra for observation times (differ-
ence between the moment of accurate time and position
knowledge and the sampling time) longer than 200 m s in
TRFTS without coaddition.

The foregoing simulations assumed random D xi with a
Gaussian distribution. Periodic mirror speed variations
would cause periodic changes in the sampled interfero-
gram intensity, giving artifacts when regular FFT analysis
is being used.1 Speed spikes may cause large-amplitude
D xi outside the Gaussian distribution considered here. The
effect of such nonrandom sampling errors is dif® cult to
characterize. In practice, the best plan may be to apply
both analysis techniques to an actual data set to decide
which technique to use for other spectra with similar
spectral content.

To compare FFT and ELFS analyses for actual data,
we acquired time-resolved interferograms in steps of 1.5
m s from Nd3 1 :CsGd2F7 photoluminescence at 80 K after
short-pulse excitation at 532 nm. A spectral resolution of
2 cm2 1 was chosen. No averaging was performed. The
scan speed of our interferometer exhibits the expected
random noise but also position-dependent shifts and
spikes.4 The random speed noise is only 3% of the av-
erage speed (0.15 cm/s). Within the 300 m s observation
time, sampling position errors of about 30 nm (2 3 0.15
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FIG. 6. Spectra calculated from an actual (not simulated) data set with FFT analysis (top) and ELFS analysis (bottom). The difference is much
larger than expected from only random mirror speed variations. The signal is 80 K Nd:CsGd2F7 photoluminescence excited by a Q-switched YAG
laser at 532 nm. Time increases forward in 1.5 m s steps. The intensity oscillation at early times is detector response.

cm/s 3 0.03 3 300 m s) can accumulate from the random
speed noise component. This is approximately 10% of
the sampling interval. Hence, according to the simulation
results, one expects similar performance from both FFT
and ELFS analysis techniques without averaging. Figure
6 shows the spectra obtained with FFT analysis (top) and
ELFS analysis (bottom). The superiority of the spectra
quality for ELFS analysis is obvious. Apparently, the
nonrandom contributions to the speed variations cause a
strong degradation of spectra quality for FFT analysis,
whereas ELFS analysis gives acceptable spectra with high
signal-to-noise ratio. This example emphasizes the utility
of ELFS-style data acquisition and analysis and shows
that the D x limits derived in this paper for the usefulness
of FFT are upper bounds. In practice, ELFS will be su-
perior for much smaller D x values because of the non-
random deviations that generally can occur.

The constant quality level for ELFS-style analysis
at large values of D x (Figs. 3 and 4) has an interesting
implication. If D x cannot be kept below 20% of the sam-

pling interval, there is no longer an advantage in attempt-
ing to evenly distribute the interferogram samples. A ran-
dom distribution of samples becomes acceptable (al-
though accurate knowledge of the sampling positions xi 9
is still required).
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